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preface

Preface and Acknowledgments

Welcome to our online textbook, Computer Networking: A Top-Down Approach. We ( Jim Kurose, 
Keith Ross, and Addison-Wesley-Longman) think you will find this textbook to be very different than 
the other computer networking books that are currently available. Perhaps the most unique and 
innovative feature of this textbook is that it is online and accessible through a Web browser. We 
believe that our online format has several things going for it.  First, an online text can be accessed from 
any browser in the world, so a student (or any other reader) can gain access to the book at anytime from 
anyplace. Second, as all of us Internet enthusiasts know, much of the best material describing the 
intricacies of the Internet  is in the Internet itself. Our hyperlinks, embedded in a coherent context, 
provide the reader direct access to some of the best sites relating to computer networks and Internet 
protocols. The links do not only point to RFCs but also to sites that are more pedagogic in nature, 
including  home-brewed pages on particular aspects of Internet technology and articles appearing in 
online trade magazines. Being online also allows us to include many interactive features, including 
direct access to the Traceroute program, direct access to search engines for Internet Drafts, Java applets 
that animate difficult concepts,  and (in the near future) direct access to streaming audio. Being online 
enables us to use more fonts and colors (both within the text and in diagrams), making the text both 
perky and cheerful. Finally,  an online format will allow us to frequently release new editions (say, every 
year), which will enable the text to keep pace with this rapidly changing field. 

Another unusual feature of the text is its Internet focus. Most of the existing textbooks begin with a 
broader perspective and address the Internet as just as one of many computer network technologies. We 
instead put Internet protocols in the spotlight, and use the Internet protocols as  motivation for studying 
some of the more fundamental computer networking concepts. But why put the Internet in the spotlight, 
why not some other networking technology such as ATM? Most computer networking students have had 
already significant "hands on" experience with the Internet (e.g., surfing the Web and sending e-mail at 
the very least) before taking a course on computer networks. We have found that modern-day students in 
computer science and electrical engineering, being intensive users of the Internet, are enormously 
curious about what is under the hood of the Internet. Thus, it is easy to get students excited about 
computer networking when using the Internet as your guiding vehicle.  A second reason for the Internet 
focus is that in recent years computer networking has become synonymous with the Internet. This wasn't 
the case five-to-ten years ago, when there was a lot of talk about ATM LANs and applications direclty 
interfacing with ATM (without passing through TCP/IP). But we have now  reached the point where just 
about all data traffic is carried over the Internet or intranets. Furthermore, streaming audio and video 
have recently become commonplace in the Internet, and someday telephony may be too. Because our 
book has an Internet focus, it is organized around a five-layer Internet architecture rather than around the 
more traditional seven-layer OSI architecture. 

Another unique feature of this book is that it is also top-down in how the content is organized. As we 
mentioned above, this text, as almost all computer networks textbooks, uses a layered architectural 
model to organize the content. However, unlike other texts, this text begins at the application-layer and 
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works its way down the protocol stack. The rationale behind this top-down organization is that once one 
understands the applications, one can then understand the network services needed to support these  
applications. One can then, in turn, examine the various ways in which such services might be provided/
implemented by a network architecture. Covering applications early thus provides motivation for the 
remainder of the text. 

An early emphasis on application-layer issues differs from the approaches taken in most other texts, 
which have only a small (or nonexistent) amount of material on network applications, their 
requirements, application-layer paradigms (e.g., client/server), and the application programming 
interfaces (e.g., sockets).  Studying application-layer protocols first allows students to develop an 
intuitive feel for what protocols are (the role of message exchange and the actions taken on events) in 
the context of network applications (e.g., the Web, FTP and e-mail) which they use daily. Furthermore, 
the inclusion of a significant amount of material at the application layer reflects our own belief that there 
has been, and will continue to be, a significant growth in emphasis (in the research community, and in 
industry) in the higher levels of network architecture. These higher layers -- as exemplified by the Web 
as an application layer protocol -- is the true ``growth area'' in computer networking. 

This textbook also contains material on application programming development - material not covered 
in depth by any introductory computer networks textbook. (While there are books devoted to network 
programming, e.g., the texts by Stevens, they are not introductory networking textbooks.) There are 
several compelling reasons for including this material. First, anyone wanting to write a network 
application must know about socket programming - the material is thus of great practical interest. 
Second, early exposure to socket programming is valuable for pedagogical reasons as well - it allows 
students to write actual network application-level programs and gain first-hand experience with many of 
this issues involved in having multiple geographically distributed processes communicate. We present 
the material on application programming in a Java context rather than a C context, because socket 
programming in Java is simpler, and allows students to quickly see the forest through the trees. 

It has been said that computer networking textbooks are even more boring than accounting texts. 
Certainly, one seed of truth in the statement is that many books are simply a compendium of facts about 
a myriad of computer networking technologies and protocols, such as packet formats or service 
interfaces (and given the wealth of protocol standards, there is no shortage of such facts!). What is 
missing in such accounting-like textbooks is an identification of the important, underlying issues that 
must be solved by a network architecture, and a methodical study of the various approaches taken 
towards addressing these issues. Many texts focus on what a network does, rather than why. Addressing 
the principles, rather than just the dry standards material, can make a textbook more interesting and 
accessible. (A sense of humor, use of analogies, and real-world examples also help.) 

The field of networking is now mature enough that a number of fundamentally important issues can be 
identified. For example, in the transport layer, the fundamental issues include reliable communication 
over an unreliable channel, connection establishment/teardown and handshaking, congestion and flow 
control, and multiplexing.  In the routing layer, two fundamentally important issues are how to find 
``good'' paths between two routers, and how to deal with large, heterogeneous systems. In the data link 
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layer, a fundamental problem is how to share a multiple access channel. This text identifies 
fundamental networking issues as well as approaches towards addressing these issues.  We believe 
that the combination of  using the Internet to get the student's foot in door and then emphasizing  the 
issues and solution approaches will allow the student to quickly understand just about any networking 
technology. For example, reliable data transfer is a fundamental issue in both the transport and data link 
layer. Various mechanisms (e.g., error detection, use of timeouts and retransmit, positive and negative 
acknowledgments, and forward error correction) have been designed to provide reliable data transfer 
service. Once one understands these approaches, the data transfer aspects of protocols like TCP and 
various reliable multicast protocols can been seen as case studies illustrating these mechanisms. 

How an Instructor Can Use this Online Book

This online book can be used as the textbook for a course on computer networking just like any other 
textbook.  The instructor can assign readings and homework problems, and base lectures on the material 
within the text. However, the textbook is also ideally suited for asynchronous online courses. Such 
courses are particularly appealing to students who commute to school or have difficulty scheduling 
classes due to course time conflicts. The authors already have significant experience in leading 
asynchronous online courses, using an earlier draft of this online text. They have found that one 
successful asynchronous format is to have students  do weekly asynchronous readings (and listenings!) 
and to have students participate in weekly newsgroup discussions about the readings. Students can have 
a virtual presence by sharing the URLs of the their personal Web pages with the rest of the class. 
Students can even collaborative on joint projects, such as research papers and network application 
development, asynchronously over the Internet. Readers are encouraged to visit the following sites 
which are devoted to asynchronous online education: 

The Web of Asynchronous Learning Networks 

Journal of Asynchronous Learning Networks 

Asynchronous Learning Networks Magazine 
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Chapter 2: The Application Layer 
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What is the Internet?

1.1 What is the Internet?

In this book we use the public Internet, a specific computer network (and one which probably most readers have used), as our 
principle vehicle for discussing computer networking protocols. But what is the Internet? We would like to give you a one-sentence 
definition of the Internet, a definition that you can take home and share with your family and friends. Alas, the Internet is very 
complex, both in terms of its hardware and software components, as well as the services it provides. 

A Nuts and Bolts Description

Instead of giving a one-sentence definition, let's try a more descriptive approach. There are a couple of ways to do this. One way is 
to describe the nuts and bolts of the Internet, that is, the basic hardware and software components that make up the Internet. Another 
way is to describe the Internet in terms of a networking infrastructure that provides services to distributed applications. Let's begin 
with the nuts-and-bolts description, using Figure 1.1-1 to illustrate our discussion. 

 
Figure 1.1-1: Some "pieces" of the Internet

●     The public Internet is a world-wide computer network, i.e., a network that interconnects millions of computing devices 
throughout the world.  Most of these computing devices are traditional desktop PCs,  Unix-based workstations, and so called 
"servers" that store and transmit information such as WWW pages and e-mail messages.  Increasingly, non-traditional 
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What is the Internet?

computing devices such as Web TVs, mobile computers, pagers and toasters are being connected to the Internet. (Toasters 
are not the only rather unusual devices to have been hooked up to the Internet; see the The Future of the Living Room.) In 
the Internet jargon, all of  these devices are called hosts or end systems.  The Internet applications with which many of us 
are familiar, such as the WWW and e-mail, are network application programs that run on such end systems.  We will look 
into Internet end systems in more detail in section 1.3 and then delve deeply into the study of network applications in 
Chapter 2.

●     End systems, as well as most other "pieces" of the Internet, run  protocols that control the sending and receiving of 
information within the Internet. TCP (the Transmission Control Protocol) and IP (the Internet Protocol) are two of the most 
important protocols in the Internet.  The Internet's principle protocols are collectively known as TCP/IP protocols. We 
begin looking into protocols in section 1.2. But that's just a start --much of this entire book is concerned with computer 
network protocols!

●     End systems are connected together by communication links. We'll see in section 1.5 that there are many types of 
communication links.  Links are made up of different types of physical media: coaxial cable, copper wire, fiber optics, and 
radio spectrum. Different links can transmit data at different rates.  The link transmission rate is often called  the link 
bandwidth, and is typically measured in bits/second.

●     Usually, end systems are not directly attached to each other via a single communication link.  Instead, they are indirectly 
connected to each other through intermediate switching devices known as routers.   A router takes information arriving on 
one of its incoming communication links and then forwards that information on one of its outgoing communication links.  
The IP protocol specifies the format of the information that is sent and received among routers and end systems. The path 
that transmitted information takes from the sending end system, through a series of communications links and routers, to the 
receiving end system is known as a route or path through the network.   We introduce routing in more detail in section 1.4, 
and study the algorithms used to determine routes, as well as the internal structure of a router itself, in Chapter 4.

●     Rather than provide a dedicated path between communicating end systems, the Internet uses a technique known as packet 
switching that allows multiple communicating end systems to share a path, or parts of a path, at the same time. We will see 
that packet switching can often use a link more "efficiently" than circuit switching (where each  pair of communicating end 
systems gets a dedicated path).  The earliest ancestors of the Internet were the first packet-switched networks; today's public 
Internet is the grande dame of all existing packet-switched networks.

●     The Internet is really a network of networks.  That is, the Internet is an interconnected set of privately and publicly owned 
and managed networks.  Any network connected to the Internet must run the IP protocol and conform to certain naming and 
addressing conventions. Other than these few constraints, however, a network operator can configure and run its network (i.
e., its little "piece" of the Internet) however it chooses.  Because of the universal use of the IP protocol in the Internet, the IP 
protocol  is sometimes referred to as the Internet dail tone.

●     The topology of the Internet, i.e., the structure of the interconnection among the various pieces of the Internet,  is loosely 
hierarchical. Roughly speaking, from bottom-to-top, the hierarchy consists of end systems connected to local Internet 
Service Providers (ISPs) though access networks.  An access network may be a so-called local area network within a 
company or university, a dial telephone line with a modem, or a high-speed cable-based or phone-based access network. 
Local ISP's are in turn connected to regional ISPs, which are in turn connected to national and international ISPs. The 
national  and international ISPs are connected together at the highest tier in the hierarchy. New tiers and branches (i.e., new 
networks, and new networks of networks) can be added just as a new piece of Lego can be attached to an existing Lego 
construction.  In the first half of 1996, approximately 40,000 new network addresses  were added to the Internet [Network 
1996] - an astounding growth rate.

●     At the technical and developmental level, the Internet is made possible through creation, testing and implementation of 
Internet Standards. These standards are developed by the Internet Engineering Task Force (IETF). The IETF standards 
documents are called RFCs (request for comments). RFCs started out as general  request for comments (hence the name) to 
resolve architecture problems which faced the precursor to the Internet. RFCs, though not formally standards, have evolved 
to the point where they are cited as such.  RFCs tend to be quite technical and detailed.  They define protocols such as TCP, 

file:///D|/Downloads/Livros/computação/Computer%20Netwo...h%20Featuring%20the%20Internet/What_is_the_Internet.htm (2 of 4)20/11/2004 15:51:37

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-18.html
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-12.htm


What is the Internet?

IP, HTTP (for the Web) and SMTP (for open-standards e-mail).  There are more than 2000 different RFC's

The public Internet (i.e., the global network of networks discussed above) is the network that one typically refers to as the Internet.  
There are also many private networks, such as certain corporate and government networks, whose hosts are not accessible from (i.
e., they can not exchange messages with) hosts outside of that private  network. These private networks are often referred to as 
intranets, as they often use the same "internet technology" (e.g., the same types of host, routers, links, protocols, and standards) as 
the public Internet. 

A Service Description

The discussion above has identified many of the pieces that make up the Internet.  Let's now leave the nuts and bolts description and 
take a more abstract, service-oriented, view: 

●     The Internet allows distributed applications running on its end systems to exchange data with each other. These 
applications include remote login, file transfer, electronic mail, audio and video streaming, real-time audio and video 
conferencing, distributed games, the World Wide Web, and much much more [AT&T 1998]. It is worth emphasizing that the 
Web is not a separate network but rather just one of  many distributed applications that use the communication services 
provided by the Internet.  The Web could also run over a network besides the Internet. One reason that the Internet is the 
communication medium of choice for the Web, however, is that no other existing packet-switched network  connects  more 
than 43 million [Network 1999] computers together and has 100 million or so users [Almanac]. (By the way, determining the 
number of computers hooked up to the Internet is a very difficult task, as no one is responsible for maintaining a list of who's 
connected.  When a new network is added to the Internet, its administrators do not need to report which end systems are 
connected to that network.  Similarly, an exiting network does not report its changes in connected end systems to any central 
authority.)

●     The Internet provides two services to its distributed applications: a connection-oriented service and a connectionless 
service. Loosely speaking, connection-oriented service guarantees that data transmitted from a sender to a receiver will 
eventually be delivered to the receiver in-order and in its entirety.  Connectionless service does not make any guarantees 
about eventual delivery.  Typically, a distributed application makes use of one or the other of these two services and not 
both. We examine these two different services in section 1..3 and in great detail in Chapter 3.

●     Currently the Internet does not provide a service that makes promises about how long it will take  to deliver the data from 
sender to receiver. And except for increasing your access bit rate to your Internet Service Provider (ISP), you currently 
cannot obtain better service (e.g., shorter delays) by paying more -- a state of affairs that some (particularly Americans!) find 
odd.  We'll take a look at state-of-the art Internet research that is aimed at changing this situation in Chapter 6.

Our second description of the Internet -  in terms of the services it provides to distributed applications -- is a non-traditional, but 
important, one. Increasingly, advances in the "nuts and bolts" components of the Internet are being driven by the needs of new 
applications. So it's important to keep in mind that the Internet is an infrastructure in which new applications are being constantly 
invented and deployed. 

We have given two descriptions of the Internet, one in terms of the hardware and software components that make up the Internet, 
the other in terms of the services it provides to distributed applications. But perhaps you are even  more confused as to what the 
Internet is. What is packet switching, TCP/IP and connection-oriented service? What are routers? What kinds of communication 
links are present in the Internet? What is a distributed application? What does the Internet have to do with children's toys?  If you 
feel a bit overwhelmed by all of this now, don't worry -  the purpose of this book is to introduce you to both the nuts and bolts of the 
Internet, as well as the principles that govern how and why it works. We will explain these important terms and questions in the 
subsequent sections and chapters. 
  

Some Good  Hyperlinks

file:///D|/Downloads/Livros/computação/Computer%20Netwo...h%20Featuring%20the%20Internet/What_is_the_Internet.htm (3 of 4)20/11/2004 15:51:37

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#131


What is the Internet?

As every Internet researcher knows, some of the best and most accurate information about the Internet and its protocols is not in 
hard copy books, journals, or magazines. The best stuff about the Internet is in the Internet itself!   Of course, there's really too 
much material to sift through, and sometimes the gems are few and far between. Below, we list a few generally excellent WWW 
sites for network- and Internet-related material.   Throughout the book, we will also present links to relevant, high quality URL's 
that  provide  background, original (i.e., a citation), or advanced material related to the particular topic under study. Here is a set of 
key links that you will want to consult while you proceed through this book: 

Internet Engineering Task Force (IETF): The IETF is an open international community concerned with the development and 
operation of the Internet and its architecture. The IETF was formally established by the Internet Architecture Board (IAB) in 1986. 
The IETF meets three times a year; much of its ongoing work is conducted via mailing lists by working groups. Typically, based 
upon previous IETF proceedings, working groups will convene at meetings of the IETF to discuss the work of the IETF working 
groups.   The IETF is administered by the Internet Society, whose WWW site contains lots of high-quality, Internet-related material. 

The World Wide Web Consortium (W3C): The W3C was founded in 1994 to develop common protocols for the evolution of the 
World Wide Web. This an outstanding site with fascinating information on emerging Web technologies, protocols and standards. 

The Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE): These are the 
two main international professional societies that have technical conferences, magazines, and journals in the networking area.  The 
ACM Special Interest Group in Data Communications (SIGCOMM), the IEEE Communications Society, and the IEEE Computer 
Society are the groups within these bodies whose efforts are most closely related to networking. 

Connected: An Internet Encyclopedia: An attempt to take the Internet tradition of open, free protocol specifications, merge it with a 
1990s Web presentation, and produce a readable and useful reference to the technical operation of the Internet. The site contains 
material on over 100 Internet topics. 

Data  communications tutorials from the online magazine Data Communications: One of the better magazines for data 
communications technology. The site includes many excellent tutorials. 

Media History Project: You may be wondering how the Internet got started. Or you may wonder how electrical communications got 
started in the first place. And you may even wonder about what preceded electrical communications! Fortunately, the Web contains 
an abundance of excellent resources available on these subjects. This site promotes the study of media history from petroglyths to 
pixels. It covers the history of digital media, mass media, electrical media, print media, and even oral and scribal culture. 
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What is a protocol?

1.2.What is a Protocol?

Now that we've got a bit of a feel for what the "Internet" is, let's consider another important word is the 
title of this book: "protocol."  What is a protocol?  What does a protocol do? How would you recognize a 
protocol if  you met one? 

A Human Analogy

It is probably easiest to understand the notion of a computer network protocol by first considering some 
human analogies, since we humans execute protocols all of the time. Consider what you do when you 
want to ask someone for the time of day.  A typical exchange is shown in Figure 1.2-1. Human protocol 
(or good manners, at least) dictates that one first offers a greeting (the first "Hi" in Figure 1.2-1) to initiate 
communication with someone else. The typical response to a "Hi" message (at least outside of New York 
City)  is a returned "Hi" message.  Implicitly, one then takes a cordial "Hi" response as an indication that 
one can proceed ahead and ask for the time of day. A different response to the initial "Hi" (such as  "Don't 
bother me!", or "I don't speak English," or an unprintable reply that one might receive in New York City) 
might indicate an unwillingness or inability to communicate.  In this case, the human protocol would be 
to not ask for the time of day. Sometimes one gets no reponse at all to a question, in which case one 
typically gives up asking that person for the time. Note that in our human protocol, there are specific 
messages we send, and specific actions we take in response to the received reply messages or other 
events (such as no reply within some given amount of time).  Clearly, transmitted and received messages, 
and actions taken when these message are sent or received or other events occur, play a central role in a 
human protocol.  If people run different protocols (e.g., if one person has manners but the other does not, 
or if one understands the concept of time and the other does not)  the protocols do not  interoperate and 
no useful work can be accomplished.  The same is true in networking -- it takes two (or more) 
communicating entities running the same  protocol in order to accomplish a task. 

Let's consider a second human analogy.  Suppose you're in a college class (a computer networking class, 
for example!).  The teacher is droning on about protocols and you're confused.  The teacher stops to ask,  
"Are there any questions?" (a message that is transmitted to, and received by, all students who are not 
sleeping).  You raise your hand (transmitting an implicit message to the teacher).  Your teacher 
acknowledges you with a smile, saying "Yes ......." (a transmitted message encouraging you to ask your 
question - teachers love to be asked questions) and you then ask your question (i.e., transmit your 
message to your teacher).  Your teacher hears your question (receives your question message) and 
answers (transmits a reply to you).  Once again, we see that the transmission and receipt of messages, and 
a set of conventional actions taken when these mesages are sent and received, are at the heart of this 
question-and-answer protocol. 
  

Network Protocols
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A network protocol is similar to a human protocol, except that the entities exchanging messages and 
taking actions are hardware or software components of a computer network, components that we will 
study shortly in the following sections.  All activity in the Internet that involves two or more 
communicating remote entities is governed by a protocol.  Protocols in  routers determine a packet's path 
from source to destination; hardware-implemented protocols in the network interface cards of two 
physically connected computers control the flow of bits on the "wire" between the two computers; a 
congestion control protocol controls the rate at which packets are transmitted between sender and 
receiver. Protocols are running everywhere in the Internet, and consequently much of this book is about 
computer network protocols. 

 
Figure 1.2-1: A human protocol and a computer network protocol

As an example of a computer network protocol with which you are probably familiar, consider what 
happens when you make a request to a WWW server,  i.e., when you type in the URL of a WWW page 
into your web browser. The scenario is illustrated in the right half of Figure 1.2-1. First, your computer 
will send a so-called "connection request" message to the WWW server and wait for a reply.  The WWW 
server will eventually receive your connection request message and return a "connection reply" message. 
Knowing that it is now OK to request the WWW document, your computer then sends the name of the 
WWW page it wants to fetch from that WWW server in a "get" message.  Finally, the WWW server 
returns the contents of the WWW document to your computer. 

Given the human and networking examples above,  the exchange of messages and the actions taken when 
these messages are sent and received are the key defining elements of a protocol: 

     A protocol defines the format and the order of messages exchanged between two or more 
communicating entities, as well as the actions taken on the transmission and/or receipt of a message. 
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What is a protocol?

The Internet, and computer networks in general, make extensive use of protocols. Different protocols are 
used to accomplish different communication tasks. As you read through this book, you will learn that 
some protocols are simple and straightforward, while others are complex and intellectually deep. 
Mastering the field of computer networking is equivalent to understanding the what, why and how of 
networking protocols. 
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End systems, protocols, and end-to-end service models

1.3 The Network Edge

In the previous sections we presented a high-level description of the Internet and networking protocols. 
We are now going to delve a bit more deeply into the components of the Internet. We begin in this 
section at the edge of network and look at the components with which we are most familiar -- the 
computers (e.g., PCs and workstations) that we use on a daily basis. In the next section we will move 
from the network edge to the network core and examine switching and routing in computer networks. 
Then in Section 1.5 we will discuss the actual physical links that carry the signals sent between the 
computers and the switches. 

1.3.1 End Systems, Clients and Servers

In computer networking jargon, the computers that we use on a daily basis are often referred to as or 
hosts or end systems. They are referred to as "hosts" because they host (run) application-level programs 
such as a Web browser or server program, or an e-mail program.  They are also referred to as "end 
systems" because they sit at the "edge" of the Internet, as shown in Figure 1.3-1. Throughout this book 
we will use the terms hosts and end systems interchangeably, that is, host = end system. 

Hosts are sometimes further divided into two categories: clients and servers. Informally, clients often 
tend to be desktop PC's or workstations, while servers are more powerful machines.  But there is a more 
precise meaning of a client and a server in computer networking.  In the so-called client-server model,  
a client program running on one end system requests and receives information from a server running on 
another end system.  This client-server model  is undoubtedly the most prevalent structure for Internet 
applications. We will study the client-server model in detail in Chapter 2. The Web, e-mail, file transfer, 
remote login (e.g., Telnet), newgroups and many other popular applications adopt the client-server 
model. Since a client typically runs on one computer and the server runs on another computer, client-
server  Internet applications are, by definition, distributed applications.  The client and the server 
interact with each other by communicating (i.e., sending each other messages) over the Internet.  At this 
level of abstraction, the routers, links and other "pieces" of the Internet serve as a "black box" that 
transfers messages between the distributed, communicating components of an Internet application.  This 
is the level of abstraction depicted in Figure 1.3-1. 
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Figure 1.3-1: End system Interaction

Computers (e.g., a PC or a workstation), operating as clients and servers, are the most prevalent type of 
end system.  However, an increasing number of alternative devices, such as so-called network computers 
and thin clients [Thinworld 1998], Web TV's and set top boxes [Mills 1998], digital cameras, and other 
devices are being attached to the Internet as end systems.  An interesting discussion of the continuing 
evolution of Internet applications is [AT&T 1998]. 
  

1.3.2 Connectionless and Connection-Oriented Services

We have seen that end systems exchange messages with each other according to an application-level 
protocol in order to accomplish some task.  The links, routers and other pieces of the Internet provide the 
means to transport these messages between the end system applications.  But what are the characteristics 
of this communication service that is provided? The Internet, and more generally TCP/IP networks, 
provide two types of services to its applications: connectionless service and connection-oriented 
service. A developer creating an  Internet application (e.g., an email application, a file transfer 
application, a Web application or an Internet phone application) must program the application to use one 
of these two services.  Here, we only briefly describe these two services; we shall discuss them in much 
more detail in Chapter 3, which covers transport layer protocols. 
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Connection-Oriented Service

When an application uses the connection-oriented service, the client and the server (residing in different 
end systems) send control packets to each other before sending packets with real data (such as e-mail 
messages). This so-called handshaking procedure alerts the client and server, allowing them to prepare  
for an onslaught of packets. It is interesting to note that this initial hand-shaking procedure is similar to 
the protocol used in human interaction. The exchange of "hi's" we saw in Figure 1.2-1 is an example of a 
human "handshaking  protocol" (even though  handshaking is not literally taking place between the two 
people).  The two TCP messages that are exchanged as part of the WWW interaction shown in Figure 
1.2-1 are two of the three messages exchanged when TCP sets up a connection between a sender and 
receiver.  The third TCP message (not shown) that forms the final part of the TCP three-way handshake 
(see Section 3.7) is contained in the get message shown in Figure 1.2-1. 

Once the handshaking procedure is finished, a "connection" is said to be established between the two 
end systems. But the two end systems are connected in a very loose manner, hence the terminology 
"connection-oriented". In particular, only the end systems themselves are aware of this connection; the 
packet switches (i.e., routers) within the Internet are completely oblivious to the connection. This is 
because a TCP connection is nothing more than allocated resources (buffers) and state variables in the 
end systems. The packet switches do not maintain any connection state information. 

The Internet's connection oriented service comes bundled with several other services, including reliable 
data transfer, flow control and congestion control. By reliable data transfer, we mean that an 
application can rely on the connection to deliver all of its data without error and in the proper order. 
Reliability in the Internet is achieved through the use of acknowledgments and retransmissions. To get a 
preliminary idea about how the Internet implements the reliable transport service, consider an 
application that has established a connection between end systems A and B. When end system B 
receives a packet from A, it sends  an acknowledgment; when end system A receives the 
acknowledgment, it knows that the corresponding packet has definitely been received.  When end 
system A doesn't receive an acknowledgment, it assumes that the packet it sent was not received by B; it 
therefore retransmits the packet.Flow control  makes sure that neither side of a connection overwhelms 
the other side by sending too many packets too fast. Indeed, the application at one one side of the 
connection may not be able to process information as quickly as it receives the information. Therefore, 
there is a risk of overwhelming either side of an application. The flow-control service forces the sending 
end system to reduce its rate whenever there is such a risk. We shall see in Chapter 3 that the Internet 
implements the flow control service by using sender and receiver buffers in the communicating end 
systems. The Internet's congestion control service helps prevent the Internet from entering a state of 
grid lock. When a router becomes congested, its buffers can overflow and packet loss can occur. In such 
circumstances, if every pair of communicating end systems continues to pump packets into the network 
as fast as they can, gridlock sets in and few packets are delivered to their destinations. The Internet 
avoids this problem by forcing end systems to diminish the rate at which they send packets into the 
network during periods of congestion. End systems are alerted to the existence of severe congestion 
when they stop receiving acknowledgments for the packets they have sent. 
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We emphasize here that although the Internet's connection-oriented service comes bundled with reliable 
data transfer, flow control and congestion control, these three features are by no means essential 
components of a connection-oriented service. A different type of computer network may provide a 
connection-oriented service to its applications without bundling in one or more of these features. Indeed, 
any protocol that performs handshaking between the communicating entities before transferring data is a 
connection-orieinted service [Iren]. 

The Internet's connection-oriented service has a name -- TCP (Transmission Control Protocol); the 
initial version of the TCP protocol is defined in the Internet Request for Comments RFC 793 [RFC 793]. 
The services that TCP provides to an application include reliable transport, flow control and congestion 
control.  It is important to note that an application need only care about the services that are  provided; it 
need not to worry about how TCP actually implements reliability, flow control, or congestion control.  
We, of course, are very interested in how TCP implements these services and we shall cover these topics 
in detail in Chapter 3. 

Connectionless Service

There is no handshaking with the Internet's connectionless service. When one side of an application 
wants to send packets to another side of an application, the sending application simply sends the 
packets.  Since there is no handshaking procedure prior to the transmission of the packets, data can be 
delivered faster. But there are no acknowledgments either, so a source never knows for sure which 
packets arrive at the destination. Moreover, the service makes no provision for flow control or 
congestion control. The Internet's connectionless service is provided by UDP (User Datagram 
Protocol);  UDP is defined in the Internet Request for Comments RFC 768 [RFC 768]. 

Most of the more familiar Internet applications use TCP, the Internet's connection-oriented service. 
These applications include Telnet (remote login), SMTP (for electronic mail), FTP (for file transfer), and 
HTTP (for the Web). Nevertheless, UDP, the Internet's connectionless service, is used by many 
applications, including many of the emerging multimedia applications, such as Internet phone, audio-on-
demand, and video conferencing. 
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The Network Core

1.4 The Network Core

Having examined the endsystems and end-end transport service model of the Internet in section 1.3, let 
us now delve more deeply  into the "inside" of the network.  In this section we study the network core -- 
the mesh of routers that interconnect the Internet's endsystems.  Figure 1.4-1 highlights the network core 
in red. 

 
Figure 1.4-1: The network core

1.4.1 Circuit Switching,  Packet Switching and Message 
Switching

There are two fundamental approaches towards building a network core: circuit switching and packet 
switching.  In circuit-switched networks, the resources needed along a path (buffers, link bandwidth)  to 
provide for communication between the endsystems are reserved for the duration of the session. In 
packet-switched networks, these resources are not reserved; a session's messages use the resource on 
demand, and as a consequence, may have to wait (i.e., queue) for access to a communication link. As a 
simple analogy, consider two restaurants -- one which requires reservations and another which neither 
requires reservations nor accepts them. For the restaurant that requires reservations, we have to go 
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through the hassle of first calling (or sending an e-mail!) before we leave home. But when we arrive at 
the restaurant we can, in principle, immediately communicate with the waiter and order our meal. For 
the restaurant that does not require reservations, we don't need to bother to reserve a table. But when we 
arrive at the restaurant, we may have to wait for a table before we can communicate with the waiter. 

The ubiquitous telephone networks are examples of circuit-switched networks. Consider what happens 
when one person wants to send information (voice or facsimile) to another over a telephone network. 
Before the sender can send the information, the network must first establish a connection between the 
sender and the receiver. In contrast with the TCP connection that we discussed in the previous section, 
this is a bona fide connection for which the switches on the path between the sender and receiver 
maintain connection state for that connection. In the jargon of telephony, this connection is called a 
circuit. When the network establishes the circuit, it also reserves a constant transmission rate in the 
network's links for the duration of the connection. This reservation allows the sender to transfer the data 
to the receiver at the guaranteed constant rate. 

Today's Internet is a quintessential packet-switched network. Consider what happens when one host 
wants to send a packet to another host over a packet-switched network. As with circuit-switching, the 
packet is transmitted over a series of communication links. But with packet-switching, the packet is sent 
into the network without reserving any bandwidth whatsoever.  If one of the links is congested because 
other packets need to be transmitted over the link at the same time, then our packet will have to wait in a 
buffer at the sending side of the transmission line, and suffer a delay. The Internet makes its best effort 
to deliver the data in a timely manner. But it does not make any guarantees. 

Not all telecommunication networks can be neatly classified as pure circuit-switched networks or pure 
packet-switched networks. For example, for networks based on the  ATM technology,  a connection can 
make a reservation and yet its  messages may  still wait for congested resources! Nevertheless, this 
fundamental classification into packet- and circuit-switched networks is an excellent starting point in 
understanding telecommunication network technology. 

Circuit Switching

This book is about computer networks, the Internet and packet switching, not about telephone networks 
and circuit switching. Nevertheless, it is important to understand why the Internet and other computer 
networks use packet switching rather than the more traditional circuit-switching technology used in the 
telephone networks. For this reason, we now give a brief overview of circuit switching. 

Figure 1.4-2 illustrates a circuit-switched network. In this network the three circuit switches are 
interconnected by two links; each of these links has n circuits, so that each link can support n 
simultaneous connections. The endsystems (e.g., PCs and workstations) are each directly connected to 
one of the switches. (Ordinary telephones are also connected to the switches, but they are not shown in 
the diagram.) Notice that some of the hosts have analog access to the switches, whereas others have 
direct digital access. For analog access, a modem is required. When two hosts desire to communicate, 
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the network establishes a dedicated end-to-end circuit between two hosts. (Conference calls between 
more than two devices are, of course, also possible. But to keep things simple, let's suppose for now that 
there are only two hosts for each connection.) Thus in order for host A to send messages to host B, the 
network must first reserve one circuit on each of two links. 

Figure 1.4-2:A simple circuit-switched network consisting of three circuit 
switches interconnected with two links. Each link has n circuits; each end-to-end 
circuit over a link gets the fraction 1/n of the link's bandwidth for the duration of 
the circuit. The ncircuits in a link can be either TDM or FDM circuits.

A circuit in a link is implemented with either frequency division multiplexing (FDM) or time-division 
multiplexing (TDM). With FDM, the frequency spectrum of a link is shared among the connections 
established across the link. Specifically, the link dedicates  a frequency band to each connection for the 
duration of the connection. In telephone networks, this frequency band typically has a width of 4 kHz. 
The width of the band is called, not surprisingly, the bandwidth. FM radio stations also use FDM to 
share microwave frequency spectrum. 
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The trend in modern telephony is to replace FDM with TDM. The majority of the links in most 
telephone systems in the United States and in other developed countries currently employ TDM. For a 
TDM link, time is divided into frames of fixed duration and each frame is divided into a fixed number of 
time slots. When the network establish a connection across a link, the network dedicates one time slot in 
every frame  to the connection.  These slots are dedicated for the sole use of that connection, with a time 
slot available for use (in every frame) to transmit the connection's data. 

Figure 1.4.3 illustrates FDM and TDM for a specific network link. For FDM, the frequency domain is 
segmented into a number of circuits, each of bandwidth 4 KHz (i.e., 4,000 Hertz or 4,000 cycles per 
second). For TDM, the time domain is segmented into four circuits; each circuit is assigned the same 
dedicated slot in the revolving TDM frames. The transmission rate of the frame is equal to the frame rate 
multiplied by the number of bits in a slot. For example, if the link transmits 8,000 frames per second and 
each slot consists of 8 bits, then the transmission rate is 64 Kbps. 

Figure 1.4-3: With FDM, each circuit continuously gets a fraction of the 
bandwidth. With TDM, each circuit gets all of the bandwidth periodically 
during brief intervals of time (i.e., during slots).

Proponents of packet switching have always argued that circuit switching is wasteful because the 
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dedicated circuits are idle during silent periods. For example,  when one of the conversants in a 
telephone call stops talking, the idle network resources (frequency bands or slots in the links along the 
connection's route)  cannot be used by other ongoing connections. As another example of how these 
resources can be underutilized, consider a radiologist who uses a circuit-switched network to remotely 
access a series of x-rays. The radiologist sets up a connection, requests an image, contemplates the 
image, and then requests a new image. Network resources are wasted during the radiologist's  
contemplation periods. Proponents of packet switching also enjoy pointing out that establishing end-to-
end circuits and reserving end-to-end bandwidth is complicated and requires complex signaling software 
to coordinate the operation of the switches along the end-to-end path. 

Before we finish our discussion of circuit switching, let's work through a numerical example that should 
shed further insight on the matter. Let us consider how long it takes to send a file of  640 Kbits from host 
A to host B over a circuit-switched network.  Suppose that all links in the network use TDM with 24 
slots and have bit rate 1.536 Mbps. Also suppose that it takes 500 msec to establish an end-to-end circuit 
before A can begin to transmit the file. How long does it take to send the file? Each circuit has a 
transmission rate of (1.536 Mbps)/24 = 64 Kbps, so it takes (640 Kbits)/(64 Kbps) = 10 seconds to 
transmit the file. To this 10 seconds we add the the circuit establishment time, giving 10.5 seconds to 
send the file. Note that the transmission time is independent of the number links: the transmission time 
would be 10 seconds if the end-to-end circuit passes through one link or one-hundred links. AT&T Labs 
provides an interactive site [AT&T 1998] to explore transmission delay for various file types and 
transmission technologies. 

Packet Switching

We saw in sections 1.2 and 1.3. that application-level protocols exchange messages in accomplishing 
their task.  Messages can contain anything the protocol designer desires.  Messages may perform a 
control function (e.g., the "hi" messages in our handshaking example) or can contain data, such as an 
ASCII file, a Postscript file, a Web page, a digital audio file. In modern packet-switched networks, the 
source breaks long messages into smaller packets. Between source and destination, each of these 
packets traverse communication links and packet switches (also known as routers). Packets are 
transmitted over each communication link at a rate equal to the full transmission rate of the link. Most 
packet switches use store and forward transmission at the inputs to the links. Store-and-forward 
transmission means that the switch must receive the entire packet before it can begin to transmit the first 
bit of the packet onto the outbound link. Thus store-and-forward packet-switches introduce a store-and-
forward delay at the input to each link along the packet's route. This delay is proportional to the 
packet's length in bits. In particular, if a packet consists of L bits, and the packet is to be forwarded onto 
an outbound link of R bps, then the store-and-forward delay at the switch is L/R seconds. 

Within each router there are multiple buffers (also called queues), with each link having an input buffer 
(to store packets that have just arrived to that link) and an output buffer.  The output buffers play a key 
role in packet switching.  If an arriving packet needs to be transmitted across a link but finds the link 
busy with the transmission of another packet, the arriving packet must wait in the output buffer. Thus, in 
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addition to the store-and-forward delays, packets suffer output buffer queueing delays. These  delays 
are variable and depend on the level of congestion in the network. Since the amount of buffer space is 
finite, an arriving packet may find that the buffer is completely filled with other packets waiting for 
transmission.  In this case, packet loss will occur - either the arriving packet or one of the already-
queued packets will be dropped.  Returning to our restaurant analogy from earlier in this section, the 
queueing delay is analogous to the amount of time one spends waiting for a table.  Packet loss is 
analogous to being told by the waiter that you must leave the premises because there are already too 
many other people waiting at the bar for a table. 

Figure 1.4-4 illustrates a simple packet-switched network. Suppose Hosts A and B are sending packets 
to Host E. Hosts A and B first send their packets along 28.8 Kbps links to the first packet switch. The 
packet switch directs these packets to the 1.544 Mbps link. If there is congestion at this link, the packets 
queue in the link's output buffer before they can be transmitted onto the link. Consider now how Host A 
and Host B packets are transmitted onto this link. As shown in Figure 1.4-4, the sequence of A and B 
packets  does not follow any periodic ordering; the ordering is random or statistical -- packets are sent 
whenever they happen to be present at the link.  For this reason, we often say that packet switching 
employs statistical multiplexing. Statistical multiplexing sharply contrasts with time-division 
multiplexing (TDM), for which each host gets the same slot in a revolving TDM frame. 
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Figure 1.4-4: Packet switching

Let us now consider how long it takes to send a packet of L bits from host A to another host  across a 
packet-switched network. Let us suppose that there are Q links between A and E, each of rate R bps. 
Assume that queueing delays and end-to-end propagation delays are negligible and that there is no 
connection establishment. The packet must first be transmitted onto the first link emanating from host A; 
this takes L/R seconds. It must then be transmitted on each of the Q-1 remaining links, that is, it must be 
stored-and-forwarded Q-1 times. Thus the total delay is QL/R. 

Packet Switching versus Circuit Switching

Having described circuit switching and packet switching, let us compare the two. Opponents of packet 
switching have often argued that the packet switching is not suitable for real-time services (e.g., 
telephone calls and video conference calls) due to its variable and unpredictable delays. Proponents of 
packet switching argue that (1) it offers better sharing of bandwidth than circuit switching and (2) it is 
simpler, more efficient, and less costly to implement than circuit-switching. Generally speaking, people 
who do not like to hassle with restaurant reservations  prefer packet switching to circuit switching. 
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Why is packet-switching more efficient? Let us look at a simple example. Suppose users share a 1 Mbps 
link. Also suppose that each user  alternates between periods of activity (when it generates data at a 
constant rate of 100Kbits/sec)  and periods of  inactivity (when it generates no data).    Suppose further 
that a user is active only 10% of the time (and is idle drinking coffee during the remaining 90% of the 
time). With circuit-switching, 100 Kbps must be reserved for each user at all times.  Thus, the link can 
support only ten simultaneous users. With packet switching, if there are 35 users, the probability that 
there are 10 or more simultaneously active users is less than .0004.  If there are 10 or less simultaneously 
active users (which happens with probability .9996), the aggregate arrival rate of data is less than 1Mbps 
(the output rate of the link).  Thus, users' packets flow through the link essentially without delay, as is 
the case with circuit switching. When there are more than 10 simultaneously active users, then the 
aggregate arrival rate of packets will exceed the output capacity of the link, and the output queue will 
begin to grow (until the aggregate input rate falls back below 1Mbps, at which point the queue will 
begin to diminish in length).  Because the probability of having ten or more simultaneously active users 
is very very small, packet-switching almost always has the same delay performance as circuit switching, 
but does so while allowing for more than three times the number of users. 

Although packet switching and circuit switching are both very prevalent in today's telecommunication 
networks, the trend is certainly in the direction of packet switching. Even many of today's circuit-
switched telephone networks are slowly migrating towards packet switching. In particular, telephone 
networks often convert to packet switching for the expensive overseas portion of a telephone call. 

Message Switching

In a modern packet-switched network, the source host segments long messages into smaller packets and 
sends the smaller packets into the network; the receiver reassembles the packets back into the original 
message. But why bother to segment the messages into packets in the first place, only to have to 
reassemble packets into messages? Doesn't this place an additional and unnecessary burden on the 
source and destination? Although the segmentation and reassembly do complicate the design of the 
source and receiver, researchers and network designers concluded in the early days of packet switching 
that the advantages of segmentation greatly compensate for its complexity. Before discussing some of 
these advantages, we need to introduce some terminology. We  say that a packet-switched network 
performs message switching if the sources do not segment messages, i.e., they send a  message into the 
network as a whole. Thus message switching is a specific kind of packet switching, whereby the packets 
traversing the network are themselves entire messages. 

Figure 1.4-5 illustrates message  switching in a route consisting of two packet switches (PSs) and three 
links. With message switching, the message stays in tact as it traverses the network. Because the 
switches are store-and-forward packet switches, a packet switch must receive the entire message before 
it can begin to forward the message on an outbound link. 
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Figure 1.4-5: A simple message-switched network

Figure 1.4-6 illustrates packet switching for the same network. In this example the original message has 
been divided into five distinct packets. In Figure 1.4-6, the first packet has arrived at the destination, the 
second and third packets are in transit in the network, and the last two packets are still in the source. 
Again, because the switches are store-and-forward packet switches, a packet switch must receive an 
entire packet before it can begin to forward the packet on an outbound link. 

 
Figure 1.4-6: A simple packet-switched network

One major advantage of packet switching (with segmented messages) is that it achieves end-to-end 
delays that are typically much smaller than the delays associated with message-switching. We illustrate 
this point with the following simple example. Consider a message that is 7.5 Mbits long. Suppose that 
between source and destination there are two packet switches and three links, and that each link has a 
transmission rate of 1.5Mbps. Assuming there is no congestion in the network, how much time is 
required to move the message from source to destination with message switching? It takes the source 5 
seconds to move the message from the source to the first switch. Because the switches use store-and-
forward, the first switch cannot begin to transmit any bits in the message onto the link until this first 
switch has received the entire message. Once the first switch has received the entire message, it takes 5 
seconds to move the message from the first switch to the second switch. Thus it takes ten seconds to 
move the message from the source to the second switch. Following this logic we see that a total of 15 
seconds is needed to move the message from source to destination. These delays are illustrated in Figure 
1.4-7. 
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Figure 1.4-7: Timing of message transfer of a 7.5 Mbit message in a message-switched network

Continuing with the same example, now suppose that the source breaks the message into 5000 packets, 
with each packet being 1.5 Kbits long. Again assuming that there is no congestion in the network, how 
long does it take to move the 5000 packets from source to destination?  It takes the source 1 msec to 
move the first packet from the source to the first switch. And it takes the first switch 1 msec to move this 
first packet from the first to the second switch. But while the first packet is being moved from the first 
switch to the second switch, the second packet is simultaneously moved from the source to the first 
switch. Thus the second packet reaches the first switch at time = 2 msec. Following this logic we see that 
the last packet is completely received at the first switch at time = 5000 msec = 5 seconds. Since this last 
packet has to be transmitted on two more links, the last packet is received by the destination at 5.002 
seconds:. 
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Figure 1.4-8: Timing of packet transfer of a 7.5 Mbit message, divided into 5000 packets, in a packet-

switched network

Amazingly enough, packet-switching has reduced the message-switching delay by a factor of three! But 
why is this so? What is packet-switching doing that is different from message switching? The key 
difference is that message switching is performing sequential transmission whereas packet switching is 
performing parallel transmission. Observe that with message switching, while one node (the source or 
one of the switches) is transmitting, the remaining nodes are idle. With packet switching, once the first 
packet reaches the last switch, three nodes transmit at the same time. 

Packet switching has yet another important advantage over message switching. As we will discuss later 
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in this book, bit errors can be introduced into packets as they transit the network. When a switch detects 
an error in a packet, it typically discards the entire packet. So, if the entire message is a packet and one 
bit in the message gets corrupted, the entire message is discarded. If, on the other hand, the message is 
segmented into many packets and one bit in one of the packets is corrupted, then only that one packet  is 
discarded. 

Packet switching is not without its disadvantages, however, with respect to message switching.  We will 
see that each packet or message must carry, in addition to the data being sent from the sending 
application to the receiving application, an amount of control information.  This information, which is 
carried in the packet or message header,  might include the identity of the sender and receiver and a 
packet or message  identifier (e.g., number). Since the amount of header information  would be 
approximately the same for a message or a packet, the amount of header overhead per byte of data is 
higher for packet switching than for message switching. 

Before moving on to the next subsection, you are highly encouraged to explore the Message Switching 
Java Applet. This applet will allow you to experiment with different message and packet sizes, and will 
allow you to examine the effect of additional propagation delays. 
  

1.4.2 Routing in Data Networks

There are two broad classes of packet-switched networks: datagram networks and virtual-circuit 
networks.  They differ according to whether they route packets according to host destination addresses 
or  according to virtual circuit numbers.  We shall call any  network that routes packets according to host 
destination addresses a datagram network. The IP protocol of the Internet routes packets according to 
the destination addresses; hence the Internet is a datagram network. We shall call any network that 
routes packets according to virtual-circuit numbers a virtual-circuit network. Examples of packet-
switching technologies that use virtual circuits include X.25, frame relay, and ATM. 

Virtual Circuit Networks

A virtual circuit (VC) consists of (1) a path (i.e., a series of links and packet switches) between the 
source and destination hosts, (2) virtual circuit numbers, one number for each link along the path, and 
(3) entries in VC-number translation tables in each packet switch along the path. Once a VC is 
established between source and destination, packets can be sent with the appropriate VC numbers. 
Because a VC has a different VC number on each link, an intermediate packet switch must replace the 
VC number of each traversing packet with a new one. The new VC number is obtained from the VC-
number translation table. 

To illustrate the concept, consider the network shown in Figure 1.4-9.  Suppose host A requests that the 
network establish a VC between itself and host B. Suppose that the network chooses the pathA - PS1 - 
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PS2 - B and assigns VC numbers 12, 22, 32 to the three links in this path. Then, when a packet as part of 
this VC leaves host A, the value in the VC number field is 12; when it leaves PS1, the value is 22; and 
when it leaves PS2, the value is 32. The numbers next to the links of PS1 are the interface numbers. 

 
Figure 1.4-9: A simple virtual circuit network

How does the switch determine the replacement VC number for a packet traversing the switch? Each 
switch has a VC number translation table; for example, the VC number translation table in PS 1 might 
look something like this: 
  

Incoming 
Interface 

Incoming 
VC#

Outgoing 
Interface 

Outgoing 
VC#

1 12 3 22

2 63 1 18

3 7 2 17

1 97 3 87

... ... ... ...

Whenever a new VC is established across a switch, an entry is added to the VC number table. Similarly, 
whenever a VC terminates, the entries in each table along its path are removed. 
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You might be wondering why a packet doesn't just keep the same VC number on each of the links along 
its route? The answer to this question is twofold. First, by replacing the number from link to link, the 
length of the VC field is reduced. Second, and more importantly, by permitting a different VC number 
for each link along the path of the VC, a network management function is simplified. Specifically, with 
the multiple VC numbers, each link in the path can choose a VC number independently of what the other 
links in the path chose. If a common number were  required for all links along the path, the switches 
would have to exchange and process a substantial number of messages to agree on the VC number to be 
used for a connection. 

If a network employs virtual circuits, then the network's switches must maintain  state information for 
the ongoing connections. Specifically, each time a new connection is established across a switch, a new 
connection entry must be added to the switch's VC-number translation table; and each time a connection 
is released, an entry must be removed from the table. Note that even if there is no VC number 
translation, it is still necessary to maintain state information that associates VC numbers to interface 
numbers.  The issue of whether or not a switch or router maintains state information for each ongoing 
connection is a crucial one - one which we return to shortly below. 

Datagram Networks

Datagam networks are analogous in many respects to the postal services . When a sender sends a letter 
to a destination, the sender wraps the letter in an envelope and writes the destination address on the 
envelope. This destination address has a hierarchical structure. For example, letters sent to a location in 
the United States include the country (the USA), the state (e.g., Pennsylvania), the city (e.g., 
Philadelphia), the street (e.g., Walnut Street) and the number of the house on the street (e.g., 421). The 
postal services use the address on the envelope to route the letter to its destination. For example, if the 
letter is sent from France, then a postal office in France will first direct the letter to a postal center in the 
USA. This postal center in the USA will then send the letter to a postal center in Philadelphia. Finally a 
mail person working in Philadelphia will deliver the letter to its ultimate destination. 

In a datagram network, each packet that traverses the network contains in its header the address of the 
destination. As with postal addresses, this address has a hierarchical structure. When a packet arrives at a 
packet switch in the network, the packet switch examines a portion of the packet's destination address 
and forwards the packet to an adjacent switch. More specifically, each packet switch has a routing table 
which maps destination addresses (or portions of the destination addresses) to an outbound link. When a 
packet arrives at switch, the switch examines the address and indexes its table with this address to find 
the appropriate outbound link. The switch then sends the packet into this outbound link. 

The whole routing process is also analogous to the car driver who does not use maps but instead prefers 
to ask for directions. For example, suppose Joe is driving from Philadelphia to 156 Lakeside Drive in 
Orlando, Florida. Joe first drives to his neighborhood gas station and asks how to get to 156 Lakeside 
Drive in Orlando, Florida. The gas station attendant extracts the Florida portion of the address and tells 
Joe that he needs to get onto the interstate highway I-95 South, which has an entrance just next to the gas 
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station. He also tells Joe that once he enters Florida he should ask someone else there. Joe then takes I-
95 South until he gets to Jacksonville, Florida, at which point he asks another gas station attendant for 
directions. The attendant extracts the Orlando portion of the address and tells Joe that he should continue 
on I-95 to Daytona Beach and then ask someone else. In Daytona Beach another gas station attendant 
also extracts the Orlando portion of the address and tells Joe that he should take I-4 directly to Orlando. 
Joe takes I-4 and gets off at the Orlando exit. Joe goes to another gas station attendant, and this time the 
attendant extracts the Lakeside Drive portion of the address, and tells Joe the road he must follow to get 
to Lakeside Drive. Once Joe reaches Lakeside Drive he asks a kid on a bicycle how to get to his 
destination. The kid extracts the 156 portion of the address and points to the house. Joe finally reaches 
his ultimate destination. 

We will be discussing routing in datagram networks in great detail in this book. But for now we mention 
that, in contrast with VC networks, datagram networks do not maintain connection state information in 
their switches. In fact, a switch in a pure datagram network is completely oblivious to any flows of 
traffic that may be passing through it -- it makes routing decisions for each individual packet. Because 
VC networks must maintain connection state information in their switches, opponents of VC networks 
argue that VC networks are overly complex. These opponents include most researchers and engineers in 
the Internet community. Proponents of VC networks feel that VCs can offer applications a wider variety 
of networking services. Many researchers and engineers in the ATM community are outspoken 
advocates for VCs. 

How would you like to actually see the route packets take in the Internet? We now invite you to get your 
hands dirty by interacting with the Traceroute program. 

Network Taxonomy

We have now introduced several important networking concepts: circuit switching, packet switching, 
message switching, virtual circuits, connectionless service, and connection oriented service. How does it 
all fit together? 

First, in our simple view of the World, a telecommunications network either employs circuit-switching 
or packet-switching: 
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Figure 1.4-10: highest-level distinction among telecommunication networks: circuit-switched or packet-

switched?

A link in a circuit-switched network can employ either FDM or TDM: 

 
Figure 1.4-11: Circuit switching implementation: FDM or TDM?

Packet switch networks are either virtual-circuit networks or datagram networks. Switches in virtual-
circuit networks route packets according to the packets' VC numbers and maintain connection state. 
Switches in datagram networks route packets according to the packets' destination addresses and do not 
maintain connection state: 
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Figure 1.4-12: Packet switching implementation: virtual circuits or datagrams?

Examples of packet-switched networks which use VCs include X.25, frame relay, and ATM. A packet-
switched network either (1) uses VCs for all of its message routing, or (2) uses destination addresses for 
all of its message routing. It doesn't employ both routing techniques. (This last statement is a bit of a 
white lie, as there are networks that use datagram routing "on top of" VC routing. This is the case for "IP 
over ATM," as we shall cover later in the book.) 

A datagram network is not, however, either a connectionless or a connection-oriented network. Indeed, a 
datagram network can provide the connectionless service to some of its applications and the connection-
oriented service to other applications. For example, the Internet, which is a datagram network, is a 
datagram network that provides both connectionless and connection-oriented service to its applications. 
We saw in section 1.3 that these services are provided in the Internet by the UDP and TCP protocols, 
respectively. Networks with VCs - such as X.25, Frame Relay, and ATM - are always, however, 
connection-oriented. 

Return to Table Of Contents 
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Message Switching

Interactive Java Applet:

Message Switching & Packet Switching

This interactive applet enables you to actually see why packet switching can have much smaller delays 
than message switching when packets pass through store-and-forward switches. In this applet there are 
four nodes: a source (node A), a destination (node B), and two store-and-forward switches. Each packet 
sent from the source must be transmitted over three links before it reaches the destination. Each of these 
links has a transmission rate of 4 Kbps and an optional propagation delay of one second. 

Each small rectangle represents 1 Kbit of data. When you press Start, the rectangles are grouped into one 
packet in the transmit buffer of the source. The packet is transmitted to the first switch, where it must be 
stored before it is forwarded. The packet then continues towards the destination. 

To simulate message switching, set the packet size equal to the message size. To simulate packet 
switching, set the packet size to less than the message size. To examine the effect of  link propagation 
delays, check the appropriate boxes for optional propagation delays. For a variety of scenarios, it is 
highly recommended that you calculate the end-to-end delay analytically and then verify your 
calculation with the applet. 
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Tracing Routes in the Internet

Traceoute is a popular program for tracing a packet's route from any source host to any destination host 
in the Internet. Before we explain what traceroute does and how it works, first try running the 
traceroute program. In the box below, enter the name of any host, such as surf.eurecomf.fr or www.mit.
edu. The host name that you enter will be sent to a server located at IBM Israel in Tel-Aviv, Israel. The 
host in Tel-Aviv  will respond with the route taken from Tel-Aviv to the host you have listed in the box 
below. After running the program, return to this page for a discussion of the traceroute program. 

Host address or name  

Leave empty to find the route to your browser. 
  

After having traced the route from Tel-Aviv to your favorite host, try it again with a new starting place 
-- Dana Point in sunny southern California. 

Host address or name 

 What Traceroute Does and How It Works

The main packet switches in the Internet are called routers, and routers use datagram routing. 
Specifically,  when a source constructs a packet, it appends the destination address onto the packet. 
When the packet arrives at a router, the switch determines the appropriate outgoing link for the packet 
by examining the packet's destination address. 

Traceroute is a little program that can run in any Internet host. When the user specifies a destination host 
name, the program sends multiple packets towards that destination. As these packets work their way 
towards the destinations, they pass through a series of routers.  When a router receives one of these 
packets, it sends a little message back to the source. This  message contains  the name and address of the 
router. 

More specifically, suppose there are N-1 routers between the soruce and the destination. Then the source 
will send N packets into the network, with each packet addressed to the ultimate destination. These 
packets are also marked 1 through N, with the first of the N packets marked 1 and the last of the N 
packets marked N. When the nth router receives the nth packet marked n, the router destroys the packet 
and sends a message to the source. And when the destination host receives the Nth packet, the 
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destination destoys it as well, but again returns a message back to the source. The source records the 
time that elapses from when it sends a packet until when it receives  the corresponding return message; it 
also records the name and address of the router (or the destination host) that returns the message. In this 
manner, the source can reconstruct the route taken by packets flowing from source to destination, and 
the source can determine the round-trip delays to all the intervening routers. Traceroute actually repeats 
the experiment just described three times, so the source actually sends 3*N packets to the destination. 

The  [RFC 1393] describes traceout in detail. The Internet Encyclopedia as also gives an overview of 
how traceroute works. 

Here is an example of the output of the traceroute program, where the route is being traced from the 
source host eniac.seas.upenn.edu (at the University of Pennsylvania) to diane.ibp.fr (at the University of 
Paris VI). The output has six columns: the first column is the n value described above, i.e., the number 
of the router along the route; the second column is the name of the router; the third column is the address 
of the router (of the form xxx.xxx.xxx.xxx); the last three columns are the round-trip delays for three 
experiments. If the source receives less than three messages from any given router, because of packet 
loss in the network, traceroute places an asterisk just after the router number and reports less than three 
round-trip times for that router. 

1 GW.CIS.UPENN.EDU (130.91.6.254) 3 ms 2 ms 1 ms 

2 DEFAULT7-GW.UPENN.EDU (165.123.247.8) 3 ms 1 ms 2 ms 

3 192.204.183.1 (192.204.183.1) 3 ms 4 ms 3 ms 

4 border2-hssi1-0.WestOrange.mci.net (204.70.66.5) 6 ms 6 ms 6 ms 

5 core1-fddi-1.WestOrange.mci.net (204.70.64.33) 7 ms 6 ms 6 ms 

6 somerouter.sprintlink.net (206.157.77.106) 16 ms 305 ms 192 ms 

7 somerouter.sprintlink.net (206.157.77.106) 20 ms 196 ms 18 ms 

8 sl-dc-6-H2/0-T3.sprintlink.net (144.228.10.33) 19 ms 18 ms 24 ms 

9 198.67.0.1 (198.67.0.1) 19 ms 24 ms 18 ms 

10 gsl-dc-3-Fddi0/0.gsl.net (204.59.144.197) 19 ms 18 ms 20 ms 

11 * raspail-ip.eurogate.net (194.206.207.6) 133 ms 94 ms 
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12 raspail-ip2.eurogate.net (194.206.207.57) 93 ms 95 ms 97 ms 

13 194.206.207.17 (194.206.207.17) 200 ms 94 ms 209 ms 

14 stamand1.renater.ft.net (192.93.43.185) 105 ms 101 ms 105 ms 

15 stlambert.rerif.ft.net (192.93.43.117) 108 ms 102 ms 95 ms 

16 danton1.rerif.ft.net (193.48.53.50) 110 ms 97 ms 91 ms 

17 u-jussieu-paris.rerif.ft.net (193.48.58.122) 94 ms 96 ms 100 ms 

18 r-jusren.reseau.jussieu.fr (192.44.54.126) 100 ms 94 ms 100 ms 

19 r-ibp.reseau.jussieu.fr (134.157.254.250) 96 ms 100 ms 94 ms 

20 masi.ibp.fr (132.227.60.23) 121 ms 100 ms 97 ms 

21 * diane.ibp.fr (132.227.64.48) 105 ms 102 ms 

In the above trace there are no routers between the source and the destination. Most of these routers have 
a name, and all of them have addresses. For example, the name of router 8 is sl-dc-6-H2/0-T3.sprintlink.
net and its address is 144.228.10.33. Looking at the data provided for this same router, we see that in the 
first of the three trials the roundtrip delay between the source and the router 8 was 19 msec. The 
roundtrip delays for the subsequent two trials were 18 and 24 msec. These roundtrip delays include 
packet propagation delays, router processing delays, and queueing delays due to congestion in the 
Internet. Because the congestion is varying with time, the roundtrip delay to a router n can actually be 
longer than the roundtrip delay to router n+1. Note in the above example that there is a big jump in the 
round-trip delay when going from router 10 to router 11. This is because the link between routers 10 and 
11 is a transatlantic link. 

Want to try out traceroute from some other starting points besides Tel-Aviv and Dana Point? Then visit 
Yahoo's List of sites offering route tracing. 

References 
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1.5 Access Networks and Physical Media

In sections 1.3 and 1.4 we have examined the roles of end systems and routers in a network architecture.  In this section we 
consider the access network - the physical link(s) that connect an end system to its edge router, i.e., the first router on a path 
from the end system to any other distant end system..  Since access network technology is closely tied to physical media 
technology (fiber, coaxial pair, twisted pair telephone wire, radio spectrum), we consider these two topics together in this 
section. 

1.5.1 Access Networks

 Figure 1.5-1 shows the access networks' links highlighted in red. 

 
Figure 1.5-1: Access networks

Access networks can be loosely divided into three categories: 

●     residential access networks, connecting a home end system into the network;
●     institutional access networks, connecting an end system in a business or educational institution into the network;
●     mobile access networks, connecting a mobile end system into the network

These categories are not hard and fast; some corporate end systems may well use the access network technology that we ascribe 
to residential access networks, and vice versa.   Our descriptions below are meant to hold for the common (if not every) case. 

Residential Access Networks

A residential access network connects a home end system (typically a PC, but perhaps a Web TV or other residential system) to 
an edge router. Probably the most common form of home access is using a modem over a POTS (plain old telephone system) 
dialup line to an Internet service provider (ISP). The home modem converts the digital output of the PC into analog format  for 
transmission over the analog phone line.  A modem in the ISP converts the analog signal back into digital form for input to the 
ISP router.  In this case, the "access network" is simply a point-to-point dialup link into an edge router.  The point-to-point link 
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is your ordinary twisted-pair phone line. (We will discuss twisted pair later in this section.) Today's modem speeds allow dialup 
access at rates up to 56 Kbps.  However, due to the poor quality of twisted-pair line between many homes and ISPs, many users 
get an effective rate significantly less than 56 Kbps.  For an in depth discussion of the practical aspects of modems see the 
Institute for Global Communications (IGC) web page on Modems and Data Communications. 

While dialup modems require conversion of the end system's digital data into analog form for transmission, so-called 
narrowband ISDN technology (Integrated Services Digital Network) [Pacific Bell 1998] allows for all-digital transmission of 
data from a home end system over ISDN "telephone" lines to a phone company central office.  Although ISDN was originally 
conceived as a way to carry digital data from one end of the phone system to another, it is also an important network access 
technology that  provides higher speed access (e.g., 128 Kbps)  from the home into a data network such as the Internet.  In this 
case, ISDN can be thought of simply as a "better modem" [NAS 1995].  A good source for additional WWW information on 
ISDN is Dan Kegel's ISDN page. 

Dialup modems and narrowband ISDN are already widely deployed technologies. Two new technologies, Asymmetric Digital 
Subscriber Line (ADSL) [ADSL 1998] and hybrid fiber coaxial cable (HFC) [Cable 1998] are currently being deployed.  
ADSL is conceptually similar to dialup modems: it is a new modem technology again running over existing twisted pair 
telephone lines, but can transmit at rates of up to about 8 Mbps from the ISP router to a home end system.  The data rate in the 
reverse direction, from the home end system to the central office router, is less than 1 Mbps.  The asymmetry in the access 
speeds gives rise to the term "Asymmetric" in ADSL.  The asymmetry in the data rates reflects the belief that home users are 
more likely to be a consumer of information (bringing data into their homes) than a producer of information. 

ADSL uses frequency division multiplexing, as described in the previous section. In particular, ADSL divides the 
communication link between the home the ISP into three non-overlapping frequency bands: 

❍     a high-speed downstream channel, in the 50 KHz to 1 MHz band;
❍     a medium-speed upstream channel, in the 4 KHz to 50 KHz band;
❍     and an ordinary POTs two-way telephone channel, in the 0 to 4 KHz band.

One of the features of ADSL is that the service allows the user to make an ordinary telephone call, using the POTs channel, 
while simultaneously surfing the Web. This feature is not available with standard dailup modems. The actually amount of 
downstream and upstream bandwidth available to the user is a function of the distance between the home modem and the ISP 
modem, the gauge of the twisted pair line, and the degree of electrical interference. For a high-quality line with negligible 
electrical interference, an 8 Mbps downstream transmission rate is possible if the distance between the home and the ISP is less 
than 3,000 meters; the downstream transmission rate drops to about 2 Mbps for a distance of 6,000 meters. The upstream rate 
ranges from 16 Kbps to 1 Mbps. 

While ADSL, ISDN and dailup modems all use ordinary phone lines, HFC access networks are extensions of the current cable 
network used for broadcasting cable television.  In a traditional cable system, a cable head end station broadcasts through a 
distribution of coaxial cable and amplifiers to residences. (We discuss coaxial cable later in this chapter.)  As illustrated in 
Figure 1.5-2,  fiber optics (also to be discussed soon) connect the cable head end to neighborhood-level junctions, from which 
traditional coaxial cable is then used to reach individual houses and apartments. Each neighborhood juncture typically supports 
500 to 5000 homes. 
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Figure 1.5-2: A hybrid fiber-coax access network

As with ADSL, HFC requires special modems, called cable modems. Companies that provide cable Internet access require 
their customers to either purchase or lease a modem. One such company is CyberCable, which uses Motorola's CyberSurfer 
Cable Modem and provides high-speed Internet access to most of the neighborhoods in Paris. Typically, the cable modem is an 
external device and connects to the home PC through a 10-BaseT Ethernet port. (We will discuss Ethernet in great detail in 
Chapter 5.)  Cable modems divide the HFC network into two channels, a downstream and an upstream channel. As with 
ADSL, the downstream channel is typically allocated more bandwidth and hence a larger transmission rate. For example, the 
downstream rate of the CyberCable system is 10 Mbps and the upstream rate is 768 Kbps. However, with HFC (and not with 
ADSL), these rates are shared among the homes, as we discuss below. 

One important characteristic of the HFC is that it is a shared broadcast medium. In particular, every packet sent by the headend 
travels downstream on every link to every home; and every packet sent by a home travels on the upstream channel to the 
headend. For this reason, if several users are receiving different Internet videos on the downstream channel, actual rate at which 
each user receives its video will be significantly less than downstream rate. On the other hand, if all the active users are Web 
surfing, then each of the users may actually receive Web pages at the full downstream rate, as a small collection of users will 
rarely receive a Web page at exactly the same time. Because the upstream channel is also shared, packets sent by two different 
homes at the same time will collide, which further decreases the effective upstream bandwidth. (We will discuss this collision 
issue in some detail when we discuss Ethernet in Chapter 5.) Advocates of ADSL are quick to point out that ADSL is a point-
to-point connection between the home and ISP, and therefore all the ADSL bandwidth is dedicated rather than shared. Cable 
advocates, however, argue that a reasonably dimensioned HFC network provides higher bandwidths than ADSL [@Home 
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1998].  The battle between ADSL and HFC for high speed residential access has clearly begun, e.g., [@Home 1998]. 
  

Enterprise Access Networks

 In enterprise access networks, a local area network (LAN) is used to connect an end system to an edge router.   As we will see 
in Chapter 5, there are many different types of LAN technology.  However,  Ethernet technology is currently by far the most 
prevalent access technology in enterprise networks. Ethernet operates 10 Mbps or 100Mbps (and now even at 1 Gbps). It uses 
either twisted-pair copper wire are coaxial cable to connect  a number of end systems with each other and with an edge router.  
The edge router is responsible for routing packets that have destinations outside of that LAN.  Like HFC, Ethernet uses a 
shared medium, so that end users share the the transmission rate of the LAN.  More recently, shared Ethernet technology has 
been migrating towards switched Ethernet technology.  Switched Ethernet uses multiple coaxial cable or twisted pair Ethernet 
segments connected at a "switch"  to allow the full bandwidth an Ethernet to be delivered to different users on the same LAN 
simultaneously [Cisco 1998]. We will explore shared and switched Ethernet in some detail in Chapter 5. 
  

Mobile Access Networks

Mobile access networks use the radio spectrum to connect a mobile end system (e.g., a laptop PC or a PDA with a wireless 
modem) to a base station, as shown in Figure 1.5-1.  This base station, in turn, is connected to an edge router of a data network. 

An emerging standard for wireless data networking is Cellular Digital Packet Data (CDPD) [Wireless 1998].  As the name 
suggests, a CDPD network operates as an overlay network (i.e., as a separate, smaller "virtual" network, as a piece of the larger 
network) within the cellular telephone network.  A CDPD network thus uses the same radio spectrum as the cellular phone 
system, and operates at speeds in the 10's of Kbits per second.  As with cable-based access networks and shared Ethernet, 
CDPD end systems must share the transmission media with other CDPD end systems within the cell covered by a base station.  
A media access control (MAC) protocol is used to arbitrate channel sharing among the CDPD end systems; we will cover 
MAC protocols in detail in Chapter 5. 

The CDPD system supports the IP protocol, and thus allows an IP end system to exchange IP packets over the wireless channel 
with an IP base station.  A CDPD network can actually support multiple network layer protocols; in addition to IP, the ISO 
CNLP protocol is also supported. CDPD does not provide for any protocols above the network layer.  From an Internet 
perspective, CDPD can be viewed as extending the Internet dialtone (i.e., the ability to transfer IP packets) across a wireless 
link between a mobile end system and an Internet router. An excellent introduction to CDPD is [Waung 98]. 

1.5.2 Physical Media

In the previous subsection we gave an overview of some of the most important access network technologies in the Internet. 
While describing these technologies, we also indicated the physical media used. For example, we said that HFC uses a 
combination of fiber cable and coaxial cable. We said that ordinary modems, ISDN, and ADSL use twisted-pair copper wire. 
And we said that  mobile access network use the radio spectrum. In this subsection we provide a brief overview of these and 
other transmission media that are commonly employed in the Internet. 

In order to define what is meant by a "physical medium,", let us reflect on the brief life of a bit. Consider a bit traveling from 
one end system, through a series of links and routers, to another end system. This poor bit gets transmitted many, many times! 
The source end-system first transmits the bit and shortly thereafter the first router in the series receives the bit; the first router 
then transmits the bit and shortly afterwards the second router receives the bit, etc. Thus our bit, when traveling from source to 
destination, passes through a series of transmitter-receiver pairs. For each transmitter-receiver pair, the bit is sent by 
propagating electromagnetic waves across a physical medium. The physical medium can take many shapes and forms, and 
does not have to be of the same type for each transmitter-receiver pair along the path. Examples of physical media include 
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twisted-pair copper wire, coaxial cable, multimode fiber optic cable, terrestrial radio spectrum and satellite radio spectrum. 
Physical media fall into two categories: guided media and unguided media. With guided media, the waves are guided along a 
solid medium, such as a fiber-optic cable, a twisted-pair cooper wire or a coaxial cable. With unguided media, the waves 
propagate in the atmosphere and in outer space, such as in a digital satellite channel or in a CDPD system. 

Some Popular Physical Media

Suppose you want to wire a building to allow computers to access the Internet or an intranet -- should you use twisted-pair 
copper wire, coaxial cable, or fiber optics? Which of these media gives the highest bit rates over the longest distances? We 
shall address these questions below. 

But before we get into the characteristics of the various guided medium types, let us say a few words about their costs. The 
actual cost of the physical link (copper wire, fiber optic cable, etc.) is often relatively minor compared with the other 
networking costs. In particular, the labor cost associated with the installation of the physical link can be orders of magnitude 
higher than the cost of the material. For this reason, many builders install twisted pair, optical fiber, and coaxial cable to every 
room in a building. Even if only one medium is initially used, there is a good chance that another medium could be used in the 
near future, and so money is saved but not having to lay additional wires. 

Twisted-Pair Copper Wire 

The least-expensive and most commonly-used transmission medium is twisted-pair copper wire. For over one-hundred years it 
has been used by telephone networks. In fact, more than 99% of the wired connections from the telephone handset to the local 
telephone switch use twisted-pair copper wire. Most of us have seen twisted pair in our homes and work environments. Twisted 
pair consists of two insulated copper wires, each about 1 mm thick, arranged in a regular spiral pattern; see Figure 1.5-3.  The 
wires are twisted together to reduce the electrical interference from similar pairs close by.  Typically, a number of pairs are 
bundled together in a cable by wrapping the pairs in a protective shield. A wire pair constitutes a single communication link. 

 
Figure 1.5-3: Twisted Pair

Unshielded twisted pair (UTP) is commonly used for computer networks within a building, that is, for local area networks 
(LANs). Data rates for LANs using twisted pair today range from 10 Mbps to 100 Mbps. The data rates that can be achieved 
depend on the thickness of the wire and the distance between transmitter and receiver. Two types of UTP are common in 
LANs: category 3 and category 5. Category 3 corresponds to voice-grade twisted pair, commonly found in office buildings. 
Office buildings are often prewired with two or more parallel pairs of category 3 twisted pair; one pair is used for telephone 
communication, and the additional pairs can be used for additional telephone lines or for LAN networking. 10 Mbps Ethernet, 
one of the most prevalent LAN types, can use category 3 UTP. Category 5, with its more twists per centimeter and Teflon 
insulation, can handle higher bit rates. 100 Mbps Ethernet running on category 5 UTP has become very popular  in recent 
years. In recent years, category 5 UTP has become common for preinstallation in new office buildings. 

When fiber-optic technology emerged in the 1980s, many people disparaged twisted-pair  because of its relatively low bit rates. 
Some people even felt that fiber optic technology would completely replace twisted pair. But twisted pair did not give up so 
easily. Modern twisted-pair technology, such as category 5 UTP, can achieve data rates of 100 Mbps for distances up to a few 
hundred meters. Even higher rates are possible over shorter distances. In the end, twisted-pair has emerged as the dominant  
solution for high-speed LAN networking. 

As discussed in Section 1.5.1, twisted-pair is also commonly used for residential Internet access. We saw that dial-up modem 
technology enables access at rates of up to 56 Kbps over twisted pair. We also saw that ISDN is available in many 
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communities, providing access rates of about 128 Kbps over twisted pair. We also saw that ADSL (Asymmetric Digital 
Subscriber Loop) technology has enabled residential users to access the Web at rates in excess of 6 Mbps over twisted pair. 

Coaxial-Cable 

Like twisted pair, coaxial cable consists of two copper conductors, but the two conductors are concentric rather than parallel. 
With this construction and a special insulation and shielding, coaxial cable can have higher bit rates than twisted pair. Coaxial 
cable comes in two varieties: baseband coaxial cable and broadband coaxial cable. 

Baseband coaxial cable, also called 50-ohm cable, is about a centimeter thick, lightweight, and easy to bend. It is  commonly 
used in LANs; in fact, the computer you use at work or at school is probably connected to a LAN with either baseband coaxial 
cable or with UTP. Take a look at the the connection to your computer's interface card. If you see a telephone-like jack and 
some wire that resembles telephone wire, you are using UTP; if you see a T-connector and a cable running out of both sides of 
the T-connector, you are using baseband coaxial cable. The terminology "baseband" comes from the fact that the stream of bits 
is dumped directly into the cable, without shifting the signal to a different frequency band. 10 Mbps Ethernets can use either 
UTP or baseband coaxial cable. As we will discuss in the Chapter 5, it is a little more expensive to use UTP for 10 Mbps 
Ethernet, as UTP requires an additional networking device, called a hub. 

Broadband coaxial cable, also called 75-ohm cable, is quite a bit thicker, heavier, and stiffer than the baseband variety. It was 
once commonly used in LANs and can still be found in some older installations. For LANs, baseband cable is now preferable, 
since it is less expensive, easier to physically handle, and does not require attachment cables. Broadband cable, however, is 
quite common in cable television systems. As we saw in Section 1.5.1, cable television systems have been recently been 
coupled with cable modems to provide residential users with Web access at rates of 10 Mbps or higher. With broadband 
coaxial cable, the transmitter shifts the digital signal to a specific frequency band, and the resulting analog signal is sent from 
the transmitter to one or more receivers. Both baseband and broadband coaxial cable can be used as a guided shared medium. 
Specifically, a number of end systems can be connected directly to the cable, and all the end systems receive whatever any one 
of the computers transmits. We will look at this issue in more detail in Chapter 5. 

Fiber Optics 

An optical fiber is a thin, flexible medium that conducts pulses of light, with each pulse representing a bit. A single optical 
fiber can support tremendous bit rates, up to tens or even hundreds of gigabits per second. They are immune to electromagnetic 
interference, have very low signal attenuation up to 100 kilometers, and are very hard to tap. These characteristics have made 
fiber optics the preferred long-haul guided transmission media, particularly for overseas links. Many of the long-distance 
telephone networks in the United States and elsewhere now use fiber optics exclusively. Fiber optics is also prevalent in the 
backbone of the Internet. However, the high cost of optical devices -- such as transmitters, receivers, and switches -- has 
hindered their deployment for short-haul transport, such as in a LAN or into the home in a residential access network. AT&T 
Labs provides an excellent site on fiber optics, including several nice animations. 

Terrestrial and Satellite Radio Channels 

Radio channels carry signals in the electromagnetic spectrum.  They are an attractive media because require no physical "wire" 
to be installed, can penetrate walls, provide connectivity to a mobile user, and can potentially carry a signal for long distances. 
The characteristics a radio channel depend significantly on the propagation environment and the distance over which a signal is 
to be carried. Environmental considerations determine path loss and shadow fading (which decrease in signal strength as it 
travels over a distance and around/through obstructing objects), multipath fading (due to signal reflection off of interfering 
objects),  and interference (due to other radio channels or electromagnetic signals). 

Terrestrial radio channels can be broadly classified into two groups: those that operate as local area networks (typically 
spanning 10's to a few hundred meters) and wide-area radio channels that are used for mobile data services (typically operating 
within a metropolitan region).  A number of wireless LAN products are on the market, operating in the 1 to 10's of Mbps range. 
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Mobile data services (such as the CDPD standard we touched on in section 1.3), typically provide  channels that operate at 10's 
of Kbps.  See  [Goodman 97] for a survey and discussion of the technology and products. 

A communication satellite links two or more earth-based microwave transmitter/receivers, known as ground stations. The 
satellite receives transmissions on one frequency band, regenerates the signal using a repeater (discussed below), and transmits 
the signal on another frequency. Satellites can provide bandwidths in the gigabit per second range. Two types of satellites are 
used in communications: geostationary satellites and low-altitude satellites. 

Geostationary satellites permanently remain above the same spot on the Earth. This stationary presence is achieved by placing 
the satellite in orbit at 36,000 kilometers above the Earth's surface. This huge distance between from ground station though 
satellite back to ground station introduces a substantial signal propagation delay of 250 milliseconds. Nevertheless, satellites 
links are often used in telephone networks and in the backbone of the Internet. 

Low-altitude satellites are placed much closer to the Earth and do not remain permanently above one spot on the Earth. They 
rotate around the Earth just as the Moon rotates around the Earth. To provide continuous coverage to an area, many satellites to 
be placed in orbit. There are currently many low-altitude communication systems in development. The Iridium system, for 
example, consists of 66 low-altitude satellites. Lloyd's satellite constellations provides and collects information on Iridium as 
well as other satellite constellation systems. The low-altitude satellite technology may be used for Internet access sometime in 
the future. 
  

Return to Table Of Contents 
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Delay and Loss in Packet-Switched Networks

1.6 Delay and Loss in Packet-Switched Networks

Having now briefly considered the major "pieces" of the Internet architecture - the applications, end 
systems, end-to-end transport protocols, routers, and links -  let us now consider what can happen to a 
packet as it travels from its source to its destination. Recall that a packet starts in a host (the source), 
passes through a series of routers, and ends its journey in another host (the destination). As a packet 
travels from one node (host or router) to the subsequent node (host or router) along this path, the packet 
suffers from several different types of delays at each node along the path.  The most important of these 
delays are the nodal processing delay, queuing delay, transmission delay and propagation delay; 
together, these delays accumulate to give a total nodal delay. In order to acquire a deep understanding 
of packet switching and computer networks, we must understand the nature and importance of these 
delays. 

 
Figure 1.6-1: The delay through router A

Let us explore these delays in the context of Figure 1.6-1. As part of its end-to-end route between source 
and destination, a packet is sent from the upstream node through router, A, to router B. Our goal is to 
characterize the nodal delay at router A. Note that router A has three outbound links, one leading to 
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router B, another leading to router C, and yet another leading to router D. Each link is preceded a queue 
(also known as a buffer). When the packet arrives at router A (from the upstream node), router A 
examines the packet's header to determine the appropriate outbound link for the packet, and then directs 
the packet to the link.  In this example, the outbound link for the packet is the one that leads to router B. 
A packet can only be transmitted on a link if there is no other packet currently being transmitted on the 
link and if there are no other packets preceding it in the queue; if the link is currently busy or if there are 
other packets already queued for the link, the newly arriving packet will then join the queue. 

The time required to examine the packet's header and determine where to direct the packet is part of the 
processing delay. The processing delay can also include other factors, such as the time needed to check 
for bit-level errors in the packet that occurred in transmitting the packet's bits from the upstream router 
to router A.  After this nodal processing, the router directs the packet to the queue that precedes the link  
to router B. (In section 4.7  we will study the details of how a router operates.) At the queue, the packet 
experiences a queuing delay as it waits to be transmitted onto the link. The queuing delay of a specific 
packet will depend on the number of other, earlier-arriving packets that are queued and waiting for 
transmission across the link; the delay of a given packet can vary significantly from packet to packet. If 
the queue is empty and no other packet is currently being transmitted, then our packet's queuing delay is 
zero. On the other hand, if the traffic is heavy and many other packets are also waiting to be transmitted, 
the  queuing delay will be long.  We will see shortly that the number of packets that an arriving packet 
might expect to find on arrival (informally, the average number of queued packets, which is proportional 
to the average delay experienced by packets) is a function of the intensity and nature of the  traffic 
arriving to the queue. 

Assuming that packets are transmitted in first-come-first-serve manner, as is common in the Internet, our 
packet can be transmitted once all the packets that have arrived before it have been transmitted. Denote 
the length of the packet by L bits and denote the transmission rate of the link (from router A to router B) 
by R bits/sec. The rate R is determined by transmission rate of the link to router B. For example, for a 10 
Mbps Ethernet link, the rate is R=10 Mbps; for a 100 Mbps Ethernet link, the rate is R=100 Mbps. The 
transmission delay (also called the store-and-forward delay, as discussed in Section 1.4) is L/R. This is 
the amount of time required to transmit all of the packet's bits into the link. 

Once a bit is pushed onto the link, it needs to propagate to router B. The time required to propagate from 
the beginning of the link to router B is the propagation delay. The bit propagates at the propagation 
speed of the link. The propagation speed depends on the physical medium of the link (i.e., multimode 
fiber, twisted-pair copper wire, etc.) and is in the range of 

2*108 meters/sec  to 3*108 meters/sec,

equal to, or a little less than, the speed of light. The propagation delay is the distance between two 
routers divided by the propagation speed. That is, the propagation delay is d/s, where d is the distance 
between router A and router B and s is the propagation speed of the link. Once the last bit of the packet 
propagates to node B,  it and all the preceding bits of the packet are stored in router B. The whole 
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process then continues with router B now performing the forwarding. 

Newcomers to the field of computer networking sometimes have difficulty understanding the difference 
between transmission delay and propagation delay. The difference is subtle but important. The 
transmission delay is the amount of time required for the router to push out the packet; it is a function of 
the packet's length and the transmission rate of the link, but has nothing to do with the distance between 
the two routers. The propagation delay, on the other hand,  is the time it takes a bit to propagate from 
one router to the next; it is a function of the distance between the two routers, but has nothing to do with 
the packet's length or the transmission rate of the link. 

An analogy might clarify the notions of transmission and propagation delay. Consider a highway which 
has a toll booth  every 100 kilometers. You can think of the highway segments between toll booths as 
links and the toll booths as  routers. Suppose that cars travel (i.e., propagate) on the highway at a rate of 
100 km/hour (i.e., when a car leaves a toll booth it instantaneously accelerates to 100 km/hour and 
maintains that speed between toll booths). Suppose that there is a caravan of 10 cars that are traveling 
together, and that these ten cars follow each other in a fixed order. You can think of each car as a bit and 
the caravan as a packet. Also suppose that each toll booth services (i.e., transmits) a car at a rate of one 
car per 12 seconds, and that it is late at night so that the caravan's cars are only cars on the highway. 
Finally, suppose that whenever the first car of the caravan arrives at a toll booth, it waits at the entrance 
until the nine other cars have arrived and lined up behind it. (Thus the entire caravan must be "stored" at 
the toll booth before it can begin to be "forwarded".) The time required for the toll booth to push the 
entire caravan onto the highway is 10/(5 cars/minute) = 2 minutes. This time is analogous to the 
transmission delay in a router. The time required for a car to travel from the exit of one toll booth to the 
next toll booth is 100 Km/(100 km/hour) =  1 hour.  This time is analogous to propagation delay. 
Therefore the time from when the caravan is "stored" in front of a toll booth until the caravan is "stored" 
in front of the next toll booth is the sum of "transmission delay" and "the propagation delay" - in this 
example, 62 minutes. 

Let's explore this analogy a bit more.  What would happen if the toll-booth service time for a caravan 
were greater than the time for a car to travel between toll booths? For example, suppose cars travel at 
rate 1000 km/hr and the toll booth services cars at rate one car per minute. Then the traveling delay 
between toll booths is 6 minutes and the time to serve a caravan is 10 minutes. In this case, the first few 
cars in the caravan will arrive at the second toll booth before the last cars in caravan leave the first toll 
booth. This situation also arises in packet-switched networks - the first bits in a packet can arrive at a 
router while many of the remaining bits in the packet are still waiting to be transmitted by the preceding 
router. 

If we let dproc, dqueue, dtrans and dprop denote the processing, queuing, transmission and propagation 

delays, then the total nodal delay is given by 

dnodal = dproc + dqueue + dtrans + dprop .
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The contribution of these delay components can vary significantly. For example, dprop can be negligible 

(e.g., a couple of microseconds) for a link connecting two routers on the same university campus; 
however, dprop is hundreds of milliseconds for two routers interconnected by a geostationary satellite 

link, and can be the dominant term in dnodal. Similarly, dtrans can be range from negligible to significant. 

Its contribution is typically negligible for transmission rates of 10 Mbps and higher (e.g., for LANs); 
however, it can be hundreds of milliseconds for large Internet packets sent over 28.8 kbps modem links.  
The processing delay, dproc , is often negligible; however, it strongly influences a router's maximum 
throughput, which is the maximum rate at which a router can forward packets. 

Queuing Delay 

The most complicated and interesting component of nodal delay is the queuing delay dqueue. In fact, 

queuing delay is so important and interesting  in computer networking that thousands of papers and 
numerous of books have been written about it [Bertsekas 1992] [Daigle 1991] [Kleinrock 1975] 
[Kleinrock 1976] [Ross 1995]! We only give a high-level, intuitive discussion of queuing delay here; the 
more curious reader may want to browse through some of the books (or even eventually write a Ph.D. 
thesis on the subject!). Unlike the other three delays (namely, dproc , dtrans and  dprop ), the queuing 

delay can vary from packet to packet. For example, if ten packets arrive to an empty queue at the same 
time, the first packet transmitted will suffer no queuing delay, while the last packet transmitted will 
suffer a relatively large queuing delay (while it waits for the other nine packets to be transmitted). 
Therefore, when characterizing queuing delay, one typically uses statistical measures, such as average 
queuing delay, variance of queuing delay and the probability that the queuing delay exceeds some 
specified value. 

When is the queuing delay big and when is it insignificant? The answer to this question depends largely 
on the rate at which traffic arrives to the queue, the transmission rate of the link, and the nature of the 
arriving traffic, i.e., whether the traffic arrives periodically or whether it arrives in bursts. To gain some 
insight here, let a denote the average rate at which packets arrive to the queue (a is units of packets/sec). 
Recall that R is the transmission rate, i.e., it is the rate (in bits/sec) at which bits are pushed out of the 
queue. Also suppose, for simplicity, that all packets consist of L bits. Then the average rate at which bits 
arrive to the queue is La bits/sec. Finally, assume that the queue is very big, so that it can hold 
essentially an infinite number of bits. The ratio La/R, called the traffic intensity, often plays an 
important role in estimating the extent of the queuing delay. If La/R > 1, then the average rate at which 
bits arrive to the queue exceeds the rate at which the bits can be transmitted from the queue. In this 
unfortunate situation, the queue will tend to increase without bound and the queuing delay will approach 
infinity! Therefore, one of the golden rules in traffic engineering is: design your system so that the traffic 
intensity is no greater than one. 

Now consider the case La/R =< 1. Here, the nature of the arriving traffic impacts the queuing delay. For 
example, if packets arrive periodically, i.e., one packet arrives every L/R seconds, then every packet will 
arrive to an empty queue and there will be no queuing delay. On the other hand, if packets arrive in 
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bursts but periodically, there can be a significant average queuing delay. For example, suppose N 
packets arrive at the same time every (L/R)N seconds. Then the first packet transmitted has no queuing 
delay; the second packet transmitted has a queuing delay of L/R seconds; and more generally, the nth 
packet transmitted has a queuing delay of (n-1)L/R seconds. We leave it as an exercise for the reader to 
calculate the average queuing delay in this example. 

The two examples described above of periodic arrivals are a bit academic. Typically the arrival process 
to a queue is random, i.e., the arrivals do not follow any pattern; packets are spaced apart by random 
amounts of time. In this more realistic case, the quantity La/R is not usually sufficient to fully 
characterize the delay statistics. Nonetheless, it is useful in gaining an intuitive understanding of the 
extent of the queuing delay. In particular, if traffic intensity is close to zero, then packets are pushed out 
at a rate much higher than the packet arrival rate; therefore, the average queuing delay will be close to 
zero. On the other hand, when the traffic intensity is close to 1, there will be intervals of time when the 
arrival rate exceeds the transmission capacity (due to the burstiness of arrivals), and a queue will form.  
As the traffic intensity approaches 1, the average queue length gets larger and larger. The qualitative 
dependence of average queuing delay on the traffic intensity is shown in Figure 1.6-2 below. 

One important aspect of Figure 1.6-2 is the fact that as the traffic intensity approaches 1, the average 
queueing delay increases rapidly. A small percentage increase in the intensity will result in a much 
larger percentage-wise increase in delay.  Perhaps you have experienced this phenomenon on the 
highway.  If you regularly drive on a road that is typically congested, the  fact that the road is typically 
congested means that its traffic intensity is close to 1. If some event causes an even slightly-larger-than-
usual amount of traffic, the delays you experience can be huge. 

 
Figure 1.6-2: Dependence of average queuing delay on traffic intensity.

Packet Loss 
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In our discussions above, we have assumed that the queue is capable of holding an infinite number of 
packets. In reality a queue preceding a link has finite capacity, although the queuing capacity greatly 
depends on the switch design and cost.  Because the queue capacity is a finite, packet delays do not 
really approach infinity as the traffic intensity approaches one. Instead, a packet can arrive to find a full 
queue. With no place to store such a  packet, a router will drop that packet; that is, the packet will be 
lost. From an end-system viewpoint, this will look like a packet having been transmitted into the 
network core, but never emerging from the network at the destination. The fraction of lost packets 
increases as the traffic intensity increases. Therefore, performance at a node is often measured not only 
in terms of delay, but also in terms of the probability of packet loss. As we shall discuss in the 
subsequent chapters, a lost packet may be retransmitted on an end-to-end basis, by either the application 
or  by the transport layer protocol. 

End-to-End Delay 

Our discussion up to this point has been focused on the nodal delay, i.e., the delay at a single router.  Let 
us conclude our discussion by briefly considering the delay from source to destination. To get a handle 
on this concept, suppose there are Q-1 routers between the source host and the destination host. Let us 
also suppose that the network is uncongested (so that queuing delays are negligible), the processing 
delay at each router and at the source host is dproc, the transmission rate out of each router and out of 
the source host is R bits/sec, and the propagation delay between each pair or routers and between the 
source host and the first router is dprop. The nodal delays accumulate and give an end-to-end delay, 

dendend = Q (dproc + dtrans + dprop) ,

where once again dtrans = L/R, where L is the packet size. We leave it to the reader to generalize this 

formula to the case of heterogeneous delays at the nodes and to the presence of an average queuing 
delay at each node. 
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1.7 Protocol Layers and Their Service Models

From our discussion thus far, it is apparent that the Internet is an extremely complicated system. We have seen that there are 
many "pieces" to the Internet: numerous applications and protocols, various types of end systems and connections between end 
systems, routers, and various types of link-level media.  Given this enormous complexity,  is there any hope of organizing 
network architecture, or at least our discussion of network architecture?  Fortunately, the answers to both questions is "yes." 

Before attempting to organize our thoughts on Internet architecture, let's look for a human analogy. Actually, we deal with 
complex systems all the time in our every day life.  Imagine if someone asked you to describe, for example, the airline system. 
How would you find the structure to describe this complex system that has ticketing agents, baggage checkers, gate personnel, 
pilots and airplanes, air traffic control, and a worldwide system for  routing airplanes? One way to describe this system might 
be to describe the series of actions you take (or others take for you) when you fly on an airline.  You purchase your ticket, 
check your bags, go to the gate and eventually get loaded onto the plane.  The plane takes off and is routed to its destination.  
After your plane lands, you de-plane at the gate and claim your bags. If the trip was bad, you complain about the flight to the 
ticket agent (getting nothing for your effort).  This scenario is shown in Figure 1.7-1. 
  
  

 
Figure 1.7-1: Taking an airplane trip: actions

Already, we can see some analogies here with computer networking: you are being shipped from source to destination by the 
airline; a packet is shipped from source host to destination host in the Internet.  But this is not quite the analogy we are after.  
We are looking for some structure in Figure 1.7-1.  Looking at Figure 1.7-1, we note that there is a ticketing function at each 
end; there is also a baggage function for already ticketed passengers, and a gate function for already-ticketed and already-
baggage-checked passengers. For passengers who have made it through the gate (i.e., passengers who are already ticketed, 
baggage-checked, and through the gate), there is a takeoff and landing function, and while in flight, there is an airplane routing 
function.  This suggests that we can look at the functionality in Figure 1.7-1 in a horizontal manner, as shown in Figure 1.7-2. 
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Figure 1.7-2: horizontal "layering" of airline functionality

Figure 1.7-2 has divided the airline functionality into layers, providing a framework in which we can  discuss airline travel.  
Now, when we want to describe a part of airline travel  we can talk about a specific, well-defined component of  airline travel. 
For example, when we discuss gate functionality, we know we are discussing functionality that sits "below" baggage handling, 
and "above" takeoff and landing. We note that each layer, combined with the layers below it, implement some functionality, 
some service.  At the ticketing layer and below, airline-counter-to-airline-counter transfer of a person is accomplished.  At the 
baggage layer and below, baggage-check-to-baggage-claim transfer of a person and their bags in accomplished.  Note that the 
baggage layer provides this service only to an already ticketed person. At the gate layer, departure-gate-to-arrival-gate transfer 
of a person and their bags is accomplished.  At the takeoff/landing layer, runway-to-runway transfer of a person (actually, 
many people) and their bags, is accomplished.  Each layer provides its functionality (service) by (i) performing certain actions 
within that layer (e.g., at the gate layer, loading and unloading people from an airplane) and by (ii) using the services of the 
layer directly below it (e.g., in the gate layer, using the runway-to-runway passenger transfer service of the takeoff/landing 
layer). 

As noted above, a layered architecture allows us to discuss a well-defined, specific part of a large and complex system.  This 
itself is of considerable value.  When a system has a layered structure it is also much easier to change the implementation of the 
service provided by the layer.  As long as the layer provides the same service to the layer above it,  and uses the same services 
from the layer below it, the remainder of the system remains unchanged when a layer's implementation is changed. (Note that 
changing the implementation of a service is very different from changing the service itself!) For example, if the gate functions 
were changed (e.g., to have people board and disembark by height), the remainder of the airline system would remain 
unchanged since the gate layer still provides the same function (loading and unloading people); it simply implements that 
function in a different manner after the change.  For large and complex systems that are constantly being updated, the ability to 
change the implementation of a service without affecting other components of the system is another important advantage of 
layering. 

But enough with airlines. Let's now turn our attention to network protocols. To reduce design complexity, network designers 
organize protocols -- and the network hardware and software that implements the protocols -- in layers.  With a layered 
protocol architecture, each protocol belongs to one of the layers. It's important to realize that a protocol in layer n  is distributed 
among the network entities (including end systems and packet switches) that implement that protocol, just as the functions in 
our layered airline architecture were distributed between the departing and arriving airports. In other words, there's a "piece" of 
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layer n in  each of the network entities.  These "pieces" communicate with each other by exchanging layer-n messages. These 
messages are called layer-n protocol data units, or more commonly  n-PDUs. The contents and format of an n-PDU, as well as 
the manner in which the n-PDUs are exchanged among the network elements, are defined by a layer-n protocol. When taken 
together, the protocols of the various layers are called the protocol stack. 

 When layer n of Host A sends an n-PDU to layer n of Host B, layer n of Host A passes the n-PDU to layer n-1 and then lets 
layer n-1 deliver the n-PDU to layer n of B; thus layer n is said to rely on layer n-1 to deliver its n-PDU to the destination.  A 
key concept is that of the service model of a layer. Layer n-1  is said to offer services to layer n. For example, layer n-1 might 
guarantee that the n-PDU will  arrive without error at layer n in the destination within one second, or it might only guarantee 
that the n-PDU will eventually arrive at the destination without any assurances about error. 

The concept of protocol layering is a fairly abstract and is sometimes difficult to grasp at first. This concept will become clear 
as we study  the Internet layers and their constituent protocols in greater detail. But let use now try to shed some insight on 
protocol layering and protocol stacks with an example. Consider a network which organizes its communication protocols in 
four layers.  Because there are four layers, there are four types of PDUs: 1-PDUs, 2-PDUs, 3-PDUs and 4-PDUs. As shown in 
Figure 1.7-3, the application, operating at the highest layer, layer 4, creates a message, M.  Any message created at this highest 
layer is a 4-PDU.  The message M itself may consist of many different fields (in much the same way as a structure or record in 
a programming language may contain different fields); it is up to the application to define and interpret the fields in the 
message.  The fields might contain the name of the sender, a code indicating the type of the message,  and some additional 
data. 

Within the source host, the contents of the entire message M is then "passed" down the protocol stack to layer 3.  In the 
example in Figure 1.7-3,  layer 3 in the source host divides a 4-PDU, M, into two parts, M1 and M2.   The layer 3 in the source 

host then adds to M1 and M2, so-called headers, to create two layer 3 PDUs.  Headers contain the additional information 

needed by the sending and receiving sides of layer 3 to implement the service that layer 3 provides to layer 4.  The procedure 
continues in the source, adding more header at each layer, until the 1-PDUs are created. The 1-PDUs are sent out of the source 
host onto a physical link. At the other end, the destination host receives 1-PDUs and directs them up the protocol stack. At each 
layer, the corresponding header is removed. Finally, M is reassembled from M1 and M2 and then passed on to the application. 

 
Figure 1.7-3:  different PDU's at different layers in the protocol architecture

Note that in Figure 1.7-3, layer n uses the services of layer n-1. For example, once layer 4 creates the message M, it passes the 
message down to layer 3 and relies on layer 3 to deliver the message to layer 4 at the destination. 

Interesting enough, this notion of relying on  lower layer services is prevalent in many other forms of communication. For 
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example, consider ordinary postal mail. When you write a letter, you include envelope information such as the destination 
address and the return address with the letter. The letter along with the address information can be considered a PDU at the 
highest layer of the protocol stack. You then drop the PDU in a mailbox. At this point, the letter is out of your hands.  The 
postal service may then add some of its own internal information onto your letter, essentially adding a header to your letter.  
For example, in the United States a barcode is often printed on your letter. 

Once you drop your envelope into a mailbox, you rely on the services of the postal service to deliver the letter to the correct 
destination in a timely manner. For example, you don't worry about whether a postal truck will break down while carrying the 
letter. Instead the postal service takes care of this, presumably with well-defined plans to recover from such failures. 
Furthermore, within the postal service itself there are layers, and the protocols at one layer rely on and use the services of the 
layer below. 

In order for one layer to interoperate with the layer below it, the interfaces between the two layers must be precisely defined. 
Standards bodies define precisely the interfaces between adjacent layers (e.g., the format of the PDUs passed between the 
layers) and permit the developers of networking software and hardware to implement the interior of the layers as they please. 
Therefore, if a new and improved implementation of  a layer is released, the new implementation can replace the old 
implementation and, in theory, the layers will continue to interoperate. 

In a computer network, each layer may perform one or more of the following generic set of tasks: 

●     Error control, which makes the logical channel between the layers in two peer network elements more reliable.
●     Flow control, which avoids overwhelming a slower peer with PDUs.
●     Segmentation and Reassembly, which at the transmitting side divides large data chunks into smaller pieces; and at the 

receiving side reassembles the smaller pieces into the original large chunk.
●     Multiplexing, which allows several higher-level sessions to share a single lower-level connection.
●     Connection setup, which provides the handshaking with a peer.

Protocol layering has conceptual and structural advantages. We mention, however, that some researchers and networking 
engineers are vehemently opposed to layering [Wakeman 1992]. One potential drawback of layering is that one layer may 
duplicate lower-layer functionality. For example, many protocol stacks provide error recovery on both a link basis and an end-
to-end basis. A second potential drawback is that functionality at one layer may need information (e.g., a timestamp value)  that 
is present only in another layer; this violates the goal of separation of layers. 

1.7.1 The Internet Protocol Stack

The Internet stack consists of five layers: the physical, data link, network, transport and application layers. Rather than use the 
cumbersome terminology PDU-n for each of the five layers, we instead give special names to the PDUs in four of the five 
layers:  frame, datagram, segment, and message.  We avoid naming a data unit for the physical layer, as no name is commonly  
used at this layer. The Internet stack and the corresponding PDU names are illustrated in Figure 1.7-4. 
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Figure 1.7-4: The protocol stack, and protocol data units

A protocol layer can be implemented in software, in hardware, or using a combination of the two. Application-layer protocols 
-- such as HTTP and SMTP -- are almost always implemented in software in the end systems; so are transport layer protocols.  
Because the physical layer and data link layers are responsible for handling communication over a specific link, they are 
typically  implemented in a network interface card (e.g., Ethernet or ATM interface cards) associated with a given link. The 
network layer is often a mixed implementation of hardware and software. 

We now summarize the Internet layers and the services they provide: 

●     Application layer: The application layer is responsible for supporting network applications. The application layer 
includes many protocols, including HTTP to support the Web, SMTP to support electronic mail, and FTP to support file 
transfer. We shall see in Chapter 2 that it is very easy to create our own new application-layer protocols.

●     Transport layer: The transport layer is responsible for transporting application-layer messages between the client and 
server sides of an application. In the Internet there are two transport protocols, TCP and UDP, either of which can 
transport application-layer messages. TCP provides a connection-oriented service to its applications. This service 
includes guaranteed delivery of application-layer messages to the destination and flow control (i.e., sender/receiver 
speed matching). TCP also segments  long  messages into shorter segments and provides a congestion control 
mechanism, so that a source throttles its transmission rate when the network is congested. The UDP protocol provides 
its applications a connnectionless service, which (as we saw in section 1.3)  is very much a no-frills service.

●     Network layer: The network layer is responsible for routing datagrams from one host to another. The Internet's network 
layer has two principle components. First it has a protocol that defines the fields in the IP datagram as well as how the 
end systems and routers act on these fields. This protocol is the celebrated IP protocol.. There is only one IP protocol, 
and all Internet components that have a network layer must run the IP protocol. The Internet's network layer also 
contains routing protocols that determine the routes that datagrams take between sources and destinations. The Internet 
has many routing protocols. As we saw in section 1.4, the Internet is network of networks and within a network, the 
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network administrator can run any routing protocol desired. Although the network layer contains both the IP protocol 
and numerous routing protocols, it is often simply referred to as the IP layer, reflecting that fact that  IP is the glue that 
binds the Internet together.

The Internet transport layer protocols (TCP and UDP) in a source host passes a transport layer segment and a destination 
address to the IP layer, just as you give the postal service a letter with a destination address. The IP layer then provides 
the service of routing the segment to its destination. When the packet arrives at the destination, IP passes the segment to 
the transport layer within the destination. 
  

●     Link layer: The network layer routes a packet through a series of packet switches (i.e., routers) between the source and 
destination. To move a packet from one node (host or packet switch) to the next node in the route, the network layer 
must rely on the services of the link layer. In particular, at each node IP passes the datagram to the link layer, which 
delivers the datagram to the next node along the route. At this next node, the link layer passes the IP datagram to the 
network layer. The process is analogous to the postal worker at a mailing center who puts a letter into a plane, which 
will deliver the letter to the next postal center along the route. The services provided at the link layer depend on the 
specific link-layer protocol that is employed over the link. For example, some protocols provide reliable delivery on a 
link basis, i.e., from transmitting node, over one link, to receiving node.  Note that this reliable delivery service is 
different from the reliable delivery service of TCP, which provides reliable delivery from one end system to another. 
Examples of link layers include Ethernet and PPP; in some contexts, ATM and frame relay can be considered link 
layers. As datagrams typically need to traverse several links to travel from source to destination, a datagram may be 
handled by different link-layer protocols at different links along its route. For example, a datagram may be handled by 
Ethernet on one link and then PPP on the next link.  IP will receive a different service from each of the different link-
layer protocols.

●     Physical layer: While the job of the link layer is to move entire frames from one network element to an adjacent 
network element, the job of the physical layer is to move the individual bits within the frame from one node to the next. 
The protocols in this layer are again link dependent, and further depend on the actual transmission medium of the link (e.
g., twisted-pair copper wire, single mode fiber optics). For example, Ethernet has many physical layer protocols: one for 
twisted-pair copper wire, another for coaxial cable, another for fiber, etc. In each case, a bit is moved across the link in a 
different way.

If you examine the Table Of Contents, you will see that we have roughly organized this book using the layers of the Internet 
protocol stack. We take a top-down approach, first covering the application layer and then preceding downwards. 

1.7.2 Network Entities and Layers

The most important network entities are end systems and packet switches. As we shall discuss later in this book, there are two 
two types of packet switches: routers and bridges. We presented an overview of routers in the earlier sections. Bridges will be 
discussed in detail in Chapter 5 whereas routers will be covered in more detail in Chapter 4. Similar to end systems, routers and 
bridges organize the networking hardware and software into layers.  But routers and bridges do not implement all of the layers 
in the protocol stack; they typically only implement the bottom layers. As shown in Figure 1.7-5, bridges implement layers 1 
and 2; routers implement layers 1 through 3.  This means, for example, that Internet routers are capable of implementing the IP 
protocol (a layer 3 protocol), while bridges are not.  We will see later that while bridges do not recognize IP addresses, they are 
capable of recognizing layer 2 addresses, such as Ethernet addresses.  Note that hosts implement all five layers; this is 
consistent with the view that the Internet architecture puts much of its complexity at the "edges" of the network.  Repeaters, yet 
another kind of network entity to be discussed in Chapter 5, implement only layer 1 functionality. 
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Figure 1.7-5: Hosts, routers and bridges - each contain a different set of layers, reflecting their differences in functionality
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1.8 Internet Backbones, NAPs and ISPs

Our discussion of layering in the previous section has perhaps given the impression that the Internet is a 
carefully organized and highly intertwined structure. This is certainly true in the sense that all of the 
network entities (end systems, routers and bridges) use a common set of protocols, enabling the entities 
to communicate with each other. If one wanted to change, remove, or add a protocol, one would have to 
follow a long and arduous procedure to get approval from the IETF, which will (among other things) 
make sure that the changes are consistent with the highly intertwined structure. However, from a 
topological perspective, to many people the Internet  seems to be growing in a chaotic manner, with new 
sections, branches and wings popping up in random places on a daily basis. Indeed, unlike the protocols, 
the Internet's topology can grow and evolve without approval from a central authority. Let us now try to 
a grip on the seemingly nebulous Internet topology. 

As we mentioned at the beginning of this chapter, the  topology of the Internet is loosely hierarchical. 
Roughly speaking, from bottom-to-top the hierarchy consists of end systems (PCs, workstations, etc.) 
connected to local Internet Service Providers (ISPs). The local ISPs are in turn connected to regional 
ISPs, which are in turn connected to national and international ISPs. The national and international ISPs 
are connected together at the highest tier in the hierarchy. New tiers and branches can be added just as a 
new piece of Lego can be attached to an existing Lego construction. 

In this section we describe the topology of the Internet  in the United States as of 1999. Let's begin at the 
top of the hierarchy and work our way down. Residing at the very top of the hierarchy are the national 
ISPs, which are called National Backbone Provider (NBPs). The NBPs form independent backbone 
networks that span North America (and typically abroad as well). Just as there are multiple long-distance 
telephone companies in the USA, there are multiple NBPs that compete with each other for traffic and 
customers. The existing NBPs include  internetMCI, SprintLink, PSINet, UUNet Technologies, and 
AGIS. The NBPs typically have high-bandwidth transmission links, with bandwidths ranging from 1.5 
Mbps to 622 Mbps and higher. Each NBP also has numerous hubs which interconnect its links and at 
which regional ISPs can tap into the NBP. 

The NBPs themselves must be interconnected to each other. To see this, suppose one regional ISP, say 
MidWestnet,  is connected to the MCI NBP and another regional ISP, say EastCoastnet, is connected to 
Sprint's NBP. How can traffic be sent from MidWestnet to EastCoastnet? The solution is to introduce 
switching centers, called Network Access Points (NAPs), which interconnect the NBPs, thereby 
allowing each regional ISP to pass traffic to any other regional ISP. To keep us all confused, some of the 
NAPs are not referred to as NAPs but instead as MAEs (Metropolitan Area Exchanges). In the United 
States, many of the NAPs are run by RBOCs (Regional Bell Operating Companies); for example, 
PacBell has a NAP in San Francisco and Ameritech has a NAP in Chicago. For a list of major NBP's 
(those connected into at least three MAPs/MAE's), see [Haynal 99]. 
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Because the NAPs relay and switch tremendous volumes of Internet traffic, they are typically in 
themselves complex high-speed switching networks concentrated in a small geographical area (for 
example, a single building). Often the NAPs use high-speed ATM switching technology in the heart of 
the NAP, with IP riding on top of ATM. (We provide a brief introduction to ATM at the end of this 
chapter, and discuss IP-over-ATM in Chapter 5)  Figure 1.8-1 illustrates PacBell's San Francisco NAP, 
The details of Figure 1.8-1 are unimportant for us now; it is worthwhile to note, however, that the NBP 
hubs can themselves be complex data networks. 
  
  

 
Figure 1.8-1: The PacBell NAP Architecture (courtesy of the Pacific Bell Web site).

The astute reader may have noticed that ATM technology, which uses virtual circuits, can be found at 
certain places within the Internet. But earlier we said that the "Internet is a datagram network and does 
not use virtual circuits". We admit now that this statement stretches the truth a little bit . We made this 
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statement because it helps the reader to see the forest through the trees by not having the main issues 
obscured. The truth is that there are virtual circuits in the Internet, but they are in localized pockets of 
the Internet and they are buried deep down in the protocol stack, typically at layer 2. If you find this 
confusing, just pretend for now that the Internet does not employ any technology that uses virtual 
circuits. This is not too far from the truth. 

Running an NBP is not cheap. In June 1996, the cost of leasing 45 Mbps fiber optics from coast-to-
coast, as well as the additional hardware required, was approximately $150,000 per month. And the fees 
that an NBP pays the NAPs to connect to the NAPs can exceed $300,000 annually. NBPs and NAPs also 
have significant capital costs in equipment for high-speed networking. An NBP earns money by 
charging a monthly fee to the regional ISPs that connect to it. The fee that an NBP charges to a regional 
ISP typically depends on the bandwidth of the connection between the regional ISP and the NBP; clearly 
a 1.5 Mbps connection would be charged less than a 45 Mbps connection. Once the fixed-bandwidth 
connection is in place, the regional ISP can pump and receive as much data as it pleases, up to the 
bandwidth of the connection, at no additional cost. If an NBP has significant revenues from the regional 
ISPs that connect to it, it may be able to cover the high capital and monthly costs of setting up and 
maintaining an NBP. 

A regional ISP is also a complex network, consisting of routers and  transmission links with rates 
ranging from 64 Kbps upward. A regional ISP typically taps into an NBP (at an NBP hub), but it can 
also tap directly into an NAP, in which case the regional NBP pays a monthly fee to a NAP instead of to 
a NBP. A regional ISP can also tap into the Internet backbone at two or more distinct points (for 
example, at an NBP hub or at a NAP). How does a regional ISP cover its costs? To answer this question, 
let's jump to the bottom of the hierarchy. 

End systems gain access to the Internet by connecting to a local ISP. Universities and corporations can 
act as local ISPs, but backbone service providers can also serve as a local ISP.  Many local ISPs are 
small "mom and pop" companies, however. A popular WWW site known simple as "The List" contains 
link to nearly 8000 local, regional, and backbone ISPs [List 1999]. The local ISPs tap into one of the 
regional ISPs in its region. Analogous to the fee structure between the regional ISP and the NBP, the 
local ISP pays a monthly fee to its regional ISP which depends on the bandwidth of the connection. 
Finally, the local ISP charges its customers (typically) a flat, monthly fee for Internet access: the higher 
the transmission rate of the connection, the higher the monthly fee. 

We conclude this section by mentioning that anyone of us can become a local ISP as soon as we have an 
Internet connection. All we need to do is purchase the necessary equipment (for example, router and 
modem pool) that is needed to allow other users to connect to our so-called "point of presence." Thus, 
new tiers and branches can be added to the Internet topology just as a new piece of Lego can be attached 
to an existing Lego construction. 

Return to Table Of Contents 
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1.9 A Brief History of

Computer Networking and  the Internet

 Sections 1.1-1.8 presented an overview of technology of computer networking and the Internet. You 
should know enough now to impress your family and friends. However, if you really want to be a big hit 
at the next cocktail party, you should sprinkle your discourse with tidbits about the fascinating history of 
the Internet. 

1961-1972: Development and Demonstration of Early Packet Switching Principles 

The field of computer networking and today's Internet trace their beginnings back to the early 1960s, a 
time at which the telephone network was the world's dominant communication network. Recall from 
section 1.3, that the telephone network uses circuit switching to transmit information from a sender to 
receiver -- an appropriate choice given that voice is transmitted at a constant rate between sender and 
receiver. Given the increasing importance (and great expense) of computers in the early 1960's and the 
advent of timeshared computers, it was perhaps natural (at least with perfect hindsight!) to consider the 
question of how to hook computers together so that they could be shared among geographically 
distributed users.  The traffic generated by such users was likely to be "bursty" -- intervals of activity, e.
g., the sending of a command to a remote computer, followed by periods of inactivity, while waiting for 
a reply or while contemplating the received response. 

Three research groups around the world, all unaware of the others' work [Leiner 98], began inventing the 
notion of packet switching as an efficient and robust alternative to circuit switching.  The first published 
work on packet-switching techniques was the work by Leonard Kleinrock [Kleinrock 1961, Kleinrock 
1964], at that time a graduate student at MIT. Using queuing theory, Kleinrock's work elegantly 
demonstrated the effectiveness of the packet-switching approach for bursty traffic sources. At the same 
time, Paul Baran at the Rand Institute had begun investigating the  use of packet switching for secure 
voice over military networks [Baran 1964], while at the National Physical Laboratory in England, 
Donald Davies and Roger Scantlebury  were also developing their ideas on packet switching. 

The work at MIT, Rand, and NPL laid the foundations for today's Internet.  But the Internet also has a 
long history of a "Let's build it and demonstrate it" attitude that also dates back to the early 1960's.  J.C.
R. Licklider [DEC 1990] and Lawrence Roberts, both colleagues of Kleinrock's at MIT, both went on to 
lead the computer science program at the Advanced Projects Research Agency (ARPA) in the United 
States.  Roberts [Roberts 67] published an overall plan for the so-called ARPAnet [Roberts 1967], the 
first packet-switched computer network and a direct ancestor of  today's public Internet.   The early 
packet switches were known as Interface Message Processors (IMP's) and the contract to build these 
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switches was awarded to BBN.  On Labor Day in 1969, the first IMP was installed at UCLA, with three 
additional IMP being installed shortly thereafter at the Stanford Research Institute, UC Santa Barbara, 
and the University of Utah.  The fledgling precursor to the Internet was four nodes large by the end of 
1969.  Kleinrock recalls the very first use of the network to perform a remote login from UCLA to SRI 
crashing the system [Kleinrock 1998]. 

 
Figure 1.9-1: The first Internet Message Processor (IMP), with L. Kleinrock

By 1972, ARPAnet had grown to approximately 15 nodes, and was given its first public demonstration 
by Robert Kahn at the 1972 International Conference on Computer Communications.  The first host-to-
host protocol between ARPAnet end systems known as the Network Control Protocol (NCP) was 
completed [RFC 001].  With an end-to-end protocol available, applications could now be written.  The 
first e-mail program was written by Ray Tomlinson at BBN in 1972. 

1972 - 1980: Internetworking, and New and Proprietary Networks

The initial ARPAnet was a single, closed network. In order to communicate with an ARPAnet host, one 
had to actually be attached to another ARPAnet IMP.  In the early to mid 1970's, additional packet-
switching networks besides ARPAnet came into being; ALOHAnet, a satellite network linking together 
universities on the Hawaiian islands [Abramson 1972]; Telenet, a BBN commercial packet-switching 
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network based on ARPAnet technology; Tymnet; and Transpac, a French packet-switching network.   
The number of networks was beginning to grow.  In 1973, Robert Metcalfe's PhD thesis laid out the 
principle of Ethernet, which would later lead to a huge growth in so-called Local Area Networks (LANs) 
that operated over a small distance based on the Ethernet protocol. 

Once again, with perfect hindsight one might now see that the time was ripe for developing an 
encompassing architecture for connecting networks together. Pioneering work on interconnecting 
networks (once again under the sponsorship of DARPA), in essence creating a network of networks, was 
done by Vinton Cerf and Robert Kahn [Cerf 1974];  the term "internetting" was coined to describe this  
work.  The architectural principles that  Kahn' articulated for creating a so-called "open network 
architecture" are the foundation  on which today's Internet is built [Leiner 98]: 

●     minimalism, autonomy: a network should be able to operate on its own, with no internal 
changes required for it to be internetworked with other networks;

●     best effort service: internetworked networks would provide best effort, end-to-end service.  If 
reliable communication was required, this could accomplished by retransmitting lost messages 
from the sending host;

●     stateless routers: the routers in the internetworked networks would not maintain any per-flow 
state about any ongoing connection

●     decentralized control: there would be no global control over the internetworked networks.

These principles continue to serve as the architectural foundation for today's Internet, even 25 years later 
- a testament to insight of the early Internet designers. 

These architectural principles were embodied in the TCP protocol.  The early versions of TCP, however, 
were quite different from today's TCP.  The early versions of TCP combined a reliable in-sequence 
delivery of data via end system retransmission  (still part of today's TCP) with forwarding functions 
(which today are performed by IP).  Early experimentation with TCP, combined with the recognition of 
the importance of an unreliable, non-flow-controlled end-end transport service for application such as 
packetized voice, led to the separation of IP out of TCP and the development of the UDP protocol.  The 
three key Internet protocols that we see today -- TCP, UDP and IP -- were conceptually in place by the 
end of the 1970's. 

In addition to the DARPA Internet-related research,  many other important networking activities were 
underway.  In Hawaii, Norman Abramson was developing ALOHAnet, a packet-based radio network 
that allowed multiple remote sites on the Hawaiian islands to communicate with each other.  The 
ALOHA protocol [Abramson 1970] was the first so-called multiple access protocol, allowing 
geographically distributed users to share a single broadcast communication medium (a radio frequency).  
Abramson's work on multiple access protocols was built upon by Robert Metcalfe in the development of 
the Ethernet protocol [Metcalfe 1976] for wire-based shared broadcast networks.  Interestingly,  
Metcalfe's Ethernet protocol was motivated by the need to connect multiple PCs, printers, and shared 
disks together [Perkins 1994].  Twenty-five years ago, well before the PC revolution and the explosion 
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of networks, Metcalfe and his colleagues were laying the foundation for today's PC LANs.   Ethernet 
technology represented an important step for internetworking as well.  Each Ethernet local area network 
was itself a network, and as the number of LANs proliferated, the need to internetwork these LANs 
together became all the more important.  An excellent source for information on Ethernet is Spurgeon's 
Ethernet Web Site, which includes Metcalfe's drawing of his Ethernet concept, as shown below in Figure 
1.9-2.  We discuss Ethernet,  Aloha, and other LAN technologies in detail in Chapter 5; 

Figure 1.9-2: A 1976 drawing by R. Metcalfe of the Ethernet concept (from Charles Spurgeon's 
Ethernet Web Site) 

In addition to the DARPA internetworking efforts and the Aloha/Ethernet multiple access networks, a 
number of companies were developing their own proprietary network architectures.  Digital Equipment 
Corporation (Digital) released the first version of the DECnet in 1975, allowing two PDP-11 
minicomputers to communicate with each other.  DECnet has continued to evolve since then, with 
significant portions of the OSI protocol suite being based on ideas pioneered in DECnet.   Other 
important players during the 1970's were Xerox (with the XNS architecture) and IBM (with the SNA 
architecture).  Each of these early networking efforts would contribute to the knowledge base that would 
drive networking in the 80's and 90's. 

It is also worth noting here that in the 1980's (and even before), researchers (see, e.g., [Fraser 1983, 
Turner 1986, Fraser 1993]) were also developing a "competitor" technology to the Internet architecture.  
These efforts have contributed to the development of  the ATM (Asynchronous Transfer Mode) 
architecture, a connection-oriented approach based on the use of fixed size packets, known as cells.  We 
will examine portions of the ATM architecture throughout this book. 

1980 - 1990: A Proliferation of Networks
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 By the end of the 1970's approximately 200 hosts were connected to the ARPAnet. By the end of the 
1980's the number of host connected to the public Internet, a confederation of networks looking much 
like today's Internet would reach 100,000.   The 1980's would be a time of tremendous growth. 

Much of the growth in the early 1980's resulted from several distinct efforts to create computer networks 
linking universities together.  BITnet (Because It's There NETwork) provided email and file transfers 
among several universities in the Northeast.  CSNET (Computer Science NETwork) was formed to link 
together university researchers without access to ARPAnet.  In 1986, NSFNET was created to provide 
access to NSF-sponsored supercomputing centers.  Starting with an initial backbone speed of 56Kbps, 
NSFNET's backbone would be running at 1.5 Mbps by the end of the decade, and would be serving as a 
primary backbone linking together regional networks. 

In the ARPAnet community, many of the final pieces of  today's Internet architecture were falling into 
place.  January 1, 1983 saw the official deployment of TCP/IP as the new standard host protocol for 
Arpanet (replacing  the NCP protocol).  The transition [Postel 1981] from NCP to TCP/IP was a "flag 
day" type event -- all host were required to transfer over to TCP/IP as of that day.  In the late 1980's, 
important extensions were made to TCP to implement host-based congestion control [Jacobson 1988].  
The Domain Name System, used to map between a human-readable Internet name (e.g., gaia.cs.umass.
edu) and its 32-bit IP address, was also developed [Mockapetris 1983, Mockapetris 1987]. 

Paralleling this development of the ARPAnet (which was for the most part a US effort), in the early 
1980s the French launched the Minitel project, an ambitious plan to bring data networking into 
everyone's home. Sponsored by the French government, the Minitel system consisted of a public packet-
switched network (based on the X.25 protocol suite, which uses virtual circuits), Minitel servers, and 
inexpensive terminals with built-in low speed modems. The Minitel became a huge success in 1984 
when the French government gave away a free Minitel terminal to each French household that wanted 
one. Minitel sites included free sites -- such as a telephone directory site -- as well as private sites, which 
collected a usage-based fee from each user.  At its peak in the mid 1990s, it offered more than 20,000 
different services, ranging from home banking to specialized research databases. It was used by over 
20% of France's population, generated more than $1 billion each year, and created 10,000 jobs. The 
Minitel was in a large fraction of French homes ten years before most Americans had ever heard of the 
Internet. It still enjoys widespread use in France, but is increasingly facing stiff competition from the 
Internet. 

The 1990s: Commercialization and the Web

The 1990's were issued in with two events that symbolized the continued evolution and the soon-to-
arrive commercialization of the Internet.  First, ARPAnet, the progenitor of the Internet ceased to exist.  
MILNET and the Defense Data Network had grown in the 1980's to carry most of the US Department of 
Defense related traffic and NSFNET had begun to serve as a backbone network connecting regional 
networks in the United States and national networks overseas.  Also, in 1990, The World (www.world.
std.com) became the first public dialup Internet Service Provider (ISP). In 1991, NSFNET lifted its 
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restrictions on use of NSFNET for commercial purposes. NSFNET itself would be decommissioned in 
1995, with Internet backbone traffic being carried by commercial Internet Service Providers. 

The main event of the 1990's however, was to be the release of the World Wide Web, which brought the 
Internet into the homes and businesses of  millions and millions of people, worldwide.  The Web also 
served as a platform for enabling and deploying hundreds of new applications, including on-line stock 
trading and banking, streamed multimedia services, and information retrieval services. For a brief 
history of the early days of the WWW, see [W3C 1995]. 

The WWW was invented at CERN by Tim Berners-Lee in 1989-1991 [Berners-Lee 1989], based on 
ideas originating in earlier work on hypertext from the 1940's by Bush [Bush 1945]  and since the 1960's 
by Ted Nelson [Ziff-Davis 1998]. Berners-Lee and his associates developed initial versions of HTML, 
HTTP, a Web server and a browser -- the four key components of the WWW. The original CERN 
browsers only provided a line-mode interface. Around the end of 1992 there were about 200 Web 
servers in operation, this collection of servers being the tip of the iceberg for what was about to come. At 
about this time several researchers were developing Web browsers with GUI interfaces, including Marc 
Andreesen, who developed the popular GUI browser Mosaic for X. He released an alpha version of his 
browser in 1993, and in 1994 formed Mosaic Communications, which later became Netscape 
Communications Corporation. By 1995 university students were using Mosaic and Netscape browsers to 
surf the Web on a daily basis. At about this time the US government began to transfer the control of the 
Internet backbone to private carriers.  Companies -- big and small -- began to operate Web servers and 
transact commerce over the Web.  In 1996 Microsoft got into the Web business in a big way, and in the 
late 1990s it was sued for making its browser a central component of its operating system. In 1999 there 
were over two-million Web servers in operation. And all of this happened in less than ten years! 

During the 1990's, networking research and development also made significant advances in the areas of 
high-speed routers and routing (see, e.g., Chapter 4) and local area networks (see, e.g., Chapter 5).  The 
technical community struggled with the problems of defining and implementing an Internet service 
model for traffic requiring real-time constraints, such as continuous media applications (see, e.g., 
Chapter 6). The need to secure and manage Internet infrastructure (see. e.g., Chapter 7 and 8) also 
became of paramount importance as e-commerce applications proliferated and the Internet became a 
central component of the world's telecommunications infrastructure. 
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1.10 Asynchronous Transfer Mode (ATM) 
Networks

Thus far, our focus has been on the Internet and its protocols. But  many other existing packet-switching 
technologies can also provide end-to-end networking solutions. Among these alternatives to the Internet, 
so called Asynchronous Transfer Mode (ATM) networks are perhaps the most well-known. ATM 
arrived on the scene in the early 1990s.  It is useful to discuss ATM for two reasons. First, it provides an 
interesting contrast to the Internet, and by exploring its differences, we will gain more insight into the 
Internet. Second, ATM is often used as a link-layer technology in the backbone of the Internet. Since we 
will refer to ATM throughout this book, we end this chapter with a brief overview of ATM. 

The Original Goals of ATM

The standards for ATM were first developed in the mid 1980s. For those too young to remember, at this 
time there were predominately two types of networks: telephone networks, that were (and still are) 
primarily used to carry real-time voice; and data networks, that were primarily used to transfer text files, 
support remote login, and provide email. There were also dedicated private networks available for video 
conferencing. The Internet existed at this time, but few people were thinking about using it to transport 
phone calls, and the WWW was as yet unheard of. It was therefore natural to design a networking 
technology that would be appropriate for transporting real-time audio and video as well as text, email 
and image files. 

ATM achieved this goal. Two standards bodies, the ATM Forum [ATM Forum] and the International 
Telecommunications Union [ITU] have developed ATM standards for Broadband Integrated Services 
Digital Networks (BISDNs). The ATM standards call for packet switching with virtual circuits (called 
virtual channels in ATM jargon); the standards define how applications directly interface with ATM, so 
that ATM provides complete networking solution for distributed applications. Paralleling the 
development of the ATM standards, major companies throughout the world made significant 
investments in ATM research and development. These investments have led to a myriad of high-
performing ATM technologies, including ATM switches that can switch terabits per second. In recent 
years, ATM technology has been deployed very aggressively within both telephone networks and the 
Internet backbones. 

Although ATM has been deployed within networks, it has been unsuccessful in extending itself all the 
way to desktop PCs and workstations. And it is now questionable whether ATM will ever have a 
significant presence at the desktop. Indeed, while ATM was brewing in the standards committees and 
research labs in the late 1980s and early 1990s, the Internet and its TCP/IP protocols were already 
operational and making significant headway: 
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●     The TCP/IP protocol suite was integrated into all of the most popular operating systems.
●     Companies began to transact commerce (e-commerce) over the Internet.
●     Residential Internet access became very cheap.
●     Many wonderful desktop applications were developed for TCP/IP networks, including the World 

Wide Web, Internet phone, and interactive streaming video. Thousands of companies are 
currently developing new applications and services for the Internet.

Furthermore, throughout the 1990s, several low-cost high-speed LAN technologies were developed, 
including 100 Mbps Ethernet and more recently Gigabit Ethernet, mitigating the need for ATM use in 
high-speed LAN applications.  Today, we live in a world where almost all networking application 
products interface directly with TCP/IP. Nevertheless, ATM switches can switch packets at very high 
rates, and consequently has been deployed in Internet backbone networks, where the need to transport 
traffic at high rates is most acute. We will discuss the topic of IP over ATM in Section 5.8. 
  

Principle Characteristics of ATM

We shall discuss ATM in some detail in subsequent chapters. For now we briefly outline its principle 
characteristics: 

●     The ATM standard defines a full suite of communication protocols, from the transport layer all 
the way down through the physical layer.

●     It uses packet switching with fixed length packets of 53 bytes. In ATM jargon these packets are 
called cells. Each cell has 5 bytes of header and 48 bytes of "payload". The fixed length cells and 
simple headers have facilitated high-speed switching.

●     ATM uses virtual circuits (VCs). In ATM jargon, virtual circuits are called virtual channels. The 
ATM header includes a field for the virtual channel number, which is called the virtual channel 
identifier (VCI) in ATM jargon. As discussed in Section 1.3, packet switches use the VCI to 
route cells towards their destinations; ATM switches also perform VCI translation.

●      ATM provides no retransmissions on a link-by-link basis. If a switch detects an error in an ATM 
cell, it attempts to correct the error using error correcting codes. If it cannot correct the error, it 
drops the cell and does not ask the preceding switch to retransmit the cell.

●     ATM provides congestion control on an end-to-end basis. That is, the transmission of ATM cells 
is not directly regulated by the switches in times of congestion.  However, the network switches 
themselves do provide feedback to a sending end system to help it regulate its transmission rate 
when the network becomes congested.

●     ATM can run over just about any physical layer. It often runs over fiber optics using the  SONET 
standard at speeds of 155.52 Mbps, 622 Mbps and higher.

Overview of the ATM Layers

As shown in Figure 1.10-1, the ATM protocol stack consists of three layers: the ATM adaptation layer 
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(AAL), the ATM Layer, and the ATM Physical Layer: 
  

ATM Adaptation Layer (AAL)

ATM Layer

ATM Physical Layer

 Figure 1.10-1: The three ATM layers.

The ATM Physical Layer deals with voltages, bit timings, and framing on the physical medium.  The 
ATM Layer is the core of the ATM standard. It defines the structure of the ATM cell. The ATM 
Adaptation Layer is analogous to the transport layer in the Internet protocol stack. ATM includes many 
different types of AALs to support many different types of services. 

Currently, ATM is often used as a link-layer technology within localized regions of the Internet. A 
special AAL type, AAL5, has been developed to allow TCP/IP to interface with ATM. At the IP-to-
ATM interface, AAL5 prepares IP datagrams for ATM transport; at the ATM-to-IP interface, AAL5 
reassembles ATM cells into IP datagrams. Figure 1.10-2 shows the protocol stack for the regions of the 
Internet that use ATM. 

Application Layer (HTTP, FTP, etc.)

Transport Layer (TCP or UDP)

Network Layer (IP)

AAL5

ATM Layer

ATM Physical Layer

Figure 1.10-2: Internet-over-ATM protocol stack.

Note that in this configuration, the three ATM layers have been squeezed into the lower two layers of 
the Internet protocol stack. In particular, the Internet's network layer "sees" ATM as a link-layer 
protocol. 

This concludes our brief introduction to ATM. We will return to ATM from time to time throughout this 
book. 
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Chapter 1 summary

1.11 Summary

In this chapter we've covered a tremendous amount of material! We've looked at the various pieces of 
hardware and software that make up the Internet in particular, and computer networks in general.  We 
started at the "edge" of the network, looking at end systems and applications, and at the transport service 
provided to the applications running on the end systems.  Using network-based distributed applications 
as examples, we introduced the notion of a protocol - a key concept in networking.  We then dove 
deeper inside the network, into the network core, identifying packet-switching and circuit switching as 
the two basic approaches for transporting data through a telecommunication network, and examining the 
strengths and weaknesses of each  approach.  We then looked at the lowest (from an architectural 
standpoint) parts of the network -- the link layer technologies and physical media typically found in the 
access network. 

In the second part of this introductory chapter we then took the broader view on networking.  From a 
performance standpoint, we identified the causes of packet  delay and  packet loss in the Internet.  We 
identified key architectural principles (layering, service models) in networking.  We then examined the 
structure of today's Internet.  We finished our introduction to networking with a brief history of 
computer networking. The first chapter in itself constitutes a mini-course in computer networking. 

So, we have indeed covered a tremendous amount of ground in this first chapter!  If you're a bit 
overwhelmed, don't worry.  In the following chapters we will revisit all of these ideas, covering them in 
much more detail (that's a promise, not a threat!).  At this point, we hope you leave this chapter with a 
still-developing intuition for the pieces that make up a network, a still-developing command for the 
vocabulary of networking (don't be shy to refer back to this chapter), and an ever-growing desire to learn 
more about networking.  That's the task ahead of us for the rest of this book. 

Roadmapping This Book 

Before starting any trip, we should always glance at a roadmap in order to become familiar with the 
major roads and junctures that lie between us and our ultimate destination. For the trip we are about to 
embark on, the ultimate destination is a deep understanding of the how, what and why of computer 
networks. Our roadmap is the sequence of chapters of this book: 

1.  Computer Networks and the Internet
2.  Application Layer
3.  Transport Layer
4.  Network Layer and Routing
5.  Link Layer and Local Area Networks
6.  Multimedia Networking
7.  Security in Computer Networks
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8.  Network Management

Taking a look at this roadmap, we identify Chapters 2 through 5 as the four core chapters of this book. 
You should notice that there is one chapter for each of the top four layers of the Internet protocol stack. 
Further note that our journey will begin at the top of  the Internet protocol stack, namely, the application 
layer, and will work its way downward. The rationale behind this top-down journey is that once we 
understand the applications, we can then understand the network services needed to support these  
applications. We can then, in turn, examine the various ways in which such services might be 
implemented by a network architecture. Covering applications early thus provides motivation for the 
remainder of the text. 

The second half of the book -- Chapters 6 through 8 -- zoom in on three enormously important (and 
somewhat independent) topics in modern computer networking. In Chapter 6  (Multimedia Networking), 
we examine audio and video applications --  such as Internet phone, video conferencing, and streaming 
of stored media. We also look at how a packet-switched network can be designed to provide consistent 
quality of service to audio and video applications. In Chapter 7 (Security in Computer Networks), we 
first look at the underpinnings of encryption and network security, and then examine how the basic 
theory is being applied in broad range of Internet contexts, including electronic mail and Internet 
commerce. The last chapter (Network Management) examines the key issues in network management as 
well as the Internet protocols that address these issues. 

Return to Table of Contents 

Copyright Keith W. Ross and Jim Kurose 1996-2000 
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Chapter 1 Homework and Discussion Questions

Homework Problems and Discussion Questions

Chapter 1

Review Questions

Sections 1.1-1.4 

1) What are the two types of services that the Internet provides to its applications? What are some of 
characteristics of each of these services? 

2) It has been said that flow control and congestion control are equivalent. Is this true for the Internet's 
connection-oriented service? Are the objectives of flow control and congestion control the same? 

3) Briefly describe how the Internet's connection-oriented service provides reliable transport. 

4) What advantage does a circuit-switched network have over a packet-switched network? 

4) What advantages does TDM have over FDM in a circuit-switched network? 

5) Suppose that between a sending host and a receiving host there is exactly one packet switch. The 
transmission rates between the sending host and the switch and between the switch and the receiving 
host are R1 and R2, respectively. Assuming that the router uses store-and-forward packet switching, what 

is the total end-to-end delay to send a packet of length L. (Ignore queuing and propagation delay.) 

6) What are some of the networking technologies that use virtual circuits? Find good URLs that discuss 
and explain these technologies. 

7) What is meant by connection state information in a virtual-circuit network? 

8) Suppose you are developing a standard for a new type of network. You need to decide whether your 
network will use VCs or datagram routing. What are the pros and cons for using VCs? 

Sections 1.5-1.7 

9) Is HFC bandwidth dedicated or shared among users? Are collisions possible in a downstream HFC 
channel? Why or why not? 
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10) What are the transmission rate of Ethernet LANs? For a given transmission rate, can each user on 
the LAN continuously transmit at that rate? 

11) What are some of the physical media that Ethernet can run over? 

12) Dail-up modems, ISDN, HFC and ADSL are all used for residential access. For each of these access 
technologies, provide a range of transmission rates and comment on whether the bandwidth is shared or 
dedicated. 

13) Consider sending a series of packets from a sending host to a receiving host over a fixed route. List 
the delay components in the end-to-end delay for a single packet. Which of these delays are constant and 
which are fixed? 

14) Review the car-caravan analogy in Section 1.6. Again assume a propagation speed of 100km/hour. 

 
a) Suppose the caravan travels 200 km, beginning in front of one toll booth, passing through a 
second toll booth, and finishing just before a third toll booth. What is the end-to-end delay? 

b) Repeat (a), now assuming that there are 7 cars in the caravan instead of 10. 
 

15) List five tasks that a layer can perform. It is possible that one (or more) of these tasks could be 
performed by two (or more) layers? 

16) What are the five layers in the Internet protocol stack? What are the principle responsibilities for 
each of these layers? 

17) Which layers in the Internet protocol stack does a router process? 

Problems 

1) Design and describe an application-level protocol to be used  between an Automatic Teller Machine, 
and a bank's centralized computer. Your protocol should allow a user's card and password to be verified, 
the account balance (which is maintained at the centralized computer) to be queried, and an account 
withdrawal (i.e., when money is given to the user) to be made.   Your protocol entities should be able to 
handle the all-too-common case in which there is not enough money in the account to cover the 
withdrawal. Specify your protocol by listing the messages exchanged, and the action taken by the 
Automatic Teller Machine or the bank's centralized computer on transmission and receipt of messages.  
Sketch the operation of your protocol for the case of a simple withdrawl with no errors, using a diagram 
similar to that in Figure 1.2-1. Explicity state the assumptions made by your protocol about the 
underlying end-to-end transport service. 
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2) Consider an application which transmits data at a steady rate (e.g., the sender generates a N bit unit of 
data every k time units, where k is small and fixed). Also, when such an application starts, it will stay on 
for relatively long period of time. Answer the following questions, briefly justifying your answer: 

●     Would a packet-switched network or a circuit-switched network be more appropriate for this 
application? Why?

●     Suppose that a packet-switching network is used and the only traffic in this network comes from 
such applications as described     above. Furthermore, assume that the sum of the application data 
rates is less that the capacities of each and every link. Is some  form of congestion control 
needed? Why?

3) Consider sending a file of F = M *L bits over a path of Q  links. Each link transmits at R bps. The 
network is lightly loaded so that there are no queueing delays. When a form of packet switching is used, 
the M * L bits are broken up into M packets, each packet with L  bits. Propagation delay is negligible. 

a) Suppose the network is a packet-switched virtual-circuit network. Denote the VC set-up time 
by ts seconds. Suppose to each packet the sending layers add a total of hbits of header. How long 

does it take to send the file from source to destination? 

b) Suppose the network is a packet-switched datagram network, and a connectionless service is 
used. Now suppose each packet has 2h bits of header. How long does it take to send the file?

c) Repeat (b), but assume message switching is used (i.e., 2hbits are added to the message, and 
the message is not segmented).

d) Finally, suppose that the network is a circuit switched network. Further suppose that the 
transmission rate of the circuit between source and destination is Rbps. Assuming tsset-up time 

and hbits of header appended to the entire file, how long does it take to send the file?

4) Experiment with the message-switching Java applet in this chapter. Do the delays in the applet 
correspond to the delays in the previous question? How do link propagation delays effect the the overall 
end-to-end delay for packet switching and for message switching? 

5) Consider sending a large file of  F bits from Host A to Host B.There are two links (and one switch) 
between A and B, and the links are uncongested (i.e., no queueing delays). Host A segments the file into 
segments of S bits each and adds 40 bits of  header to each segment, forming packets of L = 40 + S bits. 
Each link has a transmission rate of R bps.  Find the value of S that minimizes the delay of moving the 
packet from Host A to Host B. Neglect propagation delay. 

6) This elementary problem begins to explore propagation delay and transmission delay, two central 
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concepts in data networking. Consider two hosts, Hosts A and B, connected by a single link of rate R 
bps. Suppose that the two hosts are separted by m meters, and suppose the propagation speed along the 
link is s meters/sec. Host A is to send a packet of size L bits to Host B. 

a) Express the propagation delay, dprop in terms of mand s. 

b) Determine the transmission time of the packet, dtrans in terms of Land R. 

c) Ignoring processing and queing delays, obtain an expression for the end-to-end delay. 
d) Suppose Host A begins to transmit the packet at time t=0. At time t=dtrans, where is the last 

bit of the packet? 
e) Suppose dpropis greater than dtrans . At time t=dtrans, where is the first bit of the packet? 

f)) Suppose dpropis less than dtrans . At time t=dtrans, where is the first bit of the packet? 

g) Suppose s=2.5*108, L=100bits and R=28 kbps. Find the distance mso that dpropequals dtrans.

7) In this problem we consider sending voice from Host A to Host B over a packet-switched network (e.
g., Internet phone). Host A converts on-the-fly analog voice to a digital 64 kbps bit stream. Host A then 
groups the bits into 48-byte packets. There is one link between host A and B; its transmission rate is 1 
Mbps and its propagation delay is 2 msec. As soon as Host A gathers a packet, it sends it to Host B. As 
soon as Host B receives an entire packet, it coverts the packet's bits to an analog signal. How much time 
elapses from when a bit is created (from the original analog signal at A) until a bit is decoded (as part of 
the analog signal at B)? 

8) Suppose users share a 1 Mbps link. Also suppose each user requires 100 Kbps when transmitting, but 
each user only transmits 10% of the time. (See the discussion on "Packet Switching versus Circuit 
Switching" in Section 1.4.1.) 

a) When circuit-switching is used, how many users can be supported?

b) For the remainder of this problem, suppose packet-switching is used. Find the probability that 
a given user is transmitting. 

c) Suppose there are 40 users. Find the probability that at any given time, n users are transmitting 
simultaneously. 

d) Find the probability that there are 10 or more users transmitting simultaneously.

9) Consider the queueing delay in a router buffer (preceding an outbound link). Suppose all packets are 
L bits, the transmission rate is R bps and that N packets arrive to the buffer every L/RN seconds. Find the 
average queueing delay of a packet. 

10) Consider the queueing delay in a router buffer. Let I denote traffic intensity, that is, I = La/R. 
Suppose that the queueing delay takes the form LR/(1-I) for I < 1. (a) Provide a formula for the "total 

file:///D|/Downloads/Livros/computação/Computer%20Net...20Approach%20Featuring%20the%20Internet/1problems.htm (4 of 6)20/11/2004 15:51:49



Chapter 1 Homework and Discussion Questions

delay," that is, the queueing delay plus the transmission delay. (b) Plot the transmission delay as a 
function of L/R. 

11) (a) Generalize the end-to-end delay formula in Section 1.6 for heterogeneous processing rates, 
transmission rates, and propagation delays. (b) Repeat (a), but now also suppose that there is an average 
queuing delay of dqueue at each node. 

12) Consider an application that transmits data at a steady rate (e.g., the sender generates one packet of 
N bits every k time units, where k is small and fixed). Also, when such an application starts, it will stay 
on for relatively long period of time. 

a) Would a packet-switched network or a circuit-switched network be more appropriate for this 
application? Why? 
b) Suppose that a packet-switched network is used and the only traffic in this network comes 
from such applications as described above. Furthermore, assume that the sum of the application 
data rates is less that the capacities of each and every link. Is some form of congestion control 
needed? Why or why not?

13) Perform a traceroute between source and destination on the same continent at three different hours 
of the day. Find the average and standard deviation of the delays. Do the same for a source and 
destination on different continents. 

14) Recall that ATM uses 53 byte packets consisting of 5 header bytes and 48 payload bytes. Fifty-three 
bytes is unusually small for fixed-length packets; most networking protocols (IP, Ethernet, frame relay, 
etc.)  use packets that are, on average, significantly larger. One of the drawbacks of a small packet size is 
that a large fraction of link bandwidth is consumed by overhead bytes; in the case of ATM, almost ten 
percent of the bandwidth is "wasted" by the ATM header. In this problem we investigate why such a 
small packet size was chosen. To this end, suppose that the ATM cell consists of P bytes (possible 
different from 48) and 5 bytes of header. 

a) Consider sending a digitally encoded voice source directly over ATM. Suppose the source is 
encoded at a constant rate of 64 kbps. Assume each cell is entirely filled before the source sends 
the cell into the network. The time required to fill a cell is the packetization delay.In terms of L, 
determine the packetization delay in milliseconds. 

b) Packetization delays greater than 20 msecs can cause noticeable and unpleasant echo. 
Determine the packetization delay for  L= 1,500 bytes (roughly corresponding to a maximum-
size Ethernet packet) and for L = 48 (corresponding to an ATM cell). 

c) Calculate the store-and-forward delay at a single ATM switch for a link rate of R = 155 Mbps 
(a popular link speed for ATM) for L = 1500 bytes and L = 48 bytes. 
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d) Comment on the advantages of using a small cell size.

 Discussion Questions

1) Write a one-paragraph description for each of three major projects currently under way at the W3C. 

2) What is Internet phone? Describe some of the existing products for Internet phone. Find some of the 
Web sites of companies that are in the Internet phone business. 

3) What is Internet audio-on-demand? Describe some of the existing products for Internet audio-on-
demand. Find some of the Web sites of companies that are in the Internet audio-on-demand business. 
Find some Web sites which provide audio-on-demand content. 

4) What is Internet video conferencing? Describe some of the existing products for Internet video 
conferencing. Find some of the Web sites of companies that are in the Internet video-conferencing 
business. 

5) Surf the Web to find a company that is offering HFC Internet access. What transmission rate of the 
cable modem? Is this rate always guaranteed for each user on the network? 

6) Discussion question: Suppose you are developing an application for the Internet.Would you have your 
application run over TCP or UDP? Elaborate. (We will explore this question in some detail in 
subsequent chapters. For now appeal to your intuition to answer the question.) 

7) Discussion question: What are some of the current activities of the The World Wide Web Consortium 
(W3C)? What are some of the current activities of the National Laboratory for Applied Network 
Research or NLANR? 

8) Discussion question: What does the current topological structure of the Internet (i.e., backbone ISPs, 
regional ISPs, and local ISPs) have in common with the topological structure of the telephone networks 
in the USA? How is pricing in the Internet the same as or different from pricing in the phone system. 
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Network Applications: Terminology and Basic Concepts

2.1 Principles of

Application Layer Protocols

Network applications are the raisons d'etre of a computer network. If we couldn't conceive of any useful 
applications, there wouldn't be any need to design networking protocols to support them. But over the past 
thirty years, many people have devised numerous ingenious and wonderful networking applications. 
These applications include the classic text-based applications that became popular in the 1980s, including 
remote access to computers, electronic mail, file transfers, newsgroups, and chat. But they also include 
more recently conceived multimedia applications, such as the World Wide Web,  Internet telephony, 
video conferencing, and audio and video on demand. 

Although network applications are diverse and have many interacting components, software is almost 
always at their core. Recall from Section 1.2 that for a network application's software is distributed among 
two or more end systems (i.e., host computers). For example, with the Web there are two pieces of 
software that communicate with each other: the browser software in the user's host (PC, Mac or 
workstation), and the Web server software in the Web server. With Telnet, there are again two pieces of 
software in two hosts: software in the local host and software in the remote host. With multiparty video 
conferencing, there is a software piece in each host that participates in the conference. 

In the jargon of operating systems, it is not actually software pieces (i.e., programs) that are 
communicating but in truth processes that are communicating. A process can be thought of as a program 
that is running within an end system. When communicating processes are running on the same end 
system, they communicate with each other using interprocess communication. The rules for interprocess 
communication are governed by the end system's operating system. But in this book we are not interested 
in how processes on the same host communicate, but instead in how processes running on different end 
systems (with potentially different operating systems) communicate. Processes on two different end 
systems communicate with each other by exchanging messages across the computer network. A sending 
process creates and sends messages into the network; a receiving process receives these messages and 
possibly responds by sending messages back. Networking applications have application-layer protocols 
that define the format and order of the messages exchanged between processes, as well as the actions 
taken on the transmission or receipt of a message. 

The application layer is a particularly good place to start our study of protocols.  It's familiar ground. 
We're acquainted with many of the applications that rely on the protocols we will study. It will give us a 
good feel for what protocols are all about, and will introduce us to many of the same issues that we'll see 
again when we study transport, network, and data link layer protocols. 

2.1.1 Application-Layer Protocols
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It is important to distinguish between network applications and application-layer protocols. An 
application-layer protocol is only one piece (albeit, a big piece) of a network application. Let's look at a 
couple of examples. The Web is a network application that allows users to obtain "documents" from Web 
servers on demand. The Web application consists of many components, including a standard for 
document formats (i.e., HTML), Web browsers (e.g., Netscape Navigator and Internet Explorer), Web 
servers (e.g., Apache, Microsoft and Netscape servers), and an application-layer protocol. The Web's 
application-layer protocol, HTTP (the HyperText Transfer Protocol [RFC 2068]), defines how messages 
are passed between browser and Web server. Thus, HTTP is only one piece (albeit, a big piece) of the 
Web application. As another example, consider the Internet electronic mail application. Internet electronic 
mail also has many components, including mail servers that house user mailboxes, mail readers that allow 
users to read and create messages, a standard for defining the structure of an email message (i.e., MIME) 
and application-layer protocols that define how messages are passed between servers, how messages are 
passed between servers and mail readers, and how the contents of certain parts of the mail message (e.g., a 
mail message header) are to be interpreted. The principal application-layer protocol for electronic mail is 
SMTP (Simple Mail Transfer Protocol [RFC 821]). Thus, SMTP is only one piece (albeit, a big piece) of 
the email application. 

As noted above, an application layer protocol defines how an application's processes, running on different 
end systems, pass messages to each other. In particular, an application layer protocol defines: 

●     the types of messages exchanged, e.g., request messages and response messages;
●     the syntax of the various message types, i.e., the fields in the message and how the fields are 

delineated;
●     the semantics of the fields, i.e., the meaning of the information in the fields;
●     rules for determining when and how a process sends messages and responds to messages.

Some application-layer protocols are specified in RFCs and are therefore in the public domain. For 
example, HTTP is available as an RFC.  If a browser developer follows the rules of the HTTP RFC, the 
browser will be able to retrieve Web pages from any Web server (more precisely, any Web server that has 
also followed the rules of the HTTP RFC). Many other application-layer protocols are proprietary and 
intentionally not available in the public domain. For example, many of the existing Internet phone 
products use proprietary application-layer protocols. 

Clients and Servers

A network application protocol typically has two parts or "sides", a client side and a server side. The 
client side in one end system communicates with the server side in another end system. For example, a 
Web browser implements the client side of HTTP and a Web server implements the server side of HTTP.  
In another example, e-mail, the sending mail server implements the client side of SMTP and the receiving 
mail server implements the server side of SMTP. 

For many applications, a host will implement both the client and server sides of an application. For 
example, consider a Telnet session between Hosts A and B. (Recall that Telnet is a popular remote login 
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application.) If Host A initiates the Telnet session (so that a user at Host A is logging onto Host B), then 
Host A runs the client side of the application and Host B runs the server side. On the other hand, if Host B 
initiates the Telnet session, then Host B runs the client side of the application. FTP, used for transferring 
files between two hosts,  provides another example. When an FTP session exists between two hosts, then 
either host can transfer a file to the other host during the session. However, as  is the case for almost all 
network applications, the host that initiates the session is labeled the client. Furthermore, a host can 
actually act as both a client and a server at the same time for a given application. For example, a mail 
server host runs the client side of SMTP (for sending mail) as well as the server side of SMTP (for 
receiving mail). 

Processes Communicating Across a Network 

As noted above, an application involves two processes in two different hosts communicating with each 
other over a network.  (Actually, a multicast application can involve communication among more than 
two hosts. We shall address this issue in Chapter 4.) The two processes communicate with each other by 
sending and receiving messages through their sockets. A process's socket can be thought of as the 
process's door: a process sends messages into, and receives message from, the network through its socket. 
When a process wants to send a message to another process on another host, it shoves the message out its 
door. The process assumes that there is a transportation infrastructure on the other side of the door that 
will transport the message to the door of the destination process. 

 
Figure 2.1-1: Application processes, sockets, and the underlying transport protocol.

Figure 2.1-1 illustrates socket communication between two processes that communicate over the Internet. 
(The figure assumes that the underlying transport protocol is TCP, although the UDP protocol could be 
used as well in the Internet.) As shown in this figure, a socket is the interface between the application 
layer and the transport layer within a host. It is also referred to as the API (application programmers 
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interface) between the application and the network, since the socket is the programming interface with 
which networked applications are built in the Internet.. The application developer has control of 
everything on the application-layer side of the socket but has little control of the transport-layer side of 
the socket. The only control that the application developer has on the transport-layer side is (i) the choice 
of transport protocol and (ii) perhaps the ability to fix a few transport-layer parameters such as maximum 
buffer and maximum segment sizes. Once the application developer chooses a transport protocol (if a 
choice is available), the application is built using the transport layer the services offered by that protocol.  
We will explore sockets in some detail in Sections 2.6 and 2.7. 

Addressing Processes

In order for a process on one host to send a message to a process on another host, the sending process 
must identify the receiving process. To identify the receiving process, one must typically specify two 
pieces of information: (i) the name or address of the host machine, and (ii) an identifier that specifies the 
identity of the receiving process on the destination host. 

Let us first consider host addresses. In Internet applications, the destination host is specified by its IP 
address. We will discuss IP addresses in great detail in Chapter 4. For now, it suffices to know that the IP 
address is a 32-bit quantity that uniquely identifies the end-system (more precisely, it uniquely identifies 
the interface that connects that host to the Internet).  Since the IP address of any end system connected to 
the public Internet must be globally unique, the assignment of IP addresses must be carefully managed, as 
discussed in section 4.4.  ATM networks have a different addressing standard. The ITU-T has specified 
telephone number-like addresses, called E.164 addresses [ITU 1997],  for use in public ATM networks. 
E.164 address consist of between seven and 15 digits, with each digit encoded as a byte (yielding an 
address of between 56 and 120 bits in length). The assignment of these address is carefully managed by 
country- or region-specific standards bodies; in the United States, the American National Standards 
Institute (ANSI) provides this address registration service. We will not cover ATM end-system addressing 
in depth in this book; see [Fritz 1997, Cisco 1999] for more details. 

In addition to knowing the address of the end system to which a message is destined, a sending 
application must also specify information that will allow the receiving end system to direct the message to 
the appropriate process on that system.  A receive-side port number serves this purpose in the Internet.  
Popular application-layer protocols have been assigned specific port numbers. For example, a Web server 
process (which uses the HTTP protocol) is identified by port number 80. A mail server (using the SMTP) 
protocol is identified by port number 25. A list of  well-known port numbers for all Internet standard 
protocols can be found in [RTC 1700]. When a developer creates a new network application, the 
application must be assigned a new port number. 

User Agents

Before we begin a more detailed study of application-layer protocols, it is useful to discuss the notion of a 
user agent. The user agent is an interface between the user and the network application. For example, 
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consider the Web. For this application, the user agent is a browser such as Netscape Navigator or 
Microsoft Explorer. The browser allows a user to view Web pages, to navigate in the Web, to provide 
input to forms, to interact with Java applets, etc. The browser also implements the client side of the HTTP 
protocol. Thus, when activated, the browser is a process that, along with providing an interface to the 
user, sends messages into a socket. As an another example, consider the electronic mail application. In 
this case, the user agent is a "mail reader" that allows a user to compose and read messages. Many  
companies market mail readers (e.g., Eudora, Netscape Messenger) with a graphical user interface that 
can run on PCs, Macs and workstations. Mail readers running on PCs also implement the client side of 
application layer protocols; typically they implement the client side of SMTP for sending mail and the 
client side of a mail retrieval protocol, such as POP3 or IMAP (see section 2.4),  for receiving mail. 

2.1.2 What Services Does an Application Need?

Recall that a socket is the interface between the application process and the transport protocol. The 
application at the sending side sends messages through the door. At the other side of the door, the 
transport protocol has the responsibility of moving the messages across the network to the door at the 
receiving process. Many networks, including the Internet, provide more than one transport protocol. 
When you develop an application, you must choose one of the available transport protocols. How do you 
make this choice? Most likely, you will study the services that are provided by the available transport 
protocols, and you will pick the protocol with the services that best match the needs of your application. 
The situation is similar to choosing either train or airplane transport for travel between two cities (say 
New York City and Boston). You have to choose one or the other, and each transport mode offers 
different services. (For example, the train offers downtown pick up and drop off, whereas the plane offers 
shorter transport time.) 

What services might a network application need from a transport protocol? We can broadly classify an 
application's service requirements along three dimensions: data loss, bandwidth, and timing. 

●     Data Loss. Some applications, such as electronic mail, file transfer, remote host access, Web 
document transfers, and financial applications require fully reliable data transfer, i.e., no data loss.  
In particular, a loss of file data, or data in a financial transaction,  can have devastating 
consequences (in the latter case, for either the bank or the customer!). Other loss tolerant 
applications, most notably multimedia applications such as real-time audio/video or stored audio/
video, can tolerate some amount of data loss.  In these latter applications, lost data might result in a 
small glitch in the played-out audio/video - not a crucial impairment.  The effects of such loss on 
application quality, and actual amount of tolerable packet loss, will depend strongly on the coding 
scheme used.

●     Bandwidth.  Some applications must be able to transmit data at a certain rate in order to be 
"effective".  For example, if an Internet telephony application encodes voice at 32 Kbps, then it 
must be able to send data into the network, and have data delivered to the receiving application, at 
this rate.  If this amount of bandwidth is not available, the application needs to either encode at a 
different rate (and receive enough bandwidth to sustain this different coding rate) or should give up 
-- receiving half of the needed bandwidth is of no use to such a bandwidth-sensitive application.  
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While many current multimedia applications are bandwidth sensitive, future multimedia 
applications may use adaptive coding technique to encode at a rate that matches the currently-
available bandwidth.  While bandwidth-sensitive applications require a given amount of 
bandwidth, elastic applications can make use of as much or as little bandwidth as happens to be 
available.   Electronic mail, file transfer, remote access, and Web transfers are all elastic 
applications. Of course, the more bandwidth, the better.  There's an adage that says that one can 
not be too rich, too thin, or have too much bandwidth.

●     Timing.  The final service requirement is that of timing.  Interactive real-time applications, such as 
Internet telephony, virtual environments, teleconferencing, and multiplayer games require tight 
timing constraints on data delivery in order to be "effective."  For example, many of these 
applications require that end-to-end delays be on the order of a few hundred of milliseconds or 
less. (See Chapter 6 and  [Gauthier 1999, Ramjee 94].)  Long delays in Internet telephony, for 
example, tend to result in unnatural pauses in the conversation; in a multiplayer game or virtual 
interactive environment, a long delay between taking an action and seeing the response from the 
environment (e.g., from another player on the end of an end-to-end connection) makes the 
application feel less "realistic."  For non-real-time applications, lower delay is always preferable to 
high delay, but no tight constraint is placed on the end-to-end delays.

Figure 2.1-2 summarizes the reliability, bandwidth, and timing requirements of some popular and 
emerging Internet applications. 
  
  

Application Data Loss  Bandwidth Time sensitive?

file transfer no loss elastic no

electronic mail no loss elastic no

Web documents no loss elastic no

real-time audio/video loss-tolerant

audio: few Kbps to 
1Mbps  
video: 10's Kbps to 5 
Mbps

yes: 100's of msec

stored audio/video loss-tolerant
same as interactive 
audio/video

yes: few seconds

interactive games loss-tolerant few Kbps to 10's Kbps yes: 100's msecs

financial applications required elastic yes and no

Figure 2.1-2: Requirements of  selected network applications.

Figure 2.1-2 outlines only a few of the key requirements of a few of the more popular Internet 
applications. Our goal here is not to provide a complete classification, but simply to identify a few of the 
most important axes along which network application requirements can be classified. 
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2.1.3 Services Provided by the Internet Transport Protocols

The Internet (and more generally TCP/IP networks) makes available two transport protocols to  
applications, namely, UDP (User Datagram Protocol) and TCP (Transmission Control Protocol).  When a 
developer creates a new application for the Internet, one of the first decisions that the developer must 
make is whether to use UDP or TCP. Each of these protocols offers a different service model to the 
invoking applications. 

TCP Services 

The TCP service model includes a connection-oriented service and a reliable data transfer service. When 
an application invokes TCP for its transport protocol, the application receives both of these services from 
TCP. 

●     Connection-oriented service: TCP has the client and server exchange transport-layer control 
information with each other before the application-level messages begin to flow. This so-called 
handshaking procedure (that is part of the TCP protocol) alerts the client and server, allowing them 
to prepare for an onslaught of packets. After the handshaking phase, a TCP connection is said to 
exist between the sockets of the two processes. The connection is a full-duplex connection in that 
the two processes can send messages to each other over the connection at the same time. When the 
application is finished sending messages, it must tear down the connection. The service is referred 
to as a "connection-oriented" service rather than a "connection" service (or a "virtual circuit" 
service), because the two processes are connected in a very loose manner. In Chapter 3 we will 
discuss connection-oriented service in detail and examine how it is implemented.

●     Reliable transport service: The communicating processes can rely on TCP to to deliver all  
messages sent without error and in the proper order. When one side of the application passes a 
stream of bytes into a socket, it can count on TCP to deliver the  same stream of data to the 
receiving socket, with no missing or duplicate bytes.

TCP also includes a congestion control mechanism, a service for the general welfare of the Internet rather 
than for the direct benefit of the communicating processes. The TCP congestion control mechanism 
throttles a process (client or server) when the network is congested. In particular, as we shall see in 
Chapter 3, TCP congestion control attempts to limit each TCP connection to its fair share of network 
bandwidth. 

The throttling of the transmission rate can have a very harmful effect on real-time audio and video 
applications that have minimum bandwidth requirements. Moreover, real-time applications are loss-
tolerant and do not need a fully reliable transport service. In fact, the TCP acknowledgments and 
retransmissions that provide the reliable transport service (discussed in Chapter 3) can further slow down 
the transmission rate of useful real-time data. For these reasons, developers of real-time applications 
usually run their applications over UDP rather than TCP. 

file:///D|/Downloads/Livros/computação/Computer%20Netw...pproach%20Featuring%20the%20Internet/client_server.htm (7 of 10)20/11/2004 15:51:50



Network Applications: Terminology and Basic Concepts

Having outlined the services provided by TCP, let us say a few words about the services that TCP does 
not provide. First, TCP does not guarantee a minimum transmission rate. In particular, a sending process 
is not permitted to transmit at any rate it pleases; instead the sending rate is regulated by TCP congestion 
control, which may force the sender to send at a low average rate. Second, TCP does not provide any 
delay guarantees. In particular, when a sending process passes a message into a TCP socket, the message 
will eventually arrive to receiving socket, but TCP guarantees absolutely no limit on how long the 
message may take to get there. As many of us have experienced with the World Wide Wait, one can 
sometimes wait tens of seconds or even minutes for TCP to deliver a message (containing, for example, 
an HTML file) from Web server to Web client. In summary, TCP guarantees delivery of all data, but 
provides no guarantees on the rate of delivery or on the delays experienced by individual messages. 

UDP Services

UDP is a no-frills, lightweight transport protocol with a minimalist service model. UDP is connectionless, 
so there is no handshaking before the two processes start to communicate. UDP provides an unreliable 
data transfer service, that is, when a process sends a message into a UDP socket, UDP provides no 
guarantee that the message will ever reach the receiving socket. Furthermore, messages that do arrive to 
the receiving socket may arrive out of order. Returning to our houses/doors analogy for processes/sockets, 
UDP is like having a long line of taxis waiting for passengers on the other side of the sender's door. When 
a passenger (analogous to an application message) exits the house, it hops in one of the taxis. Some of the 
taxis may break down, so they don't ever deliver the passenger to the receiving door; taxis may also take 
different routes, so that passengers arrive to the receiving door out of order. 

On the other hand, UDP does not include a congestion control mechanism, so a sending process can pump 
data into a UDP socket at any rate it pleases. Although all the data may not make it to the receiving 
socket, a large fraction of the data may arrive. Also, because UDP does not use acknowledgments or 
retransmissions that can slow down the delivery of useful real-time data, developers of real-time 
applications often choose to run their applications over UDP. Similar to TCP, UDP provides no guarantee 
on delay. As many of us know, a taxi can be stuck in a traffic jam for a very long time (while the meter 
continues to run!). 
  
  

Application Application-layer protocol Underlying Transport Protocol

electronic mail SMTP [RFC 821] TCP

remote terminal access Telnet [RFC 854] TCP

Web HTTP [RFC 2068] TCP

file transfer FTP [RFC 959] TCP

remote file server NFS [McKusik 1996] UDP or TCP
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streaming multimedia proprietary (e.g., Real Networks) UDP or TCP

Internet telephony proprietary (e.g., Vocaltec) typically UDP

Figure 2.1-3: Popular Internet applications, their application-layer protocols, and their underlying 
transport protocols.

Figure 2.1-3 indicates the transport protocols used by some popular Internet applications. We see that 
email, remote terminal access, the Web and file transfer all use TCP. These applications have chosen TCP 
primarily because TCP provides the reliable data transfer service, guaranteeing that all data will 
eventually get to its destination. We also see that Internet telephone typically runs over UDP. Each side of 
an Internet phone application needs to send data across the network at some minimum rate (see Figure 2.1-
2); this is  more likely to be possible with UDP than with TCP. Also, Internet phone applications are loss-
tolerant, so they do not need the reliable data transfer service (and the acknowledgments and 
retransmissions that implement the service) provided by TCP. 

As noted earlier, neither TCP nor UDP offer  timing guarantees.  Does this mean that time-sensitive 
applications can not run in today's Internet? The answer is clearly no - the Internet  has been hosting time-
sensitive applications for many years. These applications often work pretty well because they have been 
designed to cope, to the greatest extent possible, with this lack of guarantee. We shall investigate several 
of these design tricks in Chapter 6. Nevertheless, clever design has its limitations when delay is excessive, 
as is often the case in the public Internet. In summary, today's Internet can often provide satisfactory 
service to time-sensitive applications, but it can not provide any timing or bandwidth guarantees. In 
Chapter 6, we shall also discuss emerging Internet service models that provide new services, including 
guaranteed delay service for time-sensitive applications. 

2.1.4  Network Applications Covered in this Book

New public domain and proprietary Internet applications are being developed everyday. Rather than 
treating a large number of  Internet applications in an encyclopedic manner, we have chosen to focus on a 
small number of important and popular applications. In this chapter we discuss in some detail four 
popular applications: the Web, file transfer, electronic mail, and directory service. We first discuss the 
Web, not only because the Web is an enormously popular application, but also because its application-
layer protocol, HTTP, is relatively simple and illustrates many key principles of network protocols. We 
then discuss file transfer, as it provides a nice contrast to HTTP and enables us to highlight some 
additional principles. We discuss electronic mail, the Internet's first killer application. We shall see that 
modern electronic mail makes use of not one, but of several, application-layer protocols. The Web, file 
transfer, and electronic mail have common service requirements: they all require a reliable transfer 
service, none of them have special timing requirements, and they all welcome an elastic bandwidth 
offering. The services provided by TCP are largely sufficient for these three applications. The fourth 
application, Domain Name System (DNS), provides a directory service for the Internet. Most users do not 
interact with DNS directly; instead, users invoke DNS indirectly through other applications (including the 
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Web, file transfer, and electronic mail). DNS illustrates nicely how a distributed database can be 
implemented in the Internet. None of the four applications discussed in this chapter are particularly time 
sensitive; we will defer our discussion of such time-sensitive applications until Chapter 6. 
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The HyperText Transfer Protocol

2.2 The World Wide Web: HTTP

In the 1980s the Internet was used by researchers, academics and university students to login to remote hosts, to transfer files from local 
hosts to remote hosts and vice versa, to receive and send news, and to receive and send electronic mail. Although these applications were 
(and continue to be) extremely useful, the Internet was essentially unknown outside the academic and research communities. Then in early 
1990s the Internet's killer application arrived on the scene -- the World Wide Web. The Web is the Internet application that caught the 
general public's eye. It is dramatically changing how people interact inside and outside their work environments. It has spawned thousands 
of start up companies. It has elevated the Internet from just one of many data networks (including online networks such as Prodigy, 
America On Line and Compuserve, national data networks such as Minitel/Transpac in France, and private X.25 and frame relay 
networks) to essentially the one and only data network. 

History is sprinkled with the arrival of electronic communication technologies that have had major societal impacts. The first such 
technology was the telephone, invented in the 1870s. The telephone allowed two persons to orally communicate in real-time without being 
in the same physical location. It had a major impact on society -- both good and bad. The next electronic communication technology was 
broadcast radio/television, which arrived in the 1920s and 1930s. Broadcast radio/television allowed people to receive vast quantities of 
audio and video information. It also had a major impact on society -- both good and bad. The third major communication technology that 
has changed the way people live and work is the Web. Perhaps what appeals the most to users about the Web is that it is on demand. Users 
receive what they want, when they want it. This is unlike broadcast radio and television, which force users to "tune in" when the content 
provider makes the content available. In addition to being on demand, the Web has many other wonderful features that people love and 
cherish. It is enormously easy for any individual to make any available available over the Web; everyone can become a publisher at 
extremely low cost. Hyperlinks and search engines help us navigate through an ocean of Web sites. Graphics and animated graphics 
stimulate our senses. Forms, Java applets, Active X components, as well as many other devices enable us to interact with pages and sites. 
And more and more, the Web provides a menu interface to vast quantities of audio and video material stored in the Internet, audio and 
video that can be accessed on demand. 

2.2.1 Overview of HTTP

The Hypertext Transfer Protocol (HTTP), the Web's application-layer protocol, is at the heart of the Web. HTTP is implemented in two 
programs: a client program and server program. The client program and server programs, executing on different end systems,  talk to each 
other by exchanging HTTP messages. HTTP defines the structure of these messages and how the client and server exchange the 
messages.  Before explaining HTTP in detail, it is useful to review some Web terminology. 

A Web page (also called a document) consists of objects. An object is a simply file -- such as a HTML file, a JPEG image, a GIF image, 
a Java applet, an audio clip, etc. -- that is addressable by a single URL. Most Web pages consist of a base HTML file and several 
referenced objects. For example, if a Web page contains HTML text and five JPEG images, then the Web page has six objects: the base 
HTML file plus the five images. The base HTML file references the other objects in the page with the objects' URLs. Each URL has two 
components: the host name of the server that houses the object and the object's path name. For example, the URL 

www.someSchool.edu/someDepartment/picture.gif

has www.someSchool.edu for a host name and /someDepartment/picture.gif for a path name.  A browser is a user agent 
for the Web; it displays to the user the requested Web page and provides numerous navigational and configuration features. Web browsers 
also implement the client side of HTTP. Thus, in the context of the Web, we will interchangeably use the words "browser" and "client". 
Popular Web browsers include Netscape Communicator and Microsoft Explorer. A Web server houses Web objects, each addressable by 
a URL. Web servers also implement the server side of HTTP. Popular Web servers include Apache, Microsoft Internet Information 
Server, and the Netscape Enterprise Server. (Netcraft provides a nice survey of Web server penetration [Netcraft].) 

HTTP defines how Web clients (i.e., browsers) request Web pages from servers (i.e., Web servers) and how servers transfer Web pages to 
clients. We discuss the interaction between client and server in detail below, but the general idea is illustrated in Figure 2.2-1.  When a 
user requests a Web page (e.g., clicks on a hyperlink), the browser sends HTTP request messages for the objects in the page to the server. 
The server receives the requests and responds with HTTP response messages that contain the objects. Through 1997 essentially all 
browsers and Web servers implement version HTTP/1.0, which is defined in [RFC 1945]. Beginning in 1998 Web servers and browsers 
began to implement version HTTP/1.1, which is defined in [RFC 2068]. HTTP/1.1 is backward compatible with HTTP/1.0; a Web server 
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running 1.1 can "talk" with a browser running 1.0, and a browser running 1.1 can "talk" with a server running 1.0. 

 
Figure 2.2-1: HTTP request-response behavior

Both HTTP/1.0 and HTTP/1.1 use TCP as their underlying transport protocol (rather than running on top of UDP). The HTTP client first 
initiates a TCP connection with the server. Once the connection is established, the browser and the server processes access TCP through 
their socket interfaces. As described in Section 2.1, on the client side the socket interface is the "door" between the client process and the 
TCP connection; on the server side it is the "door" between the server process and the TCP connection. The client sends HTTP request 
messages into its socket interface and receives HTTP response messages from its socket interface. Similarly, the HTTP server receives 
request messages from its socket interface and sends response messages into the socket interface. Once the client sends a message into its 
socket interface, the message is "out of the client's hands" and is "in the hands of TCP". Recall from Section 2.1 that TCP provides a 
reliable data transfer service to HTTP. This implies that each HTTP request message emitted by a client process eventually arrives in tact 
at the server; similarly, each HTTP response message emitted by the server process eventually arrives in tact at the client. Here we see one 
of the great advantages of a layered architecture - HTTP need not worry about lost data, or the details of  how TCP recovers from loss or 
reordering of data within the network.  That is the job of TCP and the protocols in the lower layers of the protocol stack. 

TCP also employs a congestion control mechanism which we shall discuss  in detail in Chapter 3.  We only mention here that this 
mechanism forces each new TCP connection to initially transmit data at a relatively slow rate, but then allows each connection to ramp up 
to a relatively high rate when the network is uncongested. The initial slow-transmission phase is referred to as slow start. 

It is important to note that the server sends requested files to clients without storing any state information about the client. If a particular 
client asks for the same object twice in a period of a few seconds, the server does not respond by saying that it just served the object to the 
client; instead, the server resends the object, as it has completely forgotten what it did earlier. Because an HTTP server maintains no 
information about the clients, HTTP is said to be a stateless protocol. 

2.2.2 Non-Persistent and Persistent Connections

HTTP can use both non-persistent connections and persistent connections. Non-persistent connections is the default mode for HTTP/1.0. 
Conversely, persistent connections is the default mode for HTTP/1.1. 

Non-Persistent Connections

Let us walk through the steps of transferring a Web page from server to client for the case of non-persistent connections. Suppose the page 
consists of a base HTML file and 10 JPEG images, and that all 11 of these objects reside on the same server. Suppose the URL for the 
base HTML file is 

www.someSchool.edu/someDepartment/home.index .
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Here is what happens: 

1.  The HTTP client initiates a TCP connection to the server www.someSchool.edu. Port number 80 is used as the default port 
number at which the HTTP server will be listening for HTTP clients that want to retrieve documents using HTTP.

2.  The HTTP client sends a HTTP request message into the socket associated with the TCP connection that was established in step 1. 
The request message either includes the entire URL or simply the path name /someDepartment/home.index. (We will 
discuss the HTTP messages in some detail below.)

3.  The HTTP server receives the request message via the socket associated with the connection that was established in step 1, 
retrieves the object /someDepartment/home.index from its storage (RAM or disk), encapsulates the object in a HTTP 
response message, and sends the response message into the TCP connection.

4.  The HTTP server tells TCP to close the TCP connection. (But TCP doesn't  actually terminate the connection  until the client has 
received the response message in tact.)

5.  The HTTP client receives the response message. The TCP connection terminates. The message indicates that the encapsulated 
object is an HTML file. The client extracts the file from the response message, parses the HTML file and finds references to the ten 
JPEG objects.

6.  The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two different browsers may interpret (i.e., display to the user) a 
Web page in somewhat different ways. HTTP has nothing to do with how a Web page is interpreted by a client. The HTTP specifications 
([RFC 1945]  and [RFC 2068]) only define the communication protocol between the client HTTP program and the server HTTP program. 

The steps above use non-persistent connections because each TCP connection is closed after the server  sends the object -- the connection 
does not persist for other objects. Note that each TCP connection transports exactly one request message and one response message. Thus, 
in this example, when a user requests the Web page, 11 TCP connections are generated. 

In the steps described above, we were intentionally vague about whether the client obtains the 10 JPEGs over ten serial TCP connections, 
or whether some of the JPEGs are obtained over parallel TCP connections. Indeed, users can configure modern browsers to control the 
degree of parallelism. In their default modes, most browsers open five to ten parallel TCP connections, and each of these connections 
handles one request-response transaction. If the user prefers, the maximum number of parallel connections can be set to one, in which case 
the ten connections are established serially. As we shall see in the next chapter, the use of parallel connections shortens the response time 
since it cuts out some of the RTT and slow-start delays. Parallel TCP connections can also allow the requesting browser to steal a larger 
share of its fair share of the end-to-end transmission bandwidth. 

Before continuing, let's do a back of the envelope calculation to estimate the amount of time from when a client requests the base HTML 
file until the file is received by the client. To this end we define the round-trip time RTT, which is the time it takes for a small packet to 
travel from client to server and then back to the client. The RTT includes packet propagation delays, packet queuing delays in intermediate 
routers and switches, and packet processing delays. (These delays were discussed in Section 1.6.) Now consider what happens when a user 
clicks on a hyperlink. This causes the browser to initiate a TCP connection between the browser and the Web server; this involves a "three-
way handshake" -- the client sends a small TCP message to the server, the server acknowledges and responds with a small message, and 
finally the client acknowledges back to the server. One RTT elapses after the first two parts of the three-way handshake. After completing 
the first two parts of the handshake, the client sends the HTTP request message into the TCP connection, and TCP "piggybacks" the last 
acknowledgment (the third part of the three-way handshake) onto the request message. Once the request message arrives at the server, the 
server sends the HTML file into the TCP connection. This HTTP request/response eats up another RTT. Thus, roughly, the total response 
time is 2RTT plus the transmission time at the server of the HTML file. 

Persistent Connections 

Non-persistent connections have some shortcomings. First, a brand new connection must be established and maintained for each requested 
object. For each of these connections, TCP buffers must be allocated and TCP variables must be kept in both the client and server. This 
can place a serious burden on the Web server, which may be serving requests from hundreds of different clients simultaneously.  Second, 
as we just described, each object suffers two RTTs -- one RTT to establish the TCP connection and one RTT to request and receive an 
object. Finally, each object suffers from TCP slow start because every TCP connection begins with a TCP slow-start phase. However, the 
accumulation of RTT and slow start delays is partially alleviated by the use of parallel TCP connections. 

file:///D|/Downloads/Livros/computação/Computer%20Net...Down%20Approach%20Featuring%20the%20Internet/http.htm (3 of 14)20/11/2004 15:51:52



The HyperText Transfer Protocol

With persistent connections, the server leaves the TCP connection open after sending responses. Subsequent requests and responses 
between the same client and server can be sent over the same connection. In particular, an entire Web page (in the example above, the 
base HTML file and the ten images) can be sent over a single persistent TCP connection; moreover, multiple Web pages residing on the 
same server can be sent over one persistent TCP connection. Typically, the HTTP server closes the connection when it isn’t used for a 
certain time (the timeout interval), which is often configurable. There are two versions of persistent connections: without pipelining and 
with pipelining. For the version without pipelining, the client issues a new request only when the previous response has been received. In 
this case, each of the referenced objects (the ten images in the example above) experiences one RTT in order to request and receive the 
object. Although this is an improvement over non-persistent's two RTTs, the RTT delay can be further reduced with pipelining. Another 
disadvantage of no pipelining is that after the server sends an object over the persistent TCP connection, the connection hangs -- does 
nothing -- while it waits for another request to arrive. This hanging wastes server resources. 

The default mode of HTTP/1.1 uses persistent connections with pipelining. In this case, the HTTP client issues a request as soon as it 
encounters a reference. Thus the HTTP client can make back-to-back requests for the referenced objects. When the server receives the 
requests,  it can send the objects back-to-back. If all the requests are sent back-to-back and all the responses are sent back-to-back, then 
only one RTT is expended for all the referenced objects (rather than one RTT per referenced object when pipelining isn't used). 
Furthermore, the pipelined TCP connection hangs for a smaller fraction of time. In addition to reducing RTT delays, persistent 
connections (with or without pipelining) have a smaller slow-start delay than non-persistent connections. This is because that after sending 
the first object, the persistent server does not have to send the next object at the initial slow rate since it continues to use the same TCP 
connection. Instead, the server can pick up at the rate where the first object left off. We shall quantitatively compare the performance of 
non-persistent and persistent connections in the homework problems of Chapter 3. The interested reader is also encouraged to see 
[Heidemann 1997] and [Nielsen 1997]. 

2.2.3 HTTP Message Format

The HTTP specifications 1.0 ([RFC 1945] and 1.1 [RFC 2068]) define the HTTP message formats. There are two types of HTTP 
messages, request messages and response messages, both of which are discussed below. 

HTTP Request Message

Below we provide a typical HTTP request message: 

GET /somedir/page.html HTTP/1.1
Connection: close
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg
Accept-language:fr

       (extra carriage return, line feed) 

We can learn a lot my taking a good look at this simple request message. First of all, we see that the message is written in ordinary ASCII 
text, so that your ordinary computer-literate human being can read it. Second, we see that the message consists of five lines, each followed 
by a carriage return and a line feed. The last line is followed by an additional carriage return and line feed. Although this particular request 
message has five lines, a request message can have many more lines or as little as one line. The first line of a HTTP request message is 
called the request line; the subsequent lines are called the header lines. The request line has three fields: the method field, the URL field, 
and the HTTP version field. The method field can take on several different values, including GET, POST, and HEAD. The great majority of 
HTTP request messages use the GET method. The GET method is used when the browser requests an object, with the requested object 
identified in the URL field. In this example, the browser is requesting the object /somedir/page.html. (The browser doesn't have to 
specify the host name in the URL field since the TCP connection is already connected to the host (server) that serves the requested file.) 
The version is self-explanatory; in this example, the browser implements version HTTP/1.1. 

Now let's look at the header lines in the example. By including the Connection:close header line, the browser is telling the server 
that it doesn't want to use persistent connections; it wants the server to close the connection after sending the requested object. Thus the 
browser that generated this request message implements HTTP/1.1 but it doesn't want to bother with persistent connections. The User-
agent:  header line specifies the user agent, i.e., the browser type that is making the request to the server . Here the user agent is 

file:///D|/Downloads/Livros/computação/Computer%20Net...Down%20Approach%20Featuring%20the%20Internet/http.htm (4 of 14)20/11/2004 15:51:52



The HyperText Transfer Protocol

Mozilla/4.0, a Netscape browser. This header line is useful because the server can actually send different versions of the same object 
to different types of user agents. (Each of the versions is addressed by the same URL.) The Accept:  header line tells the server the 
type of objects the browser is prepared to accept. In this case, the client is prepared to accept HTML text, a GIF image or a JPEG image. If 
the file /somedir/page.html contains a Java applet (and who says it can't!), then the server shouldn't send the file, since the browser 
can not handle that object type. Finally, the Accept-language: header indicates that the user prefers to receive a French version of 
the object, if such an object exists on the server; otherwise, the server should send its default version. 

Having looked at an example, let us now look at the general format for a request message, as shown in Figure 2.2-2: 

 
Figure 2.2-2: general format of a request message

We see that the general format follows closely the example request message above. You may have noticed, however, that after the header 
lines (and the additional carriage return and line feed) there is an "Entity Body". The Entity Body is not used with the GET method, but is 
used with the POST method. The HTTP client uses the POST method when the user fills out a form -- for example, when a user gives 
search words to a search engine such as Yahoo. With a POST message, the user is still requesting a Web page from the server, but the 
specific contents of the Web page depend on what the user wrote in the form fields. If the value of the method field is POST, then the 
entity body contains what the user typed into the form fields.  The HEAD method is similar to the POST method. When a server receives a 
request with the HEAD method, it responds with an HTTP message but it leaves out the requested object. The HEAD method is often 
used by HTTP server developers for debugging. 

HTTP Response Message 

Below we provide a typical HTTP response message. This response message could be the response to the example request message just 
discussed. 

HTTP/1.1 200 OK
Connection: close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 09:23:24 GMT
Content-Length: 6821
Content-Type: text/html
data data data data data ...

Let's take a careful look at this response message. It has three sections: an initial status line, six header lines, and then the entity body. 
The entity body is the meat of the message -- it contains the  requested object itself (represented by data data data data data ...). The 
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status line has three fields: the protocol version field, a status code, and a corresponding status message. In this example, the status line 
indicates that the server is using HTTP/1.1 and that that everything is OK (i.e., the server has found, and is sending, the requested object). 

Now let's look at the header lines. The server uses the Connection: close header line to tell the client that it is going to close the 
TCP connection after sending the message. The Date: header line indicates the time and date when the HTTP response was created and 
sent by the server. Note that this is not the time when the object was created or last modified; it is the time when the server retrieves the 
object from its file system, inserts the object into the response message and sends the response message. The Server: header line 
indicates that the message was generated by an Apache Web server; it is analogous to the User-agent: header line in the HTTP 
request message. The Last-Modified: header line indicates the time and date when the object was created or last modified. The 
Last-Modified: header, which we cover in more detail below, is critical for object caching, both in the local client and in network 
cache (a.k.a. proxy) servers. The Content-Length: header line indicates the number of bytes in the object being sent. The Content-
Type: header line indicates that the object in the entity body is HTML text. (The object type is officially indicated by the Content-
Type: header and not by the file extension.) 

Note that if the server receives an HTTP/1.0 request, it will not use persistent connections, even if it is an HTTP/1.1 server. Instead the 
HTTP/1.1 server will close the TCP connection after sending the object. This is necessary because an HTTP/1.0 client expects the server 
to close the connection. 
  

 
Figure 2.2-3: General format of a response message

Having looked at an example, let us now examine the general format of a response message, which is shown in Figure 2.2-3. This general 
format of the response message matches the previous example of a response message. Let's say a few additional words about status codes 
and their phrases. The status code and associated phrase indicate the result of the request. Some common status codes and associated 
phrases include: 

●     200 OK: Request succeeded and the information is returned in the response.
●     301 Moved Permanently: Requested object has been permanently moved; new URL is specified in Location: header of 

the response message. The client software will automatically retrieve the new URL.
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●     400 Bad Request: A generic error code indicating that the request could not be understood by the server.
●     404 Not Found: The requested document does not exist on this server
●     505 HTTP Version Not Supported: The request HTTP protocol version is not supported by the server.

How would you like to see a real HTTP response message? This is very easy to do! First Telnet into your favorite  WWW server. Then 
type in a one-line request message for some object that is housed on the server. For example, if you can logon to a Unix machine, type: 

            telnet www.eurecom.fr 80 
     GET /~ross/index.html HTTP/1.0 

(Hit the carriage return twice after typing the second line.) This opens a TCP connection to port  80 of the host www.eurecom.fr and 
then sends the HTTP GET command. You should see a response message that includes the base HTML file of Professor Ross's homepage. 
If you'd rather just see the HTTP message lines and not receive the object itself, replace GET with HEAD. Finally, replace /~ross/index.
html with /~ross/banana.html and see what kind of response message you get. 

In this section we discussed a number of header lines that can be used within HTTP request and response messages. The HTTP 
specification (especially HTTP/1.1) defines many, many more header lines that can be inserted by browsers, Web servers and network 
cache servers.  We have only covered a small fraction of the totality of header lines. We will cover a few more below and another small 
fraction when we discuss network Web caching at the end of this chapter. A readable and comprehensive discussion of HTTP headers and 
status codes is given in [Luotonen 1998]. An excellent introduction to the technical issues surrounding the Web is [Yeager 1996]. 

How does a browser decide which header lines it includes in a request message? How does a Web server decide which header lines it 
includes in a response messages? A browser will generate header lines as a function of the browser type and version (e.g., an HTTP/1.0 
browser will not generate any 1.1 header lines), user configuration of browser (e.g., preferred language) and whether the browser currently 
has a cached, but possibly out-of-date, version of the object. Web servers behave similarly: there are different products, versions, and 
configurations, all of which influence which header lines are included in response messages. 
  

2.2.4 User-Server Interaction: Authentication and Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design, and has permitted engineers to develop very high-
performing Web servers. However, it is often desirable for a Web site to identify users, either because  the server wishes to restrict user 
access or because it wants to serve content as a function of the user identity. HTTP provides two mechanisms to help a server identify a 
user: authentication and cookies. 

Authentication

Many sites require users to provide a username and a password in order to access the documents housed on the server. This requirement is 
referred to as authentication. HTTP provides special status codes and headers to help sites perform authentication. Let us walk through an 
example to get a feel for how these special status codes and headers work.. Suppose a client requests an object from a server, and the 
server requires user authorization. 

1.  The client first sends an ordinary request message with no special header lines.
2.  The server then responds with empty entity body and with a 401 Authorization Required status code. In this response 

message the server includes the WWW-Authenticate: header, which specifies the details about how to perform authentication. 
(Typically, it indicates to the user needs to provide a username and a password.)

3.  The client receives the response message and prompts the user for a username and password. The client resends the request 
message, but this time includes an Authorization: header line, which includes the username and password.

After obtaining the first object, the client continues to send the username and password in subsequent requests for objects on the server. 
(This typically continues until the client closes his browser. However, while the browser remains open, the username and password are 
cached, so the user is not prompted for a username and password for each object it requests!) In this manner, the site can identify the user 
for every request. 
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We will see in Chapter 7 that HTTP performs a rather weak form of authentication, one that would not be difficult to break.  We will study 
more secure and robust authentication schemes later in Chapter 7. 

Cookies

Cookies are an alternative mechanism for sites to keep track of users. They are defined in  RFC 2109. Some Web sites use cookies and 
others don't. Let's walk through an example. Suppose a client contacts a Web site for the first time, and this site uses cookies. The server’s 
response will include a Set-cookie:  header. Often this header line contains an identification number generated by the Web server.  
For example, the header line might be: 

Set-cookie: 1678453

When the the HTTP client receives the response message, it sees the Set-cookie: header and identification number. It then appends a 
line to a special cookie file that is stored in the client machine. This line typically includes the host name of the server and user's 
associated identification number. In subsequent requests to the same server, say one week later, the client includes a Cookie: request 
header, and this header line specifies the identification number for that server. In the current example, the request message includes the 
header line: 

Cookie: 1678453

In this manner, the server does not know the username of the user, but the server does know that this user is the same user that made a 
specific request one week ago. 

Web servers use cookies for many different purposes: 

●     If a server requires authentication but doesn't want to hassle a user with a username and password prompt every time the user visits 
the site, it can set a cookie.

●     If a server wants to remember a user's preferences so that it can provide targeted advertising during subsequent visits, it can set a 
cookie.

●     If a user is shopping at a site (e.g., buying several CDs), the server can use cookies to keep track of the items that the user is 
purchasing, i.e., to create a virtual shopping cart.

We mention, however, that cookies pose problems for mobile users who access the same site from different machines. The site will treat 
the same user as a different user for each different machine used. We conclude by pointing the reader to the page Persistent Client State 
HTTP Cookies,  which provides an in-depth but readable introduction to cookies. We also recommend Cookies Central, which includes 
extensive information on the cookie controversy. 

2.2.5 The Conditional GET

By storing previously retrieved objects, Web caching can reduce object-retrieval delays and diminish the amount of Web traffic sent over 
the Internet. Web caches can reside in a client or in an intermediate network cache server. We will discuss network caching at the end of 
this chapter. In this subsection, we restrict our attention to client caching. 

Although Web caching can reduce user-perceived response times, it introduces a new problem -- a copy of an object residing in the cache 
may be stale. In other words, the object housed in the Web server may have been modified since the  copy was cached at the client. 
Fortunately, HTTP has a mechanism that allows the client to employ caching while still ensuring that all objects passed to the browser are 
up-to-date. This mechanism is called the conditional GET. An HTTP request message is a so-called conditional GET message if (i) the 
request message uses the GET method and (ii) the request message includes an If-Modified-Since:header line. 

To illustrate how the conditional GET operates, let's walk through an example. First, a browser requests an uncached object from some 
Web server: 

GET /fruit/kiwi.gif HTTP/1.0
User-agent: Mozilla/4.0
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Accept: text/html, image/gif, image/jpeg

Second, the Web server sends a response message with the object to the client: 

HTTP/1.0 200 OK
Date: Wed, 12 Aug 1998 15:39:29
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 09:23:24
Content-Type: image/gif
data data data data data ...

The client displays the object to the user but also saves the object in its local cache. Importantly, the client also caches the last-modified 
date along with the object. Third, one week later, the user requests the same object and the object is still in the cache. Since this object 
may have been modified at the Web server in the past week, the browser performs an up-to-date check by issuing conditional GET. 
Specifically, the browser sends 

GET /fruit/kiwi.gif HTTP/1.0
User-agent: Mozilla/4.0
Accept: text/html, image/gif, image/jpeg
If-modified-since: Mon, 22 Jun 1998 09:23:24

Note that the value of the If-modified-since: header line is exactly equal to value of the Last-Modified: header line that 
was sent by the server one week ago. This conditional GET is telling the server to only send the object if the object has been modified 
since the specified date. Suppose the object has not been modified since 22 Jun 1998 09:23:24. Then, fourth, the Web server sends 
a response message to the client: 

HTTP/1.0 304 Not Modified
Date: Wed, 19 Aug 1998 15:39:29
Server: Apache/1.3.0 (Unix)
(empty entity body)

We see that in response to the conditional GET, the Web server still sends a response message, but it doesn't bother to include the 
requested object in the response message. Including the requested object would only waste bandwidth and increase user perceived 
response time, particularly if the object is large (such as a high resolution image). Note that this last response message has in the status line 
304 Not Modified, which tells the client that it can go ahead and use its cached copy of the object. 

2.2.6 Web Caches

A Web cache -- also called a proxy server -- is a network entity that satisfies HTTP requests on the behalf of a client. The  Web cache 
has its own disk storage, and keeps in this storage copies of recently requested objects. As shown in Figure 2.2-4, users configure their 
browsers so that all of their HTTP requests are first directed to the Web cache. (This is a straightforward procedure with Microsoft and 
Netscape browsers.)  Once a browser is configured, each browser request for an object is first directed to the Web cache. As an example, 
suppose a browser is requesting the object http://www.someschool.edu/campus.gif . 

●     The browser establishes a TCP connection to the proxy server and sends an HTTP request for the object to the Web cache.
●     The Web cache checks to see if it has a copy of the object stored locally. If it does, the Web cache forwards the object within an 

HTTP response message to the client browser.
●     If the Web cache does not have the object, the Web cache opens a TCP connection to the origin server, that is, to www.someschool.

edu. The Web cache then sends an HTTP request for the object into the TCP connection. After receiving this request, the origin 
server sends the object within an HTTP response to the Web cache.

●     When the Web cache receives the object, it stores a copy in its local storage and forwards a copy, within an HTTP response 
message, to the client browser (over the existing TCP connection between the client browser and the Web cache).
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Figure 2.2-4: Clients requesting objects through a Web cache.

Note that a cache is both a server and a client at the same time. When it receives requests from and sends responses to a browser, it is a 
server. When it sends requests to and receives responses from an origin server it is a client. 

So why bother with a Web cache? What advantages does it have? Web caches are enjoying wide-scale deployment in the Internet for at 
least three reasons. First, a Web cache can substantially reduce the response time for a client request, particularly if the bottleneck 
bandwidth between the client and the origin server is much less than the bottleneck bandwidth between the client and the cache. If there is 
a high-speed connection between the client and the cache, as there often is, and if the cache has the requested object, then the cache will be 
able to rapidly deliver the object to the client. Second, as we will soon illustrate with an example,  Web caches can substantially reduce 
traffic on an institution's access link to the Internet. By reducing traffic, the institution (e.g., a company or a university) does not have to 
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches can substantially reduce Web traffic in the Internet as a 
whole, thereby improving performance for all applications. In 1998, over 75% of Internet traffic was Web traffic, so a significant 
reduction in Web traffic can translate into a significant improvement in Internet performance [Claffy 1998]. Third, an Internet dense with 
Web caches -- e.g., at institutional, regional and national levels -- provides an infrastructure for rapid distribution of content, even for 
content providers who run their sites on low-speed servers behind low-speed access links. If such a "resouce-poor" content provider 
suddenly has  popular content to distribute, this popular content will quickly be copied into the Internet caches, and high user demand will 
be satisfied. 

To gain a deeper understanding of the benefits of caches, let us consider an example in the context of Figure 2.2-5. In this figure, there are 
two networks - the institutional network and the Internet. The institutional network is a high-speed LAN. A router in the institutional 
network and a router in the Internet are connected by a 1.5 Mbps link. The institutional network consists of a high-speed LAN which is 
connected to the Internet through a 1.5 Mbps access link. The origin servers are attached to the Internet, but located all over the globe. 
Suppose that the average object size is 100 Kbits and that the average request rate from the institution's browsers to the origin servers is 15 
requests per second. Also suppose that amount of time it takes from when the router on the Internet side of the access link in Figure 2.2-5 
forwards an HTTP request (within an IP datagram) until it receives the IP datagram (typically, many IP datagrams) containing the 
corresponding response  is two seconds on average.  Informally, we refer to this last delay as the "Internet delay". 

The total response time -- that is the time from when a browser requests an object until the browser receives the object -- is the sum of the 
LAN delay, the access delay (i.e., the delay between the two routers) and the Internet delay. Let us now do a very crude calculation to 
estimate this delay. The traffic intensity on the LAN (see Section 1.6) is 

(15 requests/sec)*(100 Kbits/request)/(10Mbps) = .15

whereas the traffic intensity on access link (from Internet router to institution router) is 

(15 requests/sec)*(100 Kbits/request)/(1.5 Mbps) = 1
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A traffic intensity of .15 on a LAN typically results in at most tens of milliseconds of delay; hence, we can neglect the LAN delay. 
However, as discussed in Section 1.6, as the traffic intensity approaches 1 (as is the case of the access link in Figure 2.2-5), the delay on a 
link becomes very large and grows without bound. Thus, the average response time to satisfy requests is going to be on the order of 
minutes, if not more, which is unacceptable for the institution's users. Clearly something must be done. 

 
Figure 2.2-5: Bottleneck between institutional network and the Internet.

One possible solution is to increase the access rate from 1.5 Mbps to, say, 10 Mbps. This will lower the traffic intensity on the access link 
to .15, which translates to negligible delays between the two routers. In this case, the total response response time will roughly be 2 
seconds, that is, the Internet delay. But this solution also means that the institution must upgrade its access link from 1.5 Mbps to 10 
Mbps, which can be very costly. 

Now consider the alternative solution of not upgrading the access link but instead installing a Web cache in the institutional network. This 
solution is illustrated in Figure 2.2-6. Hit rates -- the fraction of requests that are satisfied by a cache -- typically range from .2 to .7 in 
practice. For illustrative purposes, let us suppose that the cache provides a hit rate of .4 for this institution. Because the clients and the 
cache are connected to the same high-speed LAN, 40% of the requests will be satisfied almost immediately, say within 10 milliseconds, 
by the cache. Nevertheless, the remaining 60% of the requests still need to be satisfied by the origin servers. But with only 60% of the 
requested objects passing through the access link, the traffic intensity on the access link is reduced from 1.0 to .6 . Typically a traffic 
intensity less than .8 corresponds to a small delay , say tens of milliseconds, on a 1.5 Mbps link, which is negligible compared with the 2 
second Internet delay. Given these considerations,   average delay therefore is 

.4*(0.010 seconds) + .6*(2.01 seconds)

which is just slightly larger than 2.1 seconds. Thus, this second solution provides an even lower response time then the first solution, and it 
doesn't require the institution to upgrade its access rate. The institution does, of course, have to purchase and install a Web cache. But this 
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cost is low -- many caches use public-domain software that run on inexpensive servers and PCs. 

 
Figure 2.2-6: Adding a cache to the institutional network.

Cooperative Caching

Multiple Web caches, located at different places in the Internet, can cooperate and improve overall performance. For example, an 
institutional cache can be configured to send its HTTP requests to a cache in a backbone ISP at the national level. In this case, when the 
institutional cache does not have the requested object in its storage, it forwards the HTTP request to the national cache. The national cache 
then retrieves the object from its own storage or, if the object is not in storage, from the origin server. The national cache then sends the 
object (within an HTTP response message) to the institutional cache, which in turn forwards the object to the requesting browser. 
Whenever an object passes through a cache (institutional or national), the cache leaves a copy in its local storage. The advantage of 
passing through a higher-level cache, such as a national cache, is that it has a larger user population and therefore higher hit rates. 

An example of cooperative caching system is the NLANR caching system, which consists of a number of backbone caches in the US 
providing service to institutional and regional caches from all over the globe [NLANR]. The NLANR caching hierarchy is shown in 
Figure 2.2-7 [Huffaker 1998]. The caches obtain objects from each other using a combination of HTTP and ICP (Internet Caching 
Protocol). ICP is an application-layer protocol that allows one cache to quickly ask another cache if it has a given document [RFC 2186]; a 
cache can then use HTTP to retrieve the object from the other cache. ICP is used extensively in many cooperative caching systems, and is 
fully supported by Squid, a popular public-domain software for Web caching [Squid]. If you are interested in learning more about ICP, 
you are encouraged to see [Luotonen 1998] [Ross 1998] and the ICP RFC [RFC 2186]. 
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Figure 2.2-7: The NLANR caching hierarchy. (Courtesy of [Huffaker 1998]).

An alternative form of cooperative caching involves clusters of caches, often co-located on the same LAN. A single cache is often 
replaced with a cluster of caches when the single cache is not sufficient to handle the traffic or provide sufficient storage capacity. 
Although cache clustering is a natural way to scale as traffic increases, they introduce a new problem: When a browser wants to request a 
particular object, to which cache in the cache cluster should it send the request? This problem can be elegantly solved using hash routing 
(If you are not familiar with hash functions, you can read about them in Chapter 7.) In the simplest form of hash routing, the browser 
hashes the URL, and depending on the result of the hash, the browser directs its request message to one of the caches in the cluster. By 
having all the browsers use the same hash function, an object will never be present in more than one cache in the cluster, and if the object 
is indeed in the cache cluster, the browser will always direct its request to the correct cache. Hash routing is the essence of the Cache 
Array Routing Protocol (CARP). If you are interested in learning more about hash routing or CARP, see [Valloppillil 1997], [Luotonen 
1998], [Ross 1998] and [Ross 1997]. 

Web caching is a rich and complex subject; over two thirds (40 pages) of the HTTP/1.1 RFC is devoted to Web caching [RFC 2068]! Web 
caching has also enjoyed extensive research and product development in recent years. Furthermore, caches are now being built to handle 
streaming audio and video. Caches will likely play an important role as the Internet begins to provide an infrastructure for the large-scale, 
on-demand distribution of music, television shows and movies in the Internet. 
  

References

Some of the best information about HTTP can be found in the W3C pages. Their overview page is an excellent starting point for a wealth 
of information about the HTTP activities at the W3C. You will also find material on HTTP-Next Generation and Web caching. If you are 
interested in HTTP, the W3C site will keep you busy for a long, long time. 

file:///D|/Downloads/Livros/computação/Computer%20Ne...own%20Approach%20Featuring%20the%20Internet/http.htm (13 of 14)20/11/2004 15:51:52

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-100.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-110.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-111.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-112.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-100.htm


The HyperText Transfer Protocol

[Claffy 1998] K. Claffy, G. Miller and K. Thompson, "The Nature of the Beast: Recent Traffic Measurements from the Internet 
Backbone, CAIDA Web site, http://www.caida.org/Papers/Inet98/index.html, 1998. 
[Heidemann 1997] J. Heidemann, K. Obraczka and J. Touch, Modeling the Performance of HTTP Over Several Transport Protocols," 
IEEE/ACM Transactions on Networking, Vol. 5, No. 5, October 1997, pp. 616-630. 
[Huffaker 1998] B. Huffaker, J. Jung, D. Wessels and K. Claffy, Visualization of the Growth and Topology of the NLANR Caching 
Hierarchy, http://squid.nlanr.net/Squid/ http://www.caida.org/Tools/Plankton/Paper/plankton.html , 1998. 
[Luotonen 1998]  A. Luotonen, "Web Proxy Servers," Prentice Hall, New Jersey, 1998. 
[Netcraft] Survey of Web Server Penetration, Netcraft Web Site,  http://www.netcraft.com/Survey/ 
[NLANR] A Distributed Testbed for National Information Provisioning, http://ircache.nlanr.net . 
[Nielsen 1997] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H.W. Lie, C. Lilley, Network Performance Effects of 
HTTP/1.1, CSS1, and PNG, W3C Document, 1997 (also appeared in SIGCOMM' 97). 
[RFC 1945] T. Berners-Lee, R. Fielding, and H. Frystyk, "Hypertext Transfer Protocol -- HTTP/1.0," [RFC 1945], May 1996. 
[RFC 2068] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1," [RFC 2068], 
January 1997 
[RFC 2109] D. Kristol and L. Montulli, "HTTP State Management Mechanism," [RFC 2109], February 1997. 
[RFC 2186] K. Claffy and D. Wessels, "Internet Caching Protocol (ICP), version 2," [RFC 2186], September 1997. 
[Ross 1997] K.W. Ross, "Hash-Routing for Collections of Shared Web Caches," IEEE Network 
Magazine, Nov-Dec 1997 
[Ross 1998] K.W. Ross, Distribution of Stored Information in the Web, A Online Tutorial, http://www.eurecom.fr/~ross/CacheTutorial/
DistTutorial.html, 1998. 
[Squid] Squid Internet Object Cache, http://squid.nlanr.net/Squid/ 
[Valloppillil 1997] V. Valloppillil and K.W. Ross, "Cache Array Routing Protocol," Internet Draft, <draft-vinod-carp-v1-03.txt>, June 
1997. 
[Yeager 1996] N.J. Yeager and R.E. McGrath, "Web Server Technology," Morgan Kaufmann Publishers, San Francisco, 1996. 
  
  
  
  

Search RFCs and Internet Drafts

If you are interested in an Internet Draft relating to a certain subject or protocol enter the keyword(s) here. 

Query:  

Press button to submit your query or reset the form:  

Query Options: 

Case insensitive 

Maximum number of hits: 

  

 Return to Table Of Contents 

Copyright Keith W. Ross and James F. Kurose 1996-2000 . All rights reserved. 
  
  

file:///D|/Downloads/Livros/computação/Computer%20Ne...own%20Approach%20Featuring%20the%20Internet/http.htm (14 of 14)20/11/2004 15:51:52

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-40.html
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/plankton.html
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-113.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-114.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#115
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#115
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#19
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2068.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2109.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/rfc2186.txt
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/draft-vinod-carp-v1-03.txt


DistTutorial

Distribution of Stored Information in the Web

  

Part I:

●     The Web in 2005
●     Overview of Caching
●     Persistent and non-persistent HTTP
●     HTTP message formats
●     Caching Fundamentals

Part II:

●     Hierarchical Caching
●     ICP - Internet Caching Protocol
●     Hash Routing and CARP
●     Satellite Distribution of Web Pages
●     Survey of Some Caching Products

file:///D|/Downloads/Livros/computação/Computer%20Networki...%20Approach%20Featuring%20the%20Internet/DistTutorial.html20/11/2004 15:51:53

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-11.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs0.htm#32


Keith\book\applications\smtp

2.3 File Transfer: FTP

FTP (File Transfer Protocol)  is a protocol for transferring a file from one host to another host. The protocol 
dates back to 1971 (when the Internet was still an experiment), but remains enormously popular. FTP is 
described in [RFC 959]. Figure 2.3-1 provides an overview of the services provided by FTP. 

 
Figure 2.3-1: FTP moves files between local and remote file systems.

In a typical FTP session, the user is sitting in front of one host (the local host) and wants to transfer files to or 
from a remote host. In order for the user to access the remote account, the user must provide a user 
identification and a password. After providing this authorization information, the user can transfer files from the 
local file system to the remote file system and vice versa. As shown in Figure 2.3-1, the user interacts with FTP 
through an FTP user agent. The user first provides the hostname of the remote host, which causes the FTP client 
process in the local host to establish a TCP connection with the FTP server process in the remote host. The user 
then provides the user identification and password, which get sent over the TCP connection as part of FTP 
commands. Once the server has authorized the user, the user copies one or more files stored in the local file 
system into the remote file system (or vice versa). 

HTTP and FTP are both file transfer protocols and have many common characteristics; for example, they both 
run on top of TCP, the Internet's connection-oriented, transport-layer, reliable data transfer protocol.  However, 
the two application-layer protocols have some important differences. The most striking difference is that FTP 
uses two parallel TCP connections to transfer a file, a control connection and a data connection. The control 
connection is used for sending control information between the two hosts -- information such as user 
identification, password, commands to change remote directory, and commands to "put" and "get" files. The 
data connection is used to actually send a file. Because FTP uses a separate control connection, FTP is said to 
send its control information out-of-band. In Chapter 6 we shall see that the RTSP protocol, which is used for 
controlling the transfer of continuous media such as audio and video, also sends its control information out-of-
band. HTTP, as you recall, sends request and response header lines into the same TCP connection that carries 
the transferred file itself. For this reason, HTTP is said to send its control information in-band. In the next 
section we shall see that SMTP, the main protocol for electronic mail, also sends control information  in-band. 
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The FTP control and data connections are illustrated in Figure 2.3-2. 

 
Figure 2.3-2: Control and data connections

When a user starts an FTP session with a remote host, FTP first sets up a control TCP connection on server port 
number 21. The client side of FTP sends the user identification and password over this control connection. The 
client side of FTP also sends, over the control connection, commands to change the remote directory. When the 
user requests a file transfer (either to, or from, the remote host), FTP opens a  TCP data connection on server 
port number 20. FTP sends exactly one file over the data connection and then closes the data connection. If, 
during the same session, the user wants to transfer another file, FTP opens another data TCP connection. Thus, 
with FTP, the control connection remains open throughout the duration of the user session, but a new data 
connection is created for each file transferred within a session (i.e., the data connections are non-persistent). 

Throughout a session, the FTP server must maintain state about the user. In particular, the server must associate 
the control connection with a specific user account, and the server must keep track of the user's current directory 
as the user wanders about the remote directory tree. Keeping track of this state information for each ongoing 
user session significantly impedes the total number of sessions that FTP can maintain simultaneously. HTTP, on 
the other hand, is stateless -- it does not have to keep track of any user state. 

FTP Commands and Replies 

We end this section with a brief discussion of some of the more common FTP commands. The commands, from 
client to server, and replies, from server to client, are sent across the control TCP connection in 7-bit ASCII 
format. Thus, like HTTP commands, FTP commands are readable by people. In order to delineate successive 
commands, a carriage return and line feed end each command (and reply). Each command consists of  four 
uppercase ASCII characters, some with optional arguments. Some of the more common commands are given 
below (with options in italics): 

●     USER username : Used to send the user identification to server.
●     PASS password : Used to send the user password to the server.
●     LIST : Used to ask the server to send back a list of all the files in the current remote directory. The list 

of files is sent over a (new and non-persistent) data TCP connection and not over the control TCP 
connection.

●     RETR filename : Used to retrieve (i.e., get) a file from the current directory of the remote host.
●     STOR filename : Used to store (i.e., put) a file into the current directory of the remote host.

There is typically a one-to-one correspondence between the command that the user issues and the FTP 
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command sent across the control connection. Each command is followed by a reply, sent from server to client. 
The replies are three-digit numbers, with an optional message following the number. This is similar in structure 
to the status code and phrase in the status line of the HTTP response message; the inventors of HTTP 
intentionally included this similarity in the HTTP response messages. Some typical replies, along with their 
possible messages, are as follows: 

●     331 Username OK, password required
●     125 Data connection already open; transfer starting
●     425 Can't open data connection
●     452 Error writing file

Readers who are interested in learning about the other FTP commands and replies are encouraged to read [RFC 
959]. 
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2.4 Electronic Mail in the Internet

Along with the Web, electronic mail is one of the most popular Internet applications. Just like ordinary "snail mail," email is 
asynchronous -- people send and read messages when it is convenient for them, without having to coordinate with other 
peoples' schedules. In contrast with snail mail, electronic mail is fast, easy to distribute, and inexpensive.  Moreover, modern 
electronic mail messages can include hyperlinks, HTML formatted text, images, sound and even video. In this section we will 
examine the application-layer protocols that are at the heart of Internet electronic mail. But before we jump into an in-depth 
discussion of these protocols, let's take a bird's eye view of the Internet mail system and its key components. 

 
Figure 2.4-1: A bird's eye view of the Internet e-mail system.

Figure 2.4-1 presents a high-level view of the Internet mail system. We see from this diagram that it has three major 
components: user agents, mail servers, and the Simple Mail Transfer Protocol (SMTP). We now describe each of these 

components in the context of a sender, Alice  , sending an email message to a recipient, Bob . User agents 
allow users to read, reply to, forward, save, and compose messages. (User agents for electronic mail are sometimes called mail 
readers, although we will generally avoid this term in this book.) When  Alice is finished composing her message, her user 
agent sends the message to her mail server, where the message is placed in the mail server's outgoing message queue. When 
Bob wants to read a message, his user agent obtains the message from his mailbox in his mail server. In the late 1990s, GUI 
(graphical user interface) user agents became popular, allowing users to view and compose multimedia messages. Currently, 
Eudora, Microsoft's Outlook Express, and Netscape's Messenger are among the popular GUI user agents for email. There are 
also many text-based email user interfaces in the public domain, including mail, pine and elm. 
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Mail servers form the core of the e-mail infrastructure. Each recipient, such as Bob, has a mailbox located in one of the mail 
servers. Bob's mailbox manages and maintains the messages that have been sent to him.  A typical message starts its journey in 
the sender's user agent, travels to the sender's mail server, and then travels to the recipient's mail server, where it is deposited in 
the recipient's mailbox. When Bob wants to access the messages in his mailbox, the mail server containing the mailbox 
authenticates Bob (with user names and passwords). Alice's mail server must also deal with failures in Bob's mail server. If 
Alice's server cannot deliver mail to Bob's server, Alice's server holds the message in a message queue and attempts to transfer 
the message later. Reattempts are often done every 30 minutes or so; if there is no success after several days, the server 
removes the message and notifies the sender (Alice) with an email message. 

The Simple Mail Transfer Protocol (SMTP) is the principle application-layer protocol for Internet electronic mail. It uses the 
reliable data transfer service of TCP to transfer mail from the sender's mail server to the recipient's mail server. As with most 
application-layer protocols, SMTP has two sides: a client side which executes on the sender's mail server, and server side 
which executes on the recipient's mail server. Both the client and server sides of SMTP run on every mail server. When a mail 
server sends mail (to other mail servers), it acts as an SMTP client. When a mail server receives mail (from other mail servers) 
it acts as an SMTP server. 

2.4.1  SMTP

SMTP, defined in [RFC 821], is at the heart of Internet electronic mail. As mentioned above, SMTP transfers messages from 
senders' mail servers to the recipients' mail servers. SMTP is much older than HTTP. (The SMTP RFC dates back to 1982, and 
SMTP was around long before that.) Although SMTP has numerous wonderful qualities, as evidenced by its ubiquity in the 
Internet, it is nevertheless a legacy technology that possesses certain "archaic" characteristics. For example, it restricts  the 
body (not just the headers) of all mail messages to be in simple seven-bit ASCII. This restriction was not bothersome in the 
early 1980s when transmission capacity was scarce and no one was emailing large attachments or large image, audio or video 
files. But today, in the multimedia era, the seven-bit ASCII restriction is a bit of a pain -- it requires binary multimedia data to 
be encoded to ASCII before being sent over SMTP;  and it requires the corresponding ASCII message to be decoded back to 
binary after SMTP transport. Recall from Section 2.3 that HTTP does not require multimedia data to be ASCII encoded before 
transfer. 

To illustrate the basic operation of SMTP, let's walk through a common scenario. Suppose Alice wants to send Bob a simple 
ASCII message: 

●     Alice invokes her user agent for email, provides Bob's email address (e.g., bob@someschool.edu), composes a message 
and instructs the user agent to send the message.

●     Alice's user agent sends the message her mail server, where it is placed in a message queue.
●     The client side of SMTP, running on Alice's mail server, sees the message in the message queue. It opens a TCP 

connection to a SMTP server, running on Bob's mail server.
●     After some initial SMTP handshaking, the SMTP client sends Alice's message into the TCP connection.
●     At Bob's mail server host, the server side of SMTP receives the message. Bob's mail server then places the message in 

Bob's mailbox.
●     Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in the Figure 2.4-2. 
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Figure 2.4-2: Alice's mail server transfers Alice's message to Bob's mail server.

It is important to observe that SMTP does not use intermediate mail servers for sending mail, even when the two mail servers 
are located at opposite ends of the world. If Alice's server is in Hong Kong and Bob's server is in Mobile, Alabama, the TCP 
"connection" is a direct connection between the Hong Kong and Mobile servers. In particular, if Bob's mail server is down, the 
message remains in Alice's mail server and waits for a new attempt -- the message does not get placed in some intermediate 
mail server. 

Let's now take a closer look at how SMTP transfers a message from a sending mail server to a receiving mail server.  We will 
see that the SMTP protocol has many similarities with protocols that are used for face-to-face human interaction. First, the 
client SMTP (running on the sending mail server host)  has TCP establish a connection on port 25 to the server SMTP (running 
on the receiving mail server host). If the server is down, the client tries again later. Once this connection is established, the 
server and client perform some application-layer handshaking. Just as humans often introduce themselves before transferring 
information from one to another, SMTP clients and servers introduce themselves before transferring information. During this 
SMTP handshaking phase, the SMTP client indicates the email address of the sender (the person who generated the message) 
and the email address of the recipient. Once the SMTP client and server have introduced themselves to each other, the client 
sends the message. SMTP can count on the reliable data transfer service of TCP to get the message to the server without errors. 
The client then repeats this process over the same TCP connection if it has other messages to send to the server; otherwise, it 
instructs TCP to close the connection. 

Let us take a look at an example transcript between client (C) and server (S). The host name of the client is crepes.fr and the 
host name of the server is hamburger.edu. The ASCII text prefaced with C: are exactly the lines the client sends into its TCP 
socket; and the ASCII text prefaced with S: are exactly the lines the server sends into its TCP socket. The following transcript 
begins as soon as the TCP connection is established: 

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250  Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C:  How about pickles?
C: .
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S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

In the above example, the client sends a message ("Do you like ketchup? How about pickles?") from mail server crepes.fr to 
mail server hamburger.edu. The client issued five commands: HELO (an abbreviation for HELLO), MAIL FROM, RCPT 
TO, DATA, and QUIT. These commands are self explanatory. The server issues replies to each command, with each reply 
having a reply code and some (optional) English-language explanation. We mention here that SMTP uses persistent 
connections: if the sending mail server has several messages to send to the same receiving mail server, it can send all of the 
messages over the same TCP connection. For each message, the client begins the process with a new HELO crepes.fr and 
only issues QUIT after all messages have been sent. 

It is highly recommended that you use Telnet to carry out a direct dialogue with an SMTP server. To do this, issue telnet 
serverName 25 . When you do this, you are simply establishing a TCP connection between your local host and the mail 
server. After typing this line, you should immediately receive the 220 reply from the server. Then issue the SMTP commands 
HELO, MAIL FROM, RCPT TO, DATA, and QUIT at the appropriate times. If you Telnet into your friend's SMTP 
server, you should be able to send mail to your friend in this manner (i.e., without using your mail user agent). 

Comparison with HTTP 

Let us now briefly compare SMTP to HTTP. Both protocols are used to transfer files from one host to another; HTTP transfers 
files (or objects) from Web server to Web user agent (i.e., the browser); SMTP transfers files (i.e., email messages) from one 
mail server to another mail server. When transferring the files, both persistent HTTP and SMTP use persistent connections, that 
is, they can send multiple files over the same TCP connection. Thus the two protocols have common characteristics. However, 
there are important differences. First, HTTP is principally a pull protocol -- someone loads information on a Web server and 
users use HTTP to pull the information off the server at their convenience. In particular,  the TCP connection is initiated by the 
machine that wants to receive the file. On the other hand, SMTP is primarily a push protocol -- the sending mail server pushes 
the file to the receiving mail server. In particular,  the TCP connection is initiated by the machine that wants to send the file. 

A second important difference, which we alluded to earlier, is that SMTP requires each message, including the body of each 
message, to be in seven-bit ASCII format. Furthermore, the SMTP RFC requires the body of every message to end with a line 
consisting of only a  period -- i.e., in ASCII jargon, the body of each message ends with "CRLF.CRLF", where CR and LF 
stand for carriage return and line feed, respectively. In this manner, while the SMTP server is receiving a series of messages 
from an SMTP client over a persistent TCP connection, the server can delineate the messages by searching for "CRLF.CRLF" 
in the byte stream. (This operation of searching through a character stream is referred to as "parsing".)  Now suppose that the 
body of one of the messages is not ASCII text but instead binary data (for example, a JPEG image). It is possible that this 
binary data might accidentally have the bit pattern associated with ASCII representation of "CR LF . CR LF" in the middle of 
the bit stream. This would cause the SMTP server to incorrectly conclude that the message has terminated. To get around this 
and related problems, binary data is first encoded to ASCII in such a way that certain ASCII characters (including ".") are not 
used. Returning to our comparison with HTTP, we note that neither non-persistent nor persistent HTTP has to bother with the 
ASCII conversion. For non-persistent HTTP, each TCP connection transfers exactly one object; when the server closes the 
connection, the client knows it has received one entire response message. For persistent HTTP,  each response message 
includes a Content-length: header line, enabling the client to delineate the end of each message. 

A third important difference concerns how a document consisting of text and images (along with possibly other media types) is 
handled. As we learned in Section 2.3, HTTP encapsulates each object in its own HTTP response message. Internet mail, as we 
shall discuss in greater detail below, places all of the message's objects into one message. 

2.4.2 Mail Message Formats and MIME
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When Alice sends an ordinary snail-mail letter to Bob, she puts the letter into an envelope, on which there is all kinds of 
peripheral information such as Bob's address, Alice's return address, and the date (supplied by the postal service). Similarly, 
when an email message is sent from one person to another, a header containing peripheral information proceeds the body of the 
message itself. This peripheral information is contained in a series of header lines, which are defined in [RFC 822]. The header 
lines and the body of message are separated by a blank line (i.e., by CRLF). RFC 822 specifies the exact format for mail header 
lines as well their semantic interpretations. As with HTTP, each header line contains readable text, consisting of a keyword 
followed by a colon followed by a value. Some of the keywords are required and others are optional. Every header must have a 
From: header line and a To: header line; a header may  include a Subject: header line as well as other optional header 
lines. It is important to note that these header lines are different from the SMTP commands we studied in section 2.4.1 (even 
though they contain some common words such as "from" and "to"). The commands in section 2.4.1 were part of the SMTP 
handshaking protocol; the header lines examined in this section are part of the mail message itself. 

A typical message header looks like this: 

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows then the message body (in ASCII) follows. The message terminates with a line 
containing only a period, as discussed above. It is highly recommended that you use Telnet to send to a mail server a message 
that contains some header lines, including the Subject: header line. To do this, issue  telnet serverName 25 . The 
actual message is sent into the TCP connection right after the SMTP DATA command.  The message consists of  the message 
headers, the blank line, and the message body. The final line with a single period indicates the end of the message. 

The MIME Extension for Non-ASCII Data 

While the message headers described in RFC 822 are satisfactory for sending ordinary ASCII text, they are not sufficiently rich 
enough for multimedia messages (e.g., messages with images, audio and video) or for carrying non-ASCII text formats (e.g., 
characters used by languages other than English). To send content different from ASCII text, the sending user agent must 
include additional headers in the message.  These extra headers are defined in [RFC 2045] and [RFC 2046], the MIME 
extension to [RFC 822]. Two key MIME headers for supporting multimedia are the Content-Type: header and the 
Content-Transfer-Encoding: header. The Content-Type: header allows the receiving user agent to take an 
appropriate action on the message. For example, by indicating that the message body contains a JPEG image, the receiving user 
agent can direct the message body to a JPEG decompression routine. To understand the need of the Content-Transfer-
Encoding: header, recall that non-ASCII text messages must be encoded to an ASCII format that isn't going to confuse 
SMTP. The Content-Transfer-Encoding: header alerts the receiving user agent that the message body has been 
ASCII encoded and the type of encoding used. Thus, when a user agent receives a message with these two headers, it first uses 
the value of the Content-Transfer-Encoding: header to convert the message body to its original non-ASCII form, and 
then uses the Content-Type: header to determine what actions it should take on the message body. 

Let's take a look at a concrete example. Suppose Alice wants to send Bob a JPEG image. To do this, Alice invokes her user 
agent for  email, specifies Bob's email address, specifies the subject of the message, and inserts the JPEG image into the 
message body of the message. (Depending on the user agent Alice uses, she might insert the image into the message as an 
"attachment".) When Alice finishes composing her message, she clicks on "Send". Alice's user agent then generates a MIME 
message, which might look something like this: 

   From: alice@crepes.fr
   To: bob@hamburger.edu
   Subject: Picture of yummy crepe.
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   MIME-Version: 1.0
   Content-Transfer-Encoding: base64
   Content-Type: image/jpeg

       base64 encoded data ..... 
       ......................... 
       ......base64 encoded data 

       .

We observe from the above MIME message that Alice's user agent encoded the JPEG image using base64 encoding. This is 
one of several encoding techniques standardized in the MIME  [RFC 2045] for conversion to an acceptable seven-bit ASCII 
format. Another popular encoding technique is quoted-printable content-transfer-encoding, which is typically used to convert 
an ordinary ASCII message to ASCII text void of undesirable character strings (e.g., a line with a single period.) 

When Bob reads his mail with his user agent, his user agent operates on this same MIME message. When Bob's user agent 
observes the Content-Transfer-Encoding: base64 header line, it proceeds to decode the base64-encoded message 
body. The message also includes a Content-Type: image/jpeg header line; this indicates to Bob's user agent that the 
message body (after base64 decoding) should be JPEG decompressed. Finally, the message includes the MIME-Version: 
header, which, of course, indicates the MIME version that is being used. Note that the message otherwise follows the standard 
RFC 822/SMTP format. In particular, after the message header there is a blank line and then the message body; and after the 
message body, there is a line with a single period. 

Let's now take a closer look at the Content-Type: header. According to the MIME specification, [RFC 2046], this header 
has the following format: 

Content-Type: type/subtype ; parameters

where the "parameters" (along with the semi-colon) is optional. Paraphrasing [RFC 2046], the Content-Type field is used to 
specify the nature of the data in the body of a MIME entity, by giving media type and subtype names. After the type and 
subtype names, the remainder of the header field is  a set of parameters. In general, the top-level type is used to declare the 
general type of data, while the subtype specifies a specific format for that type of data. The parameters are modifiers of the 
subtype, and as such do not fundamentally affect the nature of the content. The set of meaningful parameters depends on the 
type and subtype. Most parameters are associated with a single specific subtype. MIME has been carefully designed to be 
extensible, and it is expected that the set of media type/subtype pairs and their associated parameters will grow significantly 
over time.  In order to ensure that the set of such types/subtypes is developed in an orderly, well-specified, and public manner, 
MIME sets up a registration process which uses the Internet Assigned Numbers Authority (IANA) as a central registry for 
MIME's various areas of extensibility. The registration process for these areas is described in [RFC 2048]. 

Currently there are seven top-level types defined. For each type, there is a list of associated subtypes, and the lists of subtypes 
are growing every year. We describe five of these types below: 

●     text: The text type is used to indicate to the receiving user agent that the message body contains textual information. 
One extremely common type/subtype pair is text/plain. The subtype plain indicates plain text containing no formatting 
commands or directives. Plain text is to be displayed as is; no special software is required to get the full meaning of the 
text, aside from support for the indicated character set. If you take a glance at the MIME headers in some of the 
messages in your mailbox, you will almost certainly see content type header lines with text/plain; 
charset=us-ascii or text/plain; charset="ISO-8859-1". The parameters indicate the character set 
used to generate the message. Another type/subtype pair that is gaining popularity is text/html. The html subtype 
indicates to the mail reader that it should interpret the embedded HTML tags that are included in the message. This 
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allows the receiving user agent to display the message as a Web page, which might include a variety of fonts, 
hyperlinks, applets, etc.

●     image: The image type is used to indicate to the receiving user agent that the message body is an image. Two popular 
type/subtype pairs are image/gif and image/jpeg.  When the receiving user agent encounters image/gif, it knows that it 
should decode the GIF image and then display it.

●     audio:  The audio type requires an audio output device (such as a speaker or a telephone) to render the contents. Some 
of the standardized subtypes include basic (basic 8-bit mu-law encoded) and 32kadpcm (a 32 Kbps format defined in 
[RFC 1911]).

●     video: The video type includes mpeg, and quicktime for subtypes.
●     application: The application type is for data that does not fit in any of the other categories. It is often used for data that 

must be processed by an application before it is viewable or usable by a user. For example, when a user attaches a 
Microsoft Word document to an email message, the sending user agent typically uses application/msword for the type/
subtype pair. When the receiving user agent observes the content type application/msword, it launches the Microsoft 
Word application and passes the body of the MIME message to the application. A particularly important subtype for the 
application type is octet-stream, which is used to indicate that the body contains arbitrary binary data. Upon receiving 
this type, a mail reader will prompt the user, providing the option to save to the message to disk for later processing.

There is one MIME type that is particularly important and requires special discussion, namely, the multipart type. Just as a 
Web page can contain many objects (text, images, applets, etc.), so can an email message. Recall that the Web sends each of 
the objects within independent HTTP response messages. Internet email, on the other hand, places all the objects (or "parts") in 
the same message.  In particular, when a multimedia message contains more than one object (such as multiple images or some 
ASCII text and some images) the message typically has Content-type: multipart/mixed. This content type header 
line indicates to the receiving user agent that the message contains multiple objects. With all the objects in the same message, 
the receiving user agent needs a means to determine (i) where each object begins and ends,  (ii) how each non-ASCII object 
was transfer encoded, and (iii) the content type of each message. This is done by placing boundary characters between each 
object and preceding each object in the message with Content-type: and Content-Transfer-Encoding: header 
lines. 

To obtain a better understanding of multipart/mixed, let's look at an example. Suppose that Alice wants to send a message to 
Bob consisting of some ASCII text, followed by a JPEG image, followed by more ASCII text. Using her user agent, Alice 
types some text, attaches a JPEG image, and then types some more text. Her user agent then generates a message something 
like this: 

    From: alice@crepes.fr 
   To: bob@hamburger.edu 
   Subject: Picture of yummy crepe with commentary 
   MIME-Version: 1.0 
       Content-Type: multipart/mixed; Boundary=StartOfNextPart 
   --StartOfNextPart 
   Dear Bob, 
   Please find a picture of an absolutely scrumptious crepe. 

   --StartOfNextPart 
       Content-Transfer-Encoding: base64 
   Content-Type: image/jpeg 

       base64 encoded data ..... 
       ......................... 
       ......base64 encoded data 
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       --StartOfNextPart
   Let me know if you would like the recipe.
   .

Examining the above message, we note that the Content-Type: line in the header indicates how the various parts in the 
message are separated. The separation always begins with two dashes and ends with CRLF. 

As mentioned earlier, the list of registered MIME types grows every year. The RFC [2048] describes the registration 
procedures which use the Internet Assigned Numbers Authority (IANA) as a central registry for such values. A list of the 
current MIME subtypes is maintained at numerous sites. The reader is also encouraged to glance at Yahoo's MIME Category 
Page. 

The Received Message 

As we have discussed, an email message consists of many components. The core of the message is the message body, which is 
the actually data being sent from sender to receiver. For a multipart message, the message body itself consists of many parts, 
with each part preceded with one or more lines of peripheral information. Preceding the message body is a blank line and then 
a number of header lines. These header lines include RFC 822 header lines such as From:, To: and Subject: header 
lines. The header lines also include MIME header lines such as Content-type: and Content-transfer-
encoding: header lines. But we would be remiss if we didn't mention another class of header lines that are inserted by the 
SMTP receiving server. Indeed, the receiving server, upon receiving a message with RFC 822 and MIME header lines,  
appends a Received: header line to the top of the message; this header line specifies the name of the SMTP server that sent 
the message ("from"), the name of the SMTP server that received the message ("by") and the time at which the receiving server 
received the message. Thus the message seen by the destination user takes the following form: 
  

Received: from crepes.fr by hamburger.edu ; 12 Oct 98 15:27:39 GMT
From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data ....... 
........................................ 
.......base64 encoded data

Almost everyone who has used electronic mail has seen the Received: header line (along with the other header lines) 
preceding email messages. (This line is often directly seen on the screen or when the message is sent to a printer.) You may 
have noticed that  a single message sometimes has multiple Received: header lines and a more complex Return-Path: 
header line. This is because a message may be received by more than one SMTP server in the path between sender and 
recipient. For example, if Bob has instructed his email server hamburger.edu to forward all his messages to sushi.jp, then the 
message read by Bob's user agent would begin with something like: 

Received: from hamburger.edu by sushi.jp; 12 Oct 98 15:30:01 GMT
Received: from crepes.fr by hamburger.edu ; 12 Oct 98 15:27:39 GMT

These header lines provide the receiving user agent a trace of the SMTP servers visited as well as timestamps of when the visits 
occurred. You can learn more about the syntax of these header lines in the SMTP RFC, which is one of the more readable of 
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the many RFCs. 

2.4.3 Mail Access Protocols

Once SMTP delivers the message from Alice's mail server to Bob's mail server, the message is placed in Bob's mailbox. 
Throughout this discussion we have tacitly assumed that Bob reads his mail by logging onto the server host  (most likely 
through Telnet) and then executes a mail reader (e.g., mail, elm, etc.) on that host. Up until the early 1990s this was the 
standard way of doing things. But today  a typical user reads mail with a user agent that executes on his or her local PC (or 
Mac), whether that PC be an office PC, a home PC, or a portable PC. By executing the user agent on a local PC, users enjoy a 
rich set of features, including the ability to view multimedia messages and attachments. Popular mail user agents that run on 
local PCs include Eudora, Microsoft's Outlook Express, and Netscape's Messenger. 

Given that Bob (the recipient) executes his user agent on the his local PC, it is natural to consider placing a mail server on the 
his local PC as well. There is a problem with this approach, however. Recall that a mail server manages mailboxes and runs the 
client and server sides of SMTP. If Bob's mail server were to reside on his local PC, then Bob's PC would have to remain 
constantly on, and connected to the Internet, in order to receive new mail, which can arrive at any time. This is impractical for 
the great majority of Internet users.  Instead, a typical user runs a user agent on the local PC but accesses a mailbox from a 
shared mail server - a mail server that is always running, that is always connected to the Internet, and that is shared with other 
users.  The mail server is typically maintained by the user's ISP, which could be a residential or an institutional (university, 
company, etc.) ISP. 

With user agents  running on users' local PCs and mail servers hosted by ISPs, a protocol is needed to allow the user agent and 
the mail server to communicate. Let us first consider how a message that originates at Alice's local PC makes its way to Bob's 
SMTP mail server. This task could simply be done by having Alice's user agent  communicate directly with Bob's mail server 
in the language of SMTP:  Alice's user agent would initiate a TCP connection to Bob's mail server, issue the SMTP 
handshaking commands, upload the message with the DATA command, and then close the connection.  This approach, although 
perfectly feasible, is not commonly employed, primarily because it doesn't offer the Alice any recourse to a crashed destination 
mail server. Instead, Alice's user agent initiates a SMTP dialogue with her own  mail server (rather than with the recipient's 
mail server) and uploads the message.  Alice's mail server then establishes a new SMTP session with Bob's mail server and 
relays the message to Bob's mail server. If Bob's mail server is down, then Alice's mail server holds the message and tries again 
later. The SMTP RFC defines how the SMTP commands can be used to relay a message across multiple SMTP servers. 

But there is still one missing piece to the puzzle! How does a recipient like Bob, running a user agent on his local PC, obtain 
his messages, which are sitting on a mail server within Bob's ISP? The puzzle is completed by introducing a special access 
protocol that transfers the messages from Bob's mail server to the local PC. There are currently two popular mail access 
protocols: POP3 (Post Office Protocol - Version 3) and IMAP (Internet  Mail Access Protocol). We shall discuss both of these 
protocols below. Note that Bob's user agent can't use SMTP to obtain the messages: obtaining the messages is a pull operation 
whereas SMTP is a push protocol. Figure 2.4-3 provides a summary of the protocols that are used for Internet mail: SMTP is 
used to transfer mail from the sender's mail server to the recipient's mail server; SMTP is also used to transfer mail from the 
sender's user agent to the sender's mail server. POP3 or IMAP are used to transfer mail from the recipient's mail server to the 
recipient's user agent. 
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Figure 2.4-3: E-mail protocols and their communicating entities.

POP3 

POP3, defined in [RFC 1939], is an extremely simple mail access protocol. Because the protocol is so simple, its functionality 
is rather limited. POP3 begins when the user agent (the client) opens a TCP connection to the the mail server (the server) on 
port 110. With the TCP connection established, POP3 progresses through three phases: authorization, transaction and update. 
During the first phase, authorization, the user agent sends a user name and a password to authenticate the user downloading the 
mail. During the second phase, transaction,  the user agent retrieves messages. During the transaction phase, the user agent can 
also mark messages for deletion,  remove deletion marks, and obtain mail statistics. The third phase, update, occurs after the 
client has issued the quit command ending the POP3 session; at this time, the mail server deletes the messages that were 
marked for deletion. 

In a POP3 transaction, the user agent issues commands, and the server responds to each command with a reply. There are two 
possible responses: +OK (sometimes followed by server-to-client data), whereby the server is saying that the previous 
command was fine;  and -ERR, whereby the server is saying that something was wrong with the previous command. 

The authorization phase has two principle commands: user<user name> and pass<password>. To illustrate these two 
commands, we suggest that you Telnet directly into a POP3 server, using port 110, and issue these commands. Suppose that 
mailServer is the name of your mail server.  You will see something like: 

telnet mailServer 110
+OK POP3 server ready
user alice
+OK
pass hungry
+OK user successfully logged on

If you misspell a command, the POP3 server will reply with an -ERR message. 

Now let's take a look at the transaction phase. A user agent using POP3 can often be configured (by the user) to "download and 
delete" or to "download and keep". The sequence of commands issued by a POP3 user agent depend on which of these two 
modes the user agent is operating in. In the download-and-delete mode, the user agent will issue the list, retr and dele 
commands. As an example, suppose the user has two messages in his or her mailbox. In the dialogue below C: (standing for 
client) is the user agent and S: (standing for server) is the mail server.  The transaction will look something like: 

C: list
S: 1 498
S: 2 912
S: .
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C: retr 1
S: blah blah ...
S: .................
S: ..........blah
S: .
C: dele 1
C: retr 2
S: blah blah ...
S: .................
S: ..........blah
S:   .
C: dele 2
C:quit
S:+OK POP3 server signing off

The user agent first asks the mail server to list the size of each of the stored messages. The user agent then retrieves and deletes 
each message from the server. Note that after the authorization phase, the user agent employed only four commands: list, 
retr, dele, and quit. The syntax for these commands is defined in RFC 1939]. After issuing the quit command, the 
POP3 server enters the update phase and removes messages 1 and 2 from the mailbox. 

A problem with this download-and-delete mode is that the recipient, Bob, may be nomadic and want to access his mail from 
multiple machines, including the office PC, the home PC and a portable computer. The download-and-delete mode scatters 
Bob's mail over all the local machines; in particular, if Bob first reads a message on a home PC, he will not be able to reread 
the message on his portable later in the evening. In the download-and-keep mode, the user agent leaves the messages on the 
mail server after downloading them. In this case, Bob can reread messages from different machines; he can access a message 
from work, and then access it again later in the week from home. 

During a POP3 session between a user agent the mail server, the POP3 server maintains some state information; in particular, it 
keeps track of which messages have been marked deleted. However, the POP3 server is not required to carry state information 
across POP3 sessions. For example, no message is marked for deletion at the beginning of each session. This lack of state 
information across sessions greatly simplifies the implementation of a POP3 server. 

IMAP 

Once Bob has downloaded his messages to the local machine using POP3, he can create mail folders and move the downloaded 
messages into the folders. Bob can then delete messages, move messages across folders, and search for messages (say by 
sender name or subject). But this paradigm -- folders and messages in the local machine -- poses a problem for the nomadic 
user, who would prefer to maintain a folder hierarchy on a remote server that can be accessed by from any computer.  This is 
not possible with POP3. 

To solve this and other problems, the Internet Mail Access Protocol (IMAP), defined in [RFC 1730], was invented. Like POP3, 
IMAP is a mail access protocol.  It has many more features than POP3, but it is also significantly more complex. (And thus the 
client and server side implementations are significantly more complex.) IMAP is designed to allow users to manipulate  remote 
mailboxes as if they were local. In particular, IMAP enables Bob to create and maintain multiple message folders at the mail 
server. Bob can put messages in folders and move messages from one folder to another. IMAP also provides commands that 
allow Bob to search remote folders for messages matching specific criteria. One reason why an IMAP implementation is much 
more complicated than a POP3 implementation is that the IMAP server must maintain a folder hierarchy for each of its users. 
This state information persists across a particular user's successive accesses to the IMAP server. Recall that a POP3 server, by 
contrast, does not maintain anything about a particular user once the user quits the POP3 session. 

Another important feature of IMAP is that it has commands that permit a user agent to obtain components of messages. For 
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example, a user agent can obtain just the message header of a message or just one part of a multipart MIME message. This 
feature is useful when there is a low-bandwidth connection between the user agent and  its mail server, for example, a wireless 
or slow-speed modem connection. With a low-bandwidth connection, the user may not want to download all the messages in its 
mailbox, particularly avoiding  long messages that might contain, for example, an audio or video clip. 

An IMAP session consists of the establishment of a connection between the client (i.e., the user agent) and the IMAP server, an 
initial greeting from the server, and client-server interactions. The client/server interactions are similar to, but richer than, those 
of POP3. They consist of a client command, server data, and a server completion result response. The IMAP server is always in 
one of four states. In the non-authenticated state, which starts when the connection starts, the user must supply a user name and 
password before most commands will be permitted. In the authenticated state, the user must select a folder before sending 
commands that affect messages. In the selected state, the user can issue commands that affect messages (retrieve, move, delete, 
retrieve a part in a multipart message, etc.). Finally, the logout state is when the session is being terminated. The IMAP 
commands are organized by the state in which the command is permitted. You can read all about IMAP at the official IMAP 
site. 

HTTP

More and more users today are using browser-based email services such as Hotmail or Yahoo! Mail. With these servers, the 
user agent is an ordinary Web browser and the user communicates with its mailbox on its mailserver via HTTP. When a 
recipient, such as Bob, wants to access the messages in his mailbox, the messages are sent from Bob's mail server to Bob's 
browser using the HTTP protocol rather than the POP3 or IMAP protocol. When a sender with an account on an HTTP-based 
email server, such as Alice, wants to send a message, the message is sent from her browser to her mail server over HTTP rather 
than over SMTP. The mail server, however, still sends messages to, and receives messages from, other mail servers using 
SMTP. This solution to mail access is enormously convenient for the user on the go. The user need only to be able to access a 
browser in order to send and receive messages. The browser can be in an Internet cafe, in a friend's house, in a hotel room with 
a Web TV, etc. As with IMAP, users can organize their messages in a hierarchy of folders on the remote server. In fact, Web-
based email is so convenient that it may replace POP3 and IMAP access in the upcoming years. Its principle disadvantage is 
that it can be slow, as the server is typically far from the client and interaction with the server is done through CGI scripts. 

2.4.4 Continuous Media Email

Continuous-media (CM) email is email that includes audio or video. CM email is appealing for asynchronous communication 
among friends and family. For example, a young child who cannot type would prefer sending an audio message to his or her 
grandparents. Furthermore, CM email can be desirable in many corporate contexts, as an office worker may be able to record a 
CM message more quickly than typing a text message. (English can be spoken at a rate of 180 words per minute, whereas the 
average office worker types words at a much slower rate.) Continuous-media e-mail resembles in some respects ordinary voice-
mail messaging in the telephone system. However, continuous-media e-mail is much more powerful. Not only does it provide 
the user with a graphical interface to the user's mailbox, but it also allows the user to annotate and reply to CM messages and to 
forward CM messages to a large number of recipients. 

CM e-mail differs from traditional text mail in many ways. These differences include much larger messages, more stringent 
end-to-end delay requirements, and greater sensitivity to recipients with highly heterogeneous Internet access rates and local 
storage capabilities. Unfortunately, the current e-mail infrastructure has several inadequacies that obstruct the widespread 
adoption of CM e-mail. First, many existing mail servers do not have the capacity to store large CM objects; recipient mail 
servers typically reject such messages, which makes sending CM messages to such recipients impossible. Second, the existing 
mail paradigm of transporting entire messages to the recipient's mail server before recipient rendering can lead to excessive 
waste of bandwidth and storage. Indeed, stored CM is often not rendered in its entirety [Padhye 1999], so that bandwidth and 
recipient storage is wasted by receiving data that is never rendered. (For example, one can imagine listening to the first fifteen 
seconds of a long audio email from a rather long-winded colleague, and then deciding to delete the remaining 20 minutes of the 
message without listening to it.) Third, current mail access protocols (POP3, IMAP and HTTP) are inappropriate for streaming 
CM to recipients. (Streaming CM is discussed in detail in Chapter 6.) In particular, the current mail access protocols do not 
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provide functionality that allows a user to pause/resume a message or to reposition within a message; furthermore, streaming 
over TCP is often leads to poor reception (see Chapter 6). These inadequacies will hopefully be addressed in the upcoming 
years. Possible solutions are discussed in [Gay 1997] [Hess 1998] [Shurman 1996] and [Turner 1999]. 
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The Domain Name System

2.5 DNS - The Internet's Directory Service

We human beings can be identified in many ways. For example, we can be identified by the names that appear on our birth 
certificates. We can be identified by our social security numbers. We can be identified by our driver's license numbers. 
Although each of these identifiers can be used to identify people, within a given context, one identifier may be more 
appropriate than an other. For example, the computers at the IRS (the infamous tax collecting agency in the US) prefer to use  
fixed-length social security numbers rather than birth-certificate names. On the other hand, ordinary people prefer the more 
mnemonic birth-certificate names rather than social security numbers. (Indeed, can you imagine saying, "Hi. My name is 132-
67-9875. Please meet my husband, 178-87-1146.") 

Just as humans can be identified in many ways, so too can Internet hosts. One identifier for a host is its hostname. Hostnames 
-- such as cnn.com, www.yahoo.com, gaia.cs.umass.edu and surf.eurecom.fr -- are mnemonic and are therefore appreciated 
by humans. However, hostnames provide little, if any, information about the location within the Internet of the host. (A 
hostname such as surf.eurecom.fr, which ends with the country code .fr, tells us that the host is in France, but doesn't say 
much more.) Furthermore, because hostnames can consist of variable-length alpha-numeric characters, they would be difficult 
to process by routers. For these reasons, hosts are also identified by so-called IP addresses. We will discuss IP addresses in 
some detail in Chapter 4, but it is useful to say a few brief words about them now. An IP address consists of four bytes and 
has a rigid hierarchical structure. An IP address looks like 121.7.106.83, where each period separates one of the bytes 
expressed in decimal notation from 0 to 127. An IP address is hierarchical because as we scan the address from left to right, 
we obtain more and more specific information about where (i.e., within which network, in the network of networks) the host 
is located in the Internet. (Just as when we scan a postal address from bottom to top we obtain more and more specific 
information about where the residence is located). An IP address is included in the header of each  IP datagram, and Internet 
routers use this IP address to route s datagram towards its destination. 

2.5.1 Services Provided by DNS

We have just seen that there are two ways to identify a host -- a hostname and an IP address.  People prefer the more 
mnemonic hostname identifier, while routers prefer fixed-length, hierarchically-structured IP addresses. In order to reconcile 
these different preferences, we need a directory service that translates hostnames to IP addresses. This is the main task of the 
the Internet's Domain Name System (DNS).  The DNS is (i) a distributed database implemented in a hierarchy of name 
servers and (ii) an application-layer protocol that allows hosts and name servers to communicate in order to provide the 
translation service.  Name servers are usually Unix machines running the Berkeley Internet Name Domain (BIND) software. 
The DNS protocol runs over UDP and uses port 53. Following this chapter we provide interactive links to DNS programs that 
allow you to translate arbitrary hostnames, among other things. 

DNS is commonly employed by other application-layer protocols -- including HTTP, SMTP and FTP - to translate user-
supplied host names to IP addresses. As an example, consider what happens when a browser (i.e., an HTTP client), running 
on some user's machine, requests the URL www.someschool.edu/index.html. In order for the user's machine to be able to send 
an HTTP request message to the Web server  www.someschool.edu, the user's machine must obtain the IP address of www.
someschool.edu. This is done as follows. The same user machine runs the client-side of the DNS application. The browser 
extracts the hostname, www.someschool.edu, from the URL and passes the hostname to the client-side of the DNS 
application. As part of a DNS query message, the DNS client sends a query containing the hostname to a DNS server. The 
DNS client eventually receives a reply, which includes the IP address for the hostname. The browser then opens a TCP 
connection to the HTTP server process located at that IP address. All IP datagrams sent to from the client to server as part of 
this connection will include this IP address in the destination address field of the datagrams. In particular, the IP datagram(s) 
that encapsulate the HTTP request message use this IP address. We see from this example that DNS adds an additional delay 
-- sometimes substantial -- to the Internet applications that use DNS. Fortunately, as we shall discuss below, the desired IP 
address is often cached in a "near by" DNS name server, which helps to reduce the DNS network traffic as well as the average 
DNS delay. 
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Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since (i) it runs between communicating end 
systems (again using the client-server paradigm), and (ii) it relies on an underlying end-to-end transport protocol (i.e., UDP) 
to transfer DNS messages between communicating end systems.   In another sense, however, the role of the DNS is quite 
different from Web, file transfer, and email applications.  Unlike these applications, the DNS is not an application with which 
a user directly interacts.  Instead, the DNS provides a core Internet function -- namely, translating hostnames to their 
underlying IP addresses, for user applications and other software in the Internet.  We noted earlier in Section 1.2 that  much of 
the "complexity" in the Internet architecture is located at the "edges" of the network.  The DNS, which implements the critical 
name-to-address translation process using clients and servers located at the edge of the network,  is yet another example of 
that design philosophy. 

DNS provides a few other important services in addition to translating hostnames to IP addresses: 

●     Host aliasing: A host with a complicated hostname can have one or more alias names. For example, a hostname such 
as relay1.west-coast.enterprise.com could have, say, two aliases such as enterprise.com and www.enterprise.com. In 
this case, the hostname relay1.west-coast.enterprise.com is said to be canonical hostname. Alias hostnames, when 
present, are typically more mnemonic than a canonical hostname. DNS can be invoked by an application to obtain the 
canonical hostname for a supplied alias hostname as well as the IP address of the host.

●     Mail server aliasing: For obvious reasons, it is highly desirable that email addresses be mnemonic. For example, if 
Bob has an account with Hotmail, Bob's email address might be as simple as bob@hotmail.com. However, the 
hostname of the Hotmail mail server is more complicated and much less mnemonic than simply hotmail.com (e.g., the 
canonical hostname might be something like relay1.west-coast.hotmail.com). DNS can be invoked by a mail 
application to obtain the canonical hostname for a supplied alias hostname as well as the IP address of the host. In fact, 
DNS permits a company's mail server and Web server to have identical (aliased) hostnames; for example, a company's 
Web server and mail server can both be called enterprise.com.

●     Load Distribution: Increasingly, DNS is also being used to perform load distribution among replicated servers, such 
as replicated Web servers. Busy sites, such as cnn.com, are replicated over multiple servers, with each server running 
on a different end system, and having a different IP address. For replicated Web servers, a set of IP addresses is thus 
associated with one canonical hostname. The DNS database contains this set of IP addresses.  When clients make a 
DNS query for a name mapped to a set of addresses, the server responds with the entire set of IP addresses, but rotates 
the ordering of the addresses within each reply.  Because a client typically sends its HTTP request message to the IP 
address that is listed first in the set, DNS rotation distributes the traffic among all the replicated servers. DNS rotation 
is also used for email so that multiple mail servers can have the same alias name.

The DNS is specified in [RFC 1034] and [RFC 1035], and updated in several additional RFCs.  It is a complex system, and 
we only touch upon key aspects of its operation here.  The interested reader is referred to these RFCs and the book [Abitz 
1993]. 

2.5.2 Overview of How DNS Works

We now present a high-level overview of how DNS works.  Our discussion shall focus on the hostname to IP address 
translation service. From the client's perspective, the DNS is a black box. The client sends a DNS query message into the 
black box, specifying the hostname that needs to be translated to an IP address. On many Unix-based machines, 
gethostbyname() is the library routine that an application calls in order to issue the query message. In Section 2.7, we 
shall present a Java program that begins by issuing a DNS query. After a delay, ranging from milliseconds to tens of seconds, 
the client receives a DNS reply message that provides the desired mapping. Thus, from the client's perspective, DNS is a 
simple, straightforward  translation service. But in fact, the black box that implements the service is complex, consisting of 
large number of name servers distributed around the globe, as well as an application-layer protocol that specifies how the 
name servers and querying hosts communicate. 
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A simple design for DNS would have one Internet name server that contains all the mappings. In this centralized design, 
clients simply direct all queries to the single name server, and the name server responds directly to the querying clients. 
Although the simplicity of this design is attractive, it is completely inappropriate for today's Internet, with its vast (and 
growing) number of hosts. The problems with a centralized design include: 

●     A single point of failure. If the name server crashes, so too does the entire Internet!
●     Traffic volumes. A single name server would have to handle all DNS queries (for all the HTTP requests, email 

messages, etc. generated from millions of hosts)
●     Distant centralized database. A single name server cannot be "close" to all the querying clients. If we put the single 

name server in New York City, then all queries from Australia must travel to the other side of the globe, perhaps over 
slow and congested links. This can lead to significant delays (thereby increasing the "world wide wait" for the Web 
and other applications).

●     Maintenance. The single name server would have to keep records for all Internet hosts. Not only would this 
centralized database be huge, but it would have to be updated frequently to account for every new host. There are also 
authentication and authorization problems associated with allowing any user to register a host with the centralized 
database.

In summary, a centralized database in a single name server simply doesn't scale. Consequently, the DNS is distributed by 
design. In fact, the DNS is a wonderful example of how a distributed database can be implemented in the Internet. 

In order to deal with the issue of scale, the DNS uses a large number of name servers, organized in a hierarchical fashion and 
distributed around the world. No one name server has all of the mappings for all of the hosts in the Internet. Instead, the 
mappings are distributed across the name servers. To a first approximation, there are three types of name servers: local  name 
servers, root name servers, and authoritative name servers. These name servers, again to a first approximation, interact with 
each other and with the querying host as follows: 

●     Local name servers: Each ISP - such as a university, an academic department, an employee's company or a residential 
ISP - has a local name server (also called a default name server). When a host issues a DNS query message, the 
message is first sent to the host's local  name server. The  IP address of the local name server  is typically  configured 
by hand in a host. (On a Windows 95/98 machine, you can find the IP address of the local name server used by your 
PC by opening the Control Panel, and then selecting "Network", then selecting an installed TCP/IP component, and 
then selecting the DNS configuration folder tab.) The local name server is typically "close" to the client; in the case of 
an institutional ISP, it may be on the same LAN as the client host; for a residential ISP, the name server is typically  
separated from the client host by no more than a few routers. If a host requests a translation for another host that is part 
of the same local ISP, then the local name server will be able to immediately provide the the requested IP address. For 
example, when the host surf.eurecom.fr requests the IP address for baie.eurecom.fr, the local name server at Eurecom 
will be able to provide the requested IP address without contacting any other name servers.

●     Root name servers: In the Internet there are a dozen or so of "root name servers," most of which are currently located 
in North America. A February 1998 map of the root servers  is shown in Figure 2.5-1. When a local name server 
cannot immediately satisfy a query from a host (because it does not have a record for the hostname being requested), 
the local name server behaves as a DNS client and queries one of the root name servers. If the root name server has a 
record for the hostname, it sends a DNS reply message to the local name server, and the local name server then sends a 
DNS reply to the querying host. But the root name server may not have a record for the hostname. Instead, the 
rootname server knows the IP address of an "authoritative name server" that has the mapping for that particular 
hostname.

●     Authoritative name servers: Every host is registered with an authoritative name server. Typically, the authoritative 
name server for a host is a name server in the host's local ISP. (Actually, each host is required to have at least two 
authoritative name servers, in case of failures.) By definition, a name server is authoritative for a host if it always has a 
DNS record that translates the host's hostname to that host's IP address. When an authoritative name server is queried 
by a root server, the authoritative name server responds with a  DNS reply that contains the requested mapping. The 
root server then forwards the mapping to the local name server, which in turn forwards the mapping to the requesting 
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host. Many name servers act as both local and and authoritative name servers.

 
Figure 2.5-1: A February 1998 map of the DNS root servers. Obtained from the WIA alliance Web site (http://www.wia.org).

Let's take a look at a simple example. Suppose the host surf.eurecom.fr desires the IP address of gaia.cs.umass.edu. Also 
suppose that Eurecom's local name server is called dns.eurecom.fr and that an authoritative name server for gaia.cs.umass.edu 
is called dns.umass.edu. As shown in Figure 2.5-2, the host surf.eurecom.fr first sends a DNS query message to its local name 
server, dns.eurecom.fr. The query message contains the hostname to be translated, namely, gaia.cs.umass.edu. The local name 
server forwards the query message to a root name server. The root name server forwards the query message to the name 
server that is authoritative for all the hosts in the domain umass.edu, namely, to dns.umass.edu. The authoritative name server 
then sends the desired mapping to the querying host, via the root name server and the local name server. Note that in this 
example, in order to obtain the mapping for one hostname, six DNS messages were sent: three query messages and three reply 
messages. 
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Figure 2.5-2: Recursive queries to obtain the mapping for gaia.cs.umass.edu.

Our discussion up to this point has assumed that the root name server knows the IP address of an authoritative name server for 
every hostname. This assumption may be incorrect. For a given hostname, the root name server may only know the IP address 
of an intermediate name server that in turn knows the IP address of an authoritative name server for the hostname. To 
illustrate this, consider once again the above example with the host surf.eurecom.fr querying for the IP address of gaia.cs.
umass.edu. Suppose now that the University of Massachusetts has a name server for the university, called dns.umass.edu. 
Also suppose that each of the departments at University of Massachusetts has its own name server, and that each departmental 
name server is authoritative for all the hosts in the department. As shown in Figure 2.5-3, when the root name server receives 
a query for a  host with hostname ending with umass.edu it forwards the query to the name server dns.umass.edu. This name 
server forwards all queries with hostnames ending with .cs.umass.edu to the name server dns.cs.umass.edu, which is 
authoritative for all hostnames ending with .cs.umass.edu. The authoritative name server sends the desired mapping to the 
intermediate name server, dns.umass.edu, which forwards the mapping to the root name server, which forwards the mapping 
to the local name server, dns.eurecom.fr, which forwards the mapping to the requesting host! In this example, eight DNS 
messages are sent. Actually, even more DNS messages can be sent in order to translate a single hostname - there can be two 
or more intermediate name servers in the chain between the root name server and the authoritative name server! 
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Figure 2.5-3: Recursive queries with an intermediate name server between the root and authoritative name servers.

The examples up to this point assumed that all queries are recursive queries. When a host or name server A makes a 
recursive query to a name server B, then name server B obtains the requested mapping on behalf of A and then forwards the 
mapping to A. The DNS protocol also allows for iterative queries at any step in the chain between requesting host and 
authoritative name server. When a name server A makes an iterative query to name server B,  if name server B does not have 
the requested mapping, it immediately sends a DNS reply to A that contains the IP address of the next name server in the 
chain, say, name server C. Name server A then sends a query directly to name server C. 

In the sequence of queries that are are required to translate a hostname, some of the queries can be iterative and others 
recursive. Such a combination of recursive and iterative queries is illustrated in Figure 2.5-4. Typically, all queries in the 
query chain are recursive except for the query from the local name server to the root name server, which is iterative. (Because  
root servers handle huge volumes of queries, it is preferable to use the less burdensome iterative queries for root servers.) 
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Figure 2.5-4: A query chain with recursive and iterative queries.

Our discussion this far has not touched on one important feature of the DNS:  DNS caching. In reality, DNS extensively 
exploits caching in order to improve the delay performance and to reduce the number of DNS messages in the network. The 
idea is very simple. When a name server receives a DNS mapping for some hostname, it caches the mapping in local memory 
(disk or RAM) while passing the message along the name server chain. Given a cached hostname/ IPaddress translation pair, 
if another query arrives to the name server for the same hostname, the name server can provide the desired IP address, even if 
it is not authoritative for the hostname. In order to deal with the ephemeral hosts, a cached record is discarded after a period of 
time (often set to two days). As an example, suppose that surf.eurecom.fr queries the DNS for the IP address for the hostname 
cnn.com. Furthermore suppose that a few hours later, another Eurecom host, say baie.eurecom.fr, also queries DNS with the 
same hostname. Because of caching, the local name server at Eurecom will be able to immediately return the IP address to the 
requesting host without having to query name servers on another continent. Any name server may cache DNS mappings. 

2.5.3 DNS Records

The name servers that together implement the DNS distributed database, store Resource Records (RR) for the hostname to 
IP address mappings. Each DNS reply message carries one or more resource records. In this and the following subsection, we 
provide a brief overview of DNS resource records and messages; more details can be found in [Abitz]  or in the DNS RFCs 
[RFC 1034] [RFC 1035]. 

A resource record is a four-tuple that contains the following fields: 
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(Name, Value, Type, TTL)
TTL is the time to live of the resource record; it determines the time at which a resource should be removed from a cache. In 
the example records given below, we will ignore the TTL field. The meaning of Name and Value depend on Type: 

●     If Type=A, then Name is a hostname and Value is the IP address for the hostname. Thus, a Type A record provides 
the standard hostname to IP address mapping. As an example, (relay1.bar.foo.com, 145.37.93.126, 
A) is a Type A record.

●     If Type=NS, then Name is a domain (such as foo.com) and Value is the hostname of  a server that knows how to 
obtain the IP addresses for hosts in the domain. This record is used to route DNS queries further along in the query 
chain. As an example, (foo.com, dns.foo.com, NS) is a Type NS record.

●     If Type=CNAME, then Value is a canonical hostname for the alias hostname Name. This record can provide querying 
hosts the canonical name for a hostname. As an example, (foo.com, relay1.bar.foo.com, CNAME) is a 
CNAME record.

●     If Type=MX, then Value is a hostname of a mail server that has an alias hostname Name. As an example, (foo.
com. mail.bar.foo.com, MX) is an MX record. MX records allow the hostnames of mail servers to have 
simple aliases.

If a name server is authoritative for a particular hostname, then the name server will contain a Type A record for the 
hostname. (Even if the name server is not authoritative, it may contain a Type A record in its cache.) If a server is not 
authoritative for a hostname, then the server will contain a Type NS record for the domain that includes the hostname; it will 
also contain a Type A record that provides the IP address of the name server in the Value field of the NS record. As an 
example, suppose a root server is not authoritative for the host gaia.cs.umass.edu. Then the root server will contain a record 
for a domain that includes the host cs.umass.edu, e.g., 

(umass.edu, dns.umass.edu, NS).

The root server would also contain a type A record which maps the name server dns.umass.edu to an IP address, e.g., 

(dns.umass.edu, 128.119.40.111, A).

2.5.4 DNS Messages

Earlier in this section we alluded to DNS query and reply messages. These are the only two kinds of DNS messages. 
Furthermore, both request and reply messages have the same format, as shown in Figure 2.5-5. 
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Figure 2.5-5: DNS message format

The semantics of the various fields in a DNS message are as follows: 

●     The first 12 bytes is the header section, which has a number of fields. The first field is a 16-bit number that identifies 
the query.  This identifier is copied into the reply message to a query, allowing the client to match received replies with 
sent queries.  There are a number of flags in the flag field. A one-bit query/reply flag indicates whether the message is 
a query (0) or a reply (1).  A one bit authoritative flag  is set in a reply message when a name server is an authoritative 
server for a queried name. A one bit recursion-desired flag is set when a client (host or name server) desires that the 
name server to perform recursion when it doesn't have the record. A one-bit recursion available field is set in a reply if 
the name server supports recursion. In the header, there are also four "number of" fields. These fields indicate the 
number of occurrences of the four types of "data" sections that follow the header.

●     The question section contains information about the query that is being made.  This section includes (i) a name field 
that contains the name that is being queried, and (ii) a type field that indicates the type of question being asked about 
the name (e.g., a host address associated with a name - type "A",  or the mail server for a name - type "MX").

●     In a reply from a name server, the answer section contains the resource records for the  name that was originally 
queried. Recall that in each resource record there is the Type (e.g., A, NS, CSNAME and MX),  the Value and the 
TTL. A reply can return multiple RRs in the answer, since a hostname can have multiple IP addresses (e.g., for 
replicated Web servers, as discussed earlier in this section).

●     The authority section contains records of other authoritative servers.
●     The additional section contains other "helpful" records.  For example, the answer field in a reply to an MX query will 

contain the hostname of a mail server associated with the alias name Name.  The additional section  will  contain a 
Type A record providing the IP address for the canonical hostname of the mail server.
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The discussion above has focussed on how data is retrieved from the DNS database.  You might be wondering how data gets 
into the database in the first place?  Until recently, the contents of each DNS server was configured statically, e.g., from a 
configuration file created by a system manager.  More recently, an UPDATE option has been added to the DNS protocol to 
allow data to be dynamically added or deleted from the database via DNS messages.  [RFC 2136] specifies DNS dynamic 
updates. 

DNSNet provides a nice collection of documents pertaining to DNS [DNSNet]. The Internet Software Consortium  provides 
many resources for BIND, a popular public-domain name server for Unix machines [BIND]. 
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nslookup

Interactive Programs for Exploring DNS

There are at least three client programs available for exploring the contents of name servers in the 
Internet. The most widely available program is nslookup; two other programs, which are a little more 
powerful than nslookup, are dig and host. Lucky for us, several institutions and individuals have made 
these client programs available through Web. browsers. 

We stongly encourage you to get your hands dirty and play with these programs. They can give 
significant insight into how DNS works. All of these programs mimic DNS clients. They send a DNS 
query message to a name server (which can often be supplied by the user), and they receive a 
corresponding DNS response. They then extract information (e.g., IP addresses, whether the response is 
authoritative, etc.) and present the information to the user. 

nslookup 

Some of the nslookup sites provide only the basic nslookup service, i.e., they allow you to enter a 
hostname and they return an IP address. Visit some of the nslookup sights below and try entering 
hostnames for popular hosts (such as cnn.com or www.microsoft.com) as well as hostnames for the  less 
popular hosts. You will see that the popular hostnames typically return numerous IP addresses, because 
the site is replicated in numerous servers. (See the discussion in Section 2.5 on DNS rotation.) Some of 
the nslookup sites also return the hostname and IP address of the name server that provides the 
information. Also, some of the nslookup sites indicate whether the result is non-authoritative (i.e., 
obtained from a cache). 

http://namespace.pgmedia.net/nslookup/ 

http://www.infobear.com/nslookup-form.cgi 

Some of the nslookup sites allow the user to supply more information. For example, the user can request 
to receive the canonical hostname and IP address for a mail server. And the user can also indicate the 
name server at which it wants the chain of queries to begin. 

http://jeff.aaron.com/~jmaaron/nslookup.cgi 

http://ipalloc.utah.edu/HTML_Docs/NSLookup.html 

dig and host 

The programs dig and host allow the user to further refine the query by indicating, for example, whether 
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the query should be recursive or interative. There are currently not as many Web sites that provide the 
dig and host service. But there are a few: 

http://www.toetag.com/cgi-bin/host 

http://www.netliner.com/dig.html 
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Socket Programming in Java

2.6 Socket Programming with TCP

This and the subsequent sections provide an introduction to network application development. Recall from Section 2.1 that the 
core of a network application consists of a pair of programs -- a client program and a server program. When these two 
programs are executed, a client and server process are created, and these two processes  communicate with each other by 
reading from and writing to sockets. When a creating a networking application, the developer's main task is to write the code 
for both the client and server programs.  

There are two sorts of client-server applications. One sort is a client-server application that is an implementation of a protocol 
standard defined in an RFC. For such an implementation, the client and server programs must conform to the rules dictated by 
the RFC. For example, the client program could be an implementation of the FTP client, defined in [RFC 959], and the server 
program could be implementation of the FTP server, also defined in [RFC 959]. If one developer writes code for the client 
program and an independent developer writes code for the server program, and both developers carefully follow the rules of the 
RFC, then the two programs will be able to interoperate. Indeed, most of today's network applications involve communication 
between client and server programs that have been created by independent developers. (For example, a Netscape browser 
communicating with an Apache Web server, or a FTP client on a PC uploading a file to a Unix FTP server.) When a client or 
server program implements a protocol defined in an RFC, it should use the port number associated with the protocol. (Port 
numbers were briefly discussed in Section 2.1. They will be covered in more detail in the next chapter.) 

The other sort of client-server application is a proprietary client-server application. In this case the client and server programs 
do not necessarily conform to any existing RFC. A single developer (or development team) creates both the client and server 
programs, and the developer has complete control over what goes in the code. But because the code does not implement a 
public-domain protocol, other independent developers will not be able to develop code that interoperate with the application. 
When developing a proprietary application, the developer must be careful not to use one of the the well-known port numbers 
defined in the RFCs. 

In this and the next section, we will  examine the key issues for the development of a proprietary client-server application. 
During the development phase, one of the first decisions the developer must make is whether the application is to run over TCP 
or over UDP. TCP is connection-oriented and provides a reliable byte stream channel through which data flows between two 
endsystems. UDP is connectionless and sends independent packets of data from one end system to the other, without any 
guarantees about delivery. In this section we develop a simple-client application that runs over TCP; in the subsequent section, 
we develop a simple-client application that runs over UDP. 

We present these simple TCP and UDP applications in Java. We could have written the code in C or C++, but we opted for 
Java for several reasons. First, the applications are more neatly and cleanly written in Java; with Java there are fewer lines of 
code, and each line can be explained to the novice programmer without much difficulty. Second, client-server programming in 
Java is becoming increasingly  popular, and may even become the norm in upcoming years. Java is platform independent, it has 
exception mechanisms for robust handling of common problems that occur during I/O and networking operations, and its 
threading facilities provide a way to easily implement powerful servers. But there is no need to be frightened if you are not 
familiar with Java. You should be able to follow the code if you have experience programming in another language. 

For readers who are interested in client-server programming in C, there are several good references available, including 
[Stevens 1990] , [Frost 1994] and [Kurose 1996] . 

2.6.1 Socket Programming with TCP

Recall from Section 2.1 that processes running on different machines communicate with each other by sending messages into 
sockets. We said that each process was analogous to a house and the process's socket is analogous to a door. As shown in 
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Figure 2.6.1, the socket is the door between the application process and  TCP. The application developer has control of 
everything on the application-layer side of the socket; however, it has little control of the transport-layer side. (At the very 
most, the application developer has the ability to fix a few TCP parameters, such as maximum buffer and maximum segment 
sizes.) 

Figure 2.6-1: Processes communicating through TCP sockets.

Now let's to a little closer look at the interaction of the client and server programs. The client  has the job of initiating contact 
with the server. In order for the server to be able to react to the client's initial contact, the server has to be ready. This implies 
two things. First, the server program can not be dormant; it must be running as a process before the client attempts to initiate 
contact. Second, the server program must have some sort of door (i.e., socket) that welcomes some initial contact from a client 
(running on an arbitrary machine). Using our house/door analogy for a process/socket, we will sometimes refer to the client's 
initial contact as "knocking on the door". 

With the server process running, the client process can initiate a TCP connection to the server. This is done in the client 
program by creating a socket object. When the client creates its socket object, it specifies the address of the server process, 
namely, the IP address of the server and the port number of the process. Upon creation of the socket object, TCP in the client  
initiates a three-way handshake  and establishes a TCP connection with the server. The three-way handshake is completely 
transparent to the client and server programs. 

During the three-way handshake, the client process knocks on the welcoming door of the server process. When the server 
"hears" the knocking, it creates a new door (i.e., a new socket) that is dedicated to that particular client. In our example below, 
the welcoming door is a ServerSocket object that we call the welcomeSocket. When a client knocks on this door, the program 
invokes welcomeSocket's accept() method, which creates a new door for the client. At the end of the handshaking phase, a TCP 
connection exists between the client's socket and the server's new socket. Henceforth, we refer to the new socket as the server's  
"connection socket". 

From the application's perspective, the TCP connection is a direct virtual pipe between the client's socket and the server's 
connection socket. The client process can send arbitrary bytes into its socket; TCP guarantees that the server process will 
receive (through the connection socket) each byte in the order sent. Furthermore, just as people can go in and out the same 
door, the client process can also receive bytes from its socket and the server process can also send bytes into its connection 
socket. This is illustrated in Figure 2.6.2. 
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Figure 2.6-2: Client socket, welcoming socket and connection socket.

Because sockets play a central role in client-server applications, client-server application development  is also referred to as 
socket programming. Before providing our example client-server application, it is useful to discuss the notion of a stream. A 
stream is a flowing sequence of characters that flow into or out of a process. Each stream is either an input stream for the 
process or an output stream for the process. If the stream is an input stream, then it is attached to some input source for the 
process, such as standard input (the keyboard) or a socket into which characters flow from the Internet. If the stream is an 
output stream, then it is attached to some output source for the process, such as standard output (the monitor) or a socket out  of 
which characters flow into the Internet. 

2.6.2 An Example Client-Server Application in Java

We shall use the following  simple client-server application to demonstrate socket programming for both TCP and UDP: 

1.  A client reads a line from its standard input (keyboard) and sends the line out its socket to the server.
2.  The server reads a line from its connection socket.
3.  The server converts the line to uppercase.
4.  The server sends the modified line out its connection socket to the client.
5.  The client reads the modified line from its socket and prints the line on its standard output (monitor).

Below we provide the client-server program pair for a TCP implementation of the application. We provide a detailed, line-by-
line analysis after each program. The client program is called TCPClient.java, and the server program is called TCPServer.java. 
In order to emphasize the key issues, we intentionally provide code that is to the point but not bullet proof. "Good code" would 
certainly have a few more auxiliary lines. 

Once the the two programs are compiled on their respective hosts, the server program is first executed at the server, which 
creates a process at the server. As discussed above, the server process waits to be contacted by a client process. When the client 
program is executed, a process is created at the client, and this process contacts the server and establishes a TCP connection 
with it. The user at the client may then "use" the application to send a line and then receive a capitalized version of the line. 
  

TCPClient.java

Here is the code for the client side of the application: 
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import java.io.*; 
import java.net.*; 
class TCPClient { 

    public static void main(String argv[]) throws Exception 
    { 
        String sentence; 
        String modifiedSentence; 

        BufferedReader inFromUser = 
          new BufferedReader(new InputStreamReader(System.in)); 

        Socket clientSocket = new Socket("hostname", 6789); 

        DataOutputStream outToServer = 
          new DataOutputStream(clientSocket.getOutputStream()); 

        BufferedReader inFromServer = 
          new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); 

        sentence = inFromUser.readLine(); 

        outToServer.writeBytes(sentence + '\n'); 

        modifiedSentence = inFromServer.readLine(); 

        System.out.println("FROM SERVER: " + modifiedSentence); 

        clientSocket.close(); 
                   
    } 
} 

The program TCPClient creates three streams and one socket, as shown in Figure 2.6-3. 
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Figure 2.6-3: TCPClient has three streams and one socket.

The socket is called clientSocket. The stream inFromUser is an input stream to the program; it is attached to the standard 
input, i.e., the keyboard. When the user types characters on the keyboard, the characters flow into the stream  inFromUser. 
The stream inFromServer is another input stream to the program; it is attached to the socket. Characters that arrive from the 
network flow into the stream inFromServer. Finally, the stream outToServer is is an output stream from the program; it is 
also attached to the socket. Characters that the client sends to the network flow into the stream outToServer. 

Let's now take a look at the various lines in the code. 

import java.io.*;
import java.net.*;

java.io and java.net are java packages. The java.io package contains classes for input and output streams. In particular, the 
java.io package contains the BufferedReader and DataOutputStream classes, classes that the program uses to create the three 
streams illustrated above. The java.net package provides classes for network support. In particular, it contains the Socket and 
ServerSocket classes. The clientSocket object of this program is derived from the Socket class. 

       class TCPClient { 
        public static void main(String argv[]) throws Exception 
           {......} 
                   } 
  
The above is standard stuff that you see at the beginning of  most java code.  The first line is the beginning of a class definition 
block. The keyword class begins the class definition for  the class named TCPClient. A class contains variables and methods. 
The variables and methods of the class are embraced by the curly brackets that begin and end the class definition block. The 
class TCPClient has no class variables and exactly one method, the main( ) method. Methods are similar to the functions or  
procedures in languages such as C; the main method in the Java language is similar to the main function in C and C++. When 
the Java interpreter executes an application (by being invoked upon the application's controlling class), it starts by calling the 
class's main method. The main method then calls all the other methods required to run the application. For this introduction into 
socket programming in Java, you may ignore the keywords public, static, void, main, throws Exceptions (although you must 
include them in the code). 
  
         String sentence; 
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    String modifiedSentence; 

These above two lines declare objects of type String. The object sentence is the string typed by the user and sent to the server. 
The object modifiedSentence is the string obtained from the server and sent the user's standard output. 

BufferedReader inFromUser =
          new BufferedReader(new InputStreamReader(System.in));

The above line creates the stream object inFromUser of type BufferedReader. The input stream is initialized with System.in, 
which attaches the stream to the standard input. The command allows the client to read text from its keyboard. 
  
       Socket clientSocket = new Socket("hostname", 6789); 

The above line creates the object clientSocket of type Socket. It also initiates the TCP connection between client and server. 
The variable "host name" must be replaced with the host name of the server (e.g., "fling.seas.upenn.edu"). Before the TCP 
connection is actually initiated, the client performs a DNS look up on the hostname to obtain the host's IP address. The number 
6789 is the port number. You can use a different port number; but you must make sure that you use the same port number at the 
server side of the application. As discussed earlier, the host's IP address along with the applications port number identifies the 
server process. 

       DataOutputStream outToServer = 
      new DataOutputStream(clientSocket.getOutputStream()); 

       BufferedReader inFromServer = 
      new BufferedReader(new inputStreamReader(clientSocket.getInputStream())); 
  

The above two lines create stream objects that are attached to the socket. The outToServer stream provides the process output 
to the socket. The inFromServer stream provides the process input from the socket. (See diagram above.) 

      sentence = inFromUser.readLine(); 

The above line places a line typed by user into the string sentence. The string sentence continues to gather characters until the 
user ends the line by typing a carriage return. The line passes from standard input through the stream inFromUser into the 
string sentence. 

      outToServer.writeBytes(sentence + '\n'); 

The above line sends the string sentence augmented with a carriage return into the outToServer stream. The augmented 
sentence flows through the client's socket and into the TCP pipe. The client then waits to receive characters from the server. 
  
      modifiedSentence = inFromServer.readLine(); 

When characters arrive from the server, they flow through the stream inFromServer and get placed into the string 
modifiedSentence. Characters continue to accumulate in modifiedSentence until the line ends with a carriage return character. 

System.out.println("FROM SERVER  " + modifiedSentence);

The above line prints to the monitor the string modifiedSentence returned by the server. 
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   clientSocket.close(); 
  
This last line closes the socket and, hence, closes the TCP connection between the client and the server. It causes TCP in the 
client to send a TCP message to TCP in the server (see Section 3.5). 

TCPServer.java

Now let's take a look at the server program. 

import java.io.*; 
import java.net.*; 

class TCPServer { 

  public static void main(String argv[]) throws Exception 
    { 
      String clientSentence; 
      String capitalizedSentence; 

      ServerSocket welcomeSocket = new ServerSocket(6789); 
  
      while(true) { 
  
                   Socket connectionSocket = welcomeSocket.accept(); 

           BufferedReader inFromClient = 
             new BufferedReader(new InputStreamReader(connectionSocket.getInputStream
())); 

           DataOutputStream  outToClient = 
             new DataOutputStream(connectionSocket.getOutputStream()); 

           clientSentence = inFromClient.readLine(); 

           capitalizedSentence = clientSentence.toUpperCase() + '\n'; 

           outToClient.writeBytes(capitalizedSentence); 
        } 
    } 
} 
  

 
TCPServer  has many similarities with TCPClient. Let us now take a look at the lines in TCPServer.java. We will not comment 
on the lines which are identical or similar to commands in TCPClient.java. 

The first line in TCPServer that is substantially different from what we saw in TCPClient is: 
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       ServerSocket welcomeSocket = new ServerSocket(6789); 

The above line creates the object welcomeSocket, which is of type ServerSocket. The WelcomeSocket, as discussed above, is 
a sort of door that waits for a knock from some client.  The port number 6789 identifies the process at the server. The following 
line is: 

       Socket connectionSocket = welcomeSocket.accept(); 

The above line creates a new socket, called connectionSocket, when some client knocks on welcomeSocket. TCP then 
establishes a direct virtual pipe between clientSocket at the client and connectionSocket at the server. The client and server 
can then send bytes to each other over the pipe, and all bytes sent arrive at the other side in order.  With connectionSocket 
established, the server can continue to listen for other requests from other clients for the application using welcomeSocket. 
(This version of the program doesn't actually listen for more connection requests. But it can be modified with threads to do so.) 
The program then creates several stream objects, analogous to the stream objects created in clientSocket. Now consider: 

        capitalizedSentence = clientSentence.toUpperCase() + '\n'; 

This command is the heart of application. It takes the line sent by the client, capitalizes it and adds a carriage return. It uses the 
method toUpperCase(). All the other commands in the program are peripheral; they are used for communication with the client. 
  
That completes our analysis of the TCP program pair. Recall that TCP provides a reliable data transfer service. This implies, in 
particular, that if one the user's characters  gets corrupted in the network, then the client host will retransmit the character, 
thereby providing correct delivery of the data. These retransmissions are completely transparent to the application programs. 
The DNS lookup is also transparent to the application programs. 

To test the program pair, you install and compile TCPClient.java in one host and TCPServer.java in another host. Be sure to 
include the proper host name of the server in TCPClient.java. You then execute TCPServer.class, the compiled server program, 
in the server. This creates a process in the server which idles until it is contacted by some client. Then you execute TCPClient.
class, the compiled client program, in the client. This creates a process in the client and establishes a TCP connection between 
the client and server processes. Finally, to use the application, you type a sentence followed by 
a carriage return. 

To develop your own client-server application, you can begin by slightly modifying the programs. For example, instead of 
converting all the letters to uppercase, the server can count the number of times the letter "s" appears and return this number. 
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2.7 Socket Programming with UDP

We learned in the previous section that when two processes communicate over TCP, from the 
perspective of the processes it is as if there is a  pipe between the two processes. This pipe remains in 
place until one of the two processes closes it. When one of the processes wants to send some bytes to the 
other process, it simply inserts the bytes into the pipe. The sending process does not have to attach a 
destination address to the bytes because the pipe is logically connected to the destination. Furthermore, 
the pipe provides a reliably byte stream channel -- the sequence of bytes received by the receiving 
process is exactly the sequence bytes that the sender inserted into the pipe. 

UDP also allows two (or more) processes running on different hosts to communicate. However, UDP 
differs from TCP in many fundamental ways. First, UDP is a connectionless service -- there isn't an 
initial handshaking phase during which a pipe is established between the two processes. Because UDP 
doesn't have a pipe, when a process wants to send a batch of bytes to another process, the sending 
process must exclude attach the destination process's address to the batch of bytes. And this must be 
done for each batch of bytes the sending process sends. Thus UDP is similar to a taxi service -- each 
time a group of people get in a taxi, the group has to inform the driver of the destination address. As 
with TCP, the destination address is a tuple consisting of the IP address of the destination host and the 
port number of the destination process. We shall refer to the batch of information bytes along with the IP 
destination address and port number as the the "packet". 

After having created a packet, the sending process pushes the packet into the network through a socket. 
Continuing with our taxi analogy, at the other side of the socket, there is a taxi waiting for the packet. 
The taxi then drives the packet in the direction of the packet's destination address. However, the taxi 
does not guarantee that it will eventually get the datagram to its ultimate destination; the taxi could break 
down. In other terms, UDP provides an unreliable transport service to its communication processes -- it 
makes no guarantees that a datagram will reach its ultimate destination. 

In this section we will illustrate UDP client-server programming by redeveloping the same application 
of the previous section, but this time over UDP. We shall also see that the Java code for UDP is different 
from the TCP code in many important ways. In particular, we shall see that there is (i) no initial 
handshaking between the two processes, and therefore no need for a welcoming socket, (ii) no streams 
are attached to the sockets, (iii) the sending hosts creates "packets" by attaching the IP destination 
address and port number to each batch of bytes it sends, and (iv) the receiving process must unravel to 
received packet to obtain the packet's information bytes. Recall once again our simple application: 

1.  A client reads a line from its standard input (keyboard) and sends the line out its socket to the 
server.

2.  The server reads a line from its socket.
3.  The server converts the line to uppercase.
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4.  The server sends the modified line out its socket to the client.
5.  The client reads the modified line through its socket and prints the line on its standard output 

(monitor).

UDPClient.java

Here is the code for the client side of the application: 

import java.io.*; 
import java.net.*; 
  
class UDPClient { 
    public static void main(String args[]) throws Exception 
    { 
  
      BufferedReader inFromUser = 
        new BufferedReader(new InputStreamReader(System.in)); 
  
      DatagramSocket clientSocket = new DatagramSocket(); 
  
      InetAddress IPAddress = InetAddress.getByName("hostname"); 
  
      byte[] sendData = new byte[1024]; 
      byte[] receiveData = new byte[1024]; 
  
      String sentence = inFromUser.readLine(); 
  
      sendData = sentence.getBytes(); 

      DatagramPacket sendPacket = 
         new DatagramPacket(sendData, sendData.length, IPAddress, 
9876); 
  
      clientSocket.send(sendPacket); 
  
      DatagramPacket receivePacket = 
         new DatagramPacket(receiveData, receiveData.length); 
  
      clientSocket.receive(receivePacket); 

file:///D|/Downloads/Livros/computação/Computer%20Net...n%20Approach%20Featuring%20the%20Internet/udpDev.html (2 of 8)20/11/2004 15:52:02



udpDev

  
      String modifiedSentence = 
          new String(receivePacket.getData()); 
  
      System.out.println("FROM SERVER:" + modifiedSentence); 

      clientSocket.close(); 
  
    } 
} 
  
The program UDPClient.java constructs one stream and one socket, as shown in Figure 2.7-1. The 
socket is called clientSocket, and it is of type DatagramSocket. Note that UDP uses a different kind of 
socket than TCP at the client. In particular, with UDP our client uses a DatagramSocket whereas with 
TCP our client used a Socket. The stream inFromUser is an input stream to the program; it is attached 
to the standard input, i.e., the keyboard. We had an equivalent stream in our TCP version of the 
program. When the user types characters on the keyboard, the characters flow into the stream  
inFromUser. But in contrast with TCP,  there are no streams (input or output) attached to the socket. 
Instead of feeding bytes to stream attached to a Socket object, UDP will push individual packets through 
the DatagramSocket object. 
  

Figure 2.7-1: UDPClient.java has one stream and one socket.
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Let's now take a look at the lines in the code that differ significantly from TCPClient.java. 

DatagramSocket clientSocket = new DatagramSocket();

The above line creates the object clientSocket of type DatagramSocket. In contrast with TCPClient.java, 
this line does not initiate a TCP connection. In particular, the client host does not contact the server host 
upon execution of this line. For this reason, the constructor DatagramSocket() does not take the server 
hostname or port number as arguments. Using our door/pipe analogy, the execution of the above line 
creates a door for the client process but does not create a pipe between the two processes. 

InetAddress IPAddress = InetAddress.getByName("hostname");

In order to send bytes to a destination process, we shall need to obtain the address of the process. Part of 
this address is the IP address of the destination host. The above line invokes a DNS look up that 
translates "hostname" (supplied in the code by the developer) to an IP address. DNS was also invoked by 
the TCP version of the client, although it was done there implicitly rather than explicitly. The method 
getByName() takes as an argument the hostname of the server and returns the IP address of this same 
server. It places this address in the object IPAddress of type InetAddress. 

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

The byte arrays sendData and receiveData will hold the data the client sends and receives, respectively. 

          sendData = sentence.getBytes(); 

The above line essentially performs a type conversion. It takes the string sentence and renames it as 
sendData, which is an array of bytes. 

          DatagramPacket sendPacket = 
                new DatagramPacket(sendData, sendData.length, IPAddress, 9876); 

The above line constructs the packet, sendPacket,  that the the client will pop into the network through 
its socket. This packet includes that data that is contained in the packet, sendData, the length of this 
data, the IP address of the server, and the port number of the application (which we have set to 9876). 
Note that sendPacket is of type DatagramPacket. 
  
          clientSocket.send(sendPacket); 

In the above line the method send() of the object clientSocket takes the packet just constructed and pops 
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it into the network through clientSocket. Once again, note that UDP sends the line of characters in a 
manner very different from TCP. TCP simply inserted the line into a stream, which had a logical direct 
connection to the server; UDP creates a packet which includes the address of the server. After sending 
the packet, the client then waits to receive a packet from the server. 

         DatagramPacket receivePacket = 
                 new DatagramPacket(receiveData, receiveData.length); 

In the above line, while waiting for the packet  from the server, the client creates a place holder for the 
packet, receivePacket, an object of type DatagramPacket. 
  
         clientSocket.receive(receivePacket); 

The client idles until it receives a packet; when it does receive a packet, it puts the packet in 
receivePacket. 
  
         String modifiedSentence = 
                new String(receivePacket.getData()); 

The above line extracts the data from receivePacket and performs a type conversion, converting an 
array of bytes into the string modifiedSentence. 
  
         System.out.println("FROM SERVER:" + modifiedSentence); 

The above, which is also present in TCPClient, prints out the string modifiedSentence at the client's 
monitor. 

    clientSocket.close(); 
  
This last line closes the socket. Because UDP is connectionless, this line does not cause the client to 
send a tranport-layer message to the server (in contrast with TCPClient). 

UDPServer.java

Let's now take a look at the server side of the application: 

import java.io.*; 
import java.net.*; 
  
class UDPServer { 
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  public static void main(String args[]) throws Exception 
    { 
  
      DatagramSocket serverSocket = new DatagramSocket(9876); 
  
      byte[] receiveData = new byte[1024]; 
      byte[] sendData  = new byte[1024]; 
  
      while(true) 
        { 
  
          DatagramPacket receivePacket = 
             new DatagramPacket(receiveData, receiveData.length); 
  
          serverSocket.receive(receivePacket); 
  
          String sentence = new String(receivePacket.getData()); 
  
          InetAddress IPAddress = receivePacket.getAddress(); 
  
          int port = receivePacket.getPort(); 
  
                      String capitalizedSentence = sentence.toUpperCase(); 

          sendData = capitalizedSentence.getBytes(); 
  
          DatagramPacket sendPacket = 
             new DatagramPacket(sendData, sendData.length, IPAddress, 
                               port); 
  
          serverSocket.send(sendPacket); 
        } 
    } 
} 
  
The program UDPServer.java constructs  one socket, as shown in Figure 2.7-2. The socket is called 
serverSocket. It is an object of type DatagramSocket, as was the socket in the client side of the 
application. Once again, no streams are attached to the socket. 
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Figure 2.7-2: UDPServer.java has one socket.

Let's now take a look at the lines in the code that differ from TCPServer.java. 

          DatagramSocket serverSocket = new DatagramSocket(9876); 

The above line constructs the DatagramSocket serverSocket at port 9876. All data sent and received 
will pass through this socket. Because UDP is connectionless, we do not have to spawn a new socket 
and continue to listen for new connection requests, as done in TCPServer.java. If multiple clients access 
this application, they will all send their packets into this single door, serverSocket. 

          String sentence = new String(receivePacket.getData()); 
  
          InetAddress IPAddress = receivePacket.getAddress(); 
  
          int port = receivePacket.getPort(); 

The above three lines unravel the packet that arrives from the client. The first of the three lines extracts 
the data from the packet and places the data in the String sentence; it has an analogous line in 
UDPClient. The second line extracts the IP address; the third line extracts the client port number, which 
is chosen by the client and is different from the server port number 9876. (We will discuss client port 
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numbers in some detail in the next chapter.) It is necessary for the server to obtain the address (IP 
address and port number) of the client, so that it can send the capitalized sentence back to the client. 

That completes our analysis of the UDP program pair. To test the application, you install and compile 
UDPClient.java in one host and UDPServer.java in another host. (Be sure to include the proper 
hostname of the server in UDPClient.java.)  Then execute the two programs on their respective hosts. 
Unlike with TCP, you can first execute the client side and then the server side. This is because, when 
you execute the client side, the client process does not attempt to initiate a connection with the server. 
Once you have executed the client and server programs, you may use the application by typing a line at 
the client. 
  

Return to Table Of Contents 

Copyright Keith W. Ross and James F, Kurose 1996-2000 
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2.8 Building a Simple Web Server

Now that we have studied HTTP in some detail and have learned how to write client-server applications 
in Java, let us combine this new-found knowledge and build a simple Web server in Java. We will see 
that the task is remarkably easy. 

Our goal is to build a server that does the following: 

●     Handles only one HTTP request.
●     Accepts and parses the HTTP request.
●     Gets the requested file from the server's file system.
●     Creates an HTTP response message consisting of the requested file preceded by header lines.
●     Sends the response directly to the client.

Let's try to make the code as simple as possible in order to shed insight on the networking concerns. The 
code that we present will be far from bullet proof! For example, let's not  worry about handling 
exceptions. And let's assume that the client requests an object that is in server's file system. 

WebServer.java 

Here is the code for a simple Web server: 
  

import java.io.*; 
import java.net.*; 
import java.util.*; 

class WebServer{ 

    public static void main(String argv[]) throws Exception  { 

          String requestMessageLine; 
          String fileName; 

          ServerSocket listenSocket = new ServerSocket(6789); 
          Socket connectionSocket = listenSocket.accept(); 

          BufferedReader inFromClient = 
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            new BufferedReader(new InputStreamReader(connectionSocket.
getInputStream())); 
          DataOutputStream outToClient = 
            new DataOutputStream(connectionSocket.getOutputStream()); 

          requestMessageLine = inFromClient.readLine(); 

          StringTokenizer tokenizedLine = 
            new StringTokenizer(requestMessageLine); 

                      if (tokenizedLine.nextToken().equals("GET")){ 

          fileName = tokenizedLine.nextToken(); 

          if (fileName.startsWith("/") == true ) 
                         fileName  = fileName.substring(1); 

                      File file = new File(fileName); 
          int numOfBytes = (int) file.length(); 

          FileInputStream inFile  = new FileInputStream (fileName); 

                      byte[] fileInBytes = new byte[numOfBytes]; 
          inFile.read(fileInBytes); 

          outToClient.writeBytes("HTTP/1.0 200 Document Follows\r\n"); 

          if (fileName.endsWith(".jpg")) 
                  outToClient.writeBytes("Content-Type: image/jpeg\r
\n"); 
          if (fileName.endsWith(".gif")) 
                  outToClient.writeBytes("Content-Type: image/gif\r
\n"); 

          outToClient.writeBytes("Content-Length: " + numOfBytes + "\r
\n"); 
          outToClient.writeBytes("\r\n"); 

          outToClient.write(fileInBytes, 0, numOfBytes); 
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          connectionSocket.close(); 
                     } 

     else System.out.println("Bad Request Message"); 
  
     } 
} 
  
  
Let us now take a look at the code. The first half the program is almost identical to TCPServer.java. As 
with TCPServer.java, we import the java.io and java.net packages. In addition to these two packages 
we also import the java.util package, which contains the StringTokenizer class, which is used for 
parsing HTTP request messages. Looking now at the lines within the class WebServer, we define two 
string objects: 

        String requestMessageLine; 
    String fileName; 

The object requestMessageLine is a string that will contain the first line in the HTTP request message. 
The object fileName is a string that will contain the file name of the requested file. The next set of 
commands is  identical to the corresponding set of commands in TCPServer.java. 

         ServerSocket listenSocket = new ServerSocket(6789); 
    Socket connectionSocket = listenSocket.accept(); 

         BufferedReader inFromClient = 
      new BufferedReader(new InputStreamReader(connectionSocket.
getInputStream())); 
    DataOutputStream outToClient = 
      new DataOutputStream(connectionSocket.getOutputStream()); 

Two socket-like objects are created. The first of these objects is listenSocket, which is of type 
ServerSocket. The object listenSocket is created by the server program before receiving a request for a 
TCP connection from a client. It listens at port 6789, and waits for a request from some client to 
establish a TCP connection. When a request for a connection arrives, the accept() method of 
listenSocket creates a new object, connectionSocket, of type Socket.  Next two streams are created: the 
BufferedReader inFromClient and the DataOutputStream outToClient. The HTTP request message 
comes from the network, through connectionSocket and into inFromClient; the HTTP response 
message goes into  outToClient, through connectionSocket and into the network. The remaining 
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portion of the code differs significantly from TCPServer.java. 

        requestMessageLine = inFromClient.readLine(); 

The above command reads the first line of the HTTP request message. This line is supposed to be of the 
form: 

GET  file_name HTTP/1.0

Our server must now parse the line to extract the filename. 

       StringTokenizer tokenizedLine = new StringTokenizer
(requestMessageLine); 

       if (tokenizedLine.nextToken().equals("GET")){ 

             fileName = tokenizedLine.nextToken(); 

             if (fileName.startsWith("/") == true ) 
                     fileName  = fileName.substring( 1 ); 

The above commands parse the first line of the request message to obtain the requested filename. The 
object tokenizedLine can be thought of as the original request line with each of the "words" GET, 
file_name and HTTP/1.0 placed in a separate place holder called a token. The server knows from the 
HTTP RFC that the file name for the requested file is contained in the token that follows the token 
containing "GET". This file name is put in a string called fileName. The purpose of the last if statement 
in the above code is to remove the backslash that may precede the filename. 

       FileInputStream inFile  = new FileInputStream (fileName); 

The above command attaches a stream, inFile,  to the file fileName. 

       byte[] fileInBytes = new byte[numOfBytes]; 
       inFile.read(fileInBytes); 
  
The above commands determine the size of the file and construct an array of bytes of that size. The 
name of the array is fileInBytes. The last command reads from the stream inFile to the byte array 
fileInBytes. The program must convert to bytes because the output stream outToClient may only be fed 
with bytes. 
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Now we are ready to construct the HTTP response message. To this end we must first send the HTTP 
response header lines into the DataOutputStream outToClient: 

  
               outToClient.writeBytes("HTTP/1.0 200 Document Follows\r\n"); 

                if (fileName.endsWith(".jpg")) 
                             outToClient.writeBytes("Content-Type: image/jpeg\r\n"); 
                if (fileName.endsWith(".gif")) 
                             outToClient.writeBytes("Content-Type: image/gif\r\n"); 

                outToClient.writeBytes("Content-Length: " + numOfBytes + "\r
\n"); 
                outToClient.writeBytes("\r\n"); 

The above set of commands are particularly interesting. These commands prepare the header lines for 
HTTP response message and send the header lines to the TCP send buffer. The first command sends the 
mandatory status line: HTTP/1.0 200 Document Follows, followed by a carriage return and a line feed. 
The next two command lines prepare a single content-type header line. If the server is to transfer a gif 
image, then the server prepares the header line Content-Type: image/jpeg. If, on the other hand, the 
server is to transfer a jpeg image, then the server prepares the header line Content-Type: image/gif. (In 
this simple Web server, no content line is sent if the object is neither a gif nor a jpeg image.) The server 
then prepares and sends a content-length header line and a mandatory blank line to precede the object 
itself that is to be sent. We now must send the file FileName into the DataOutputStream outToClient. 
But because outToClient works with bytes, we first must perform a conversion to bytes: 

We can now send the requested file: 
  
           outToClient.write(fileInBytes, 0, numOfBytes); 

The above command sends the requested file, fileInBytes, to the TCP send buffer. TCP will concatenate 
the file, fileInBytes, to the header lines just created, segment the concatenation if necessary, and send 
the TCP segments to the client. 

             connectionSocket.close(); 

After serving  one request for one file, the server performs some housekeeping by closing the socket 
connectionSocket. 

To test this web server, install it on a host. Also put some files in the host. Then use a browser running 
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on any machine to request a file from the server. When you request a file, you will need to use the port 
number that you include in the server code (e.g., 6789). So if your server is located at somehost.
somewhere.edu, the file is somefile.html, and the port number is 6789, then the browser should request 
http://somehost.somewhere.edu:6789/somefile.html . 
  

Return to Table of Contents 

Copyright 1996-2000 Keith W. Ross and James F. Kurose 
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2.10 Summary

In this chapter we've studied both the conceptual and the implementation aspects of network 
applications. We've learned about the ubiquitous client-server paradigm adopted by Internet applications 
and seen its use in the HTTP,  FTP, SMTP, POP3 and DNS protocols.  We've studied these important 
application-level protocols, and their associated applications (the Web, file transfer, e-mail, and the 
domain name system) in some detail. We've examined how the socket API can be used to build network 
applications and walked through not only the use of sockets over connection-oriented (TCP) and 
connectionless (UDP) end-to-end transport services, but also built a simple web server using this API.  
The first step in our top-down journey "down" the layered network architecture is complete. 

At the very beginning of this book, in section 1.3, we gave a rather vague, bare bones definition of a 
protocol as defining "the format and the order of messages exchanged between two communicating 
entities, as well as the actions taken on the transmission and/or receipt of a message."  The material in 
this chapter, and in particular the detailed study of the HTTP, FTP, SMTP, POP3 and DNS protocols, 
has now added considerable substance to this definition. Protocols are a key concept in networking; our 
study of applications protocols has now given us the opportunity to develop a more intuitive feels for 
what protocols are all about. 

In Section 2.1 we described the service models that TCP and UDP offer to applications that invoke 
them. We took an even closer look at these service models when we developed simple applications that 
run over TCP and UDP in Sections 2.6-2.7. However, we have said little about how TCP and UDP 
provide these service models. For example, we have said very little about how TCP provides a reliable 
data transfer service to its applications. In the next chapter we shall take a careful look at not only the 
what, but also the how and why, of transport protocols. 

Armed with a knowledge about Internet application structure and application-level protocols, we're now 
ready to head further down the protocol stack and examine the transport layer in Chapter 3. 
  

Return to Table of Contents 

Copyright 1996-2000 Keith W. Ross and James F. Kurose 
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Homework Problems and Discussion Questions

Chapter 2

Review Questions 

Section 2.1 

1) List five non-proprietary Internet applications and the application-layer protocols that they use. 

2) For a communication session between two hosts, which host is the client and which is the server? 

3) What information is used by a process running on one host to identify a process running running on 
another host? 

4) List the various network-application user agents that you use on a daily basis. 

5) Referring to Figure 2.1-2, we see that not none of applications listed in the table require both "no data 
loss" and "timing". Can you conceive of an application that requires no data loss and that is also highly 
time sensitive? 

Sections 2.2-2.5 

6) What is meant by a handshaking protocol? 

7) Why do HTTP, FTP, SMTP, POP3 and IMAP run on top of TCP rather than UDP? 

8) Consider an e-commerce site that wants to keep a purchase record for each of its customers. Describe 
how this can be done with HTTP authentication. Describe how this can be done with cookies. 

9) What is the difference between persistent HTTP with pipelining and persistent HTTP without 
pipelining? Which of the two is used by HTTP/1.1? 

10) Telnet into a Web server and send a muli-line request message. Include in the request message the 
If-modified-since: header line to force  a response message with the 304 Not Modified 
status code. 

11) Why is it said that FTP sends control information "out of band"? 
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12) Suppose Alice with a Web-based e-mail account (such as Yahoo! mail or Hotmail) sends a message 
to Bob, who accesses his mail from his mail server using POP3. Discuss how the message gets from 
Alice's host to Bob's host. Be sure to list the series of application-layer protocols that are used to move 
the message between the two hosts. 

13) Suppose that you send an e-mail message whose only data is a Microsoft Excel attachment. What 
might the header lines (including MIME lines) look like? 

14) Print out the header of a message that you have recently received. How many Recieved: header 
lines are there? Analyze each of the header lines in the message. 

15) From a user's perspective, what is the difference between the download-and-delete mode and the 
download-and-keep mode in POP3? 

16) Redraw Figure 2.5-4 for when all queries from the local nameserver are iterative. 

17) Each Internet host will have at least one local name server and one authoratative name server. What 
role does each of these servers have in DNS? 

18) Is it possible that an organization's Web server and mail server have exactly the same alias for a 
hostname (e.g., foo.com)? What would be the "type" for the RR that contains the hostname of the mail 
server? 

19) Use nslookup to find a Web server that has multiple IP addresses. Does the Web server of your 
institution (school, company, etc.) have multiple IP addresses? 

Sections 2.6-2.9 

20) The UDP server described in Section 2.7 only needed one socket, whereas the TCP server described 
in Section 2.6 needed two sockets. Why? If the TCP server were to support n simultaneous connections, 
each from a different client host, how many sockets would the TCP server need? 

21) For the client-server application over TCP described in Section 2.6, why must the server program be 
executed before the client program? For the client-server application over UDP described in Section 2.7, 
why may the client program be executed before the server program? 

Problems

1) True or false. 

a) Suppose a user requests a Web page that consists of some text and two images. For this page 
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the client will send one request message and recieve three response messages?

b) True or false. Two distinct Web pages (e.g., www.mit.edu/research.html and www.mit.edu/
students.html) can be sent over the same persistent connection? 

c) With non-persistent connections between browser and origin server, it is possible for a single 
TCP segment to carry two distinct HTTP request messages? 

d) The Date: header in the HTTP response message indicates when the object in the response 
was last modified?

2) Read RFC 959 for FTP. List all of the client commands that are supported by the RFC. 

3) Read RFC 1700.  What are the well-known port numbers for the "simple file transfer protocol" (sftp)? 
For the "network news transfoer protocol" (nntp)? 

4) Suppose within your web browser you click on a link to obtain a web page. Suppose that the IP 
address for the associated URL is not cached in your local host, so that a DNS look up is necessary to 
obtain the IP address. Suppose that n DNS servers are visited before your host receives the IP address 
from DNS; the successive visits incur a RTT of RTT1, ..., RTTn. Further suppose that web page 

associated with the link contains exactly one object, a small amount of HTML text. Let RTT0 denote the 

RTT between the local host and the server containing the object. Assuming zero transmission time of the 
object, how much time elapses from when the client clicks on the link until the client receives the object. 

5) Referring to question (4), suppose the page contains three very small objects. Neglecting transmission 
times, how much time elapses with (a) nonpersistent HTTP with no parallel TCP connections, (b) 
nonpersistent HTTP with parallel connections, (c) persistent HTTP with pipelining. 

6) Two HTTP request methods are GET and POST. Are there any other methods in HTTP/1.0? If so, 
what are they used for? How about HTTP/1.1 ? 

7) Write a simple TCP program for a server that accepts lines of input from a client and prints the lines 
onto the server's standard output. (You can do this by modifying the TCPServer.java program in the 
text.) Compile and execute your program. On any other machine which contains a Web browser, set the 
proxy server in the browser to the machine in which your server program is running; also configure the 
port number appropriately. Your browser should now send its GET request messages to your server, and 
your server should display the messages on its standard output. Use this platform to determine whether 
your browser generates conditional GET messages for objects that are locally cached. 

7) Read the POP3 RFC, RFC 1939.  What  is the purpose of the UIDL POP3 command? 
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8) Install and compile the Java programs TCPClient and UDPClient on one host and TCPServer and 
UDPServer on another host. 

a) Suppose you run TCPClient before you run TCPServer. What happens? Why? 
b) Suppose you run UDPClient before you run UDPServer. What happens? Why? 
c) What happens if you use different port numbers for the client and server sides?

9) Rewrite TCPServer.java so that it can accept multiple connections. (Hint: You will need to use 
threads.) 
  

Discussion Questions

1) What is a CGI script? Give examples of two popular Web sites that use CGI scripts. Explain how 
these sites use CGI. Which languages are CGI scripts typically written in? 

2) How can you configure your browser for local caching? What kinds of options do you have? 

3) Can you configure your browser to open multiple simultaneous connections to a Web site? What are 
the advantages and disadvantages of having a large number of simultaneous TCP connections? 

4) Discussion question: Consider SMTP, POP3 and IMAP. Are these stateless protocols? Why or why 
not? 

5) We have seen that Internet TCP sockets treat the data being sent as a byte stream but UDP sockets 
recognize message boundaries.  What is one advantage and one disadvantage of byte-oriented API 
versus having the API explicitly  recognize and preserve application-defined message boundaries? 

6) Would it be possible to implement a connection-oriented service  (e.g., SMTP or HTTP) on top of a 
connectionless service? What would be some of the difficulties involved in doing so, and  how could 
these be overcome? 

Copyright 1996-2000 Keith W. Ross and James F. Kurose 
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3.1 Transport Layer Services and Principles

Residing between the application and network layers, the transport layer is in the core of the layered network 
architecture. It has the critical role of providing communication services directly to the application processes 
running on different hosts. In this chapter we'll examine the possible services provided by a transport layer 
protocol and the principles underlying various approaches towards providing these services. We'll also look 
at how these services are implemented and instantiated in existing protocols; as usual, particular emphasis 
will be given to the Internet protocols, namely, TCP and UDP transport layer protocols. 

In the previous two chapters we have touched on the role of the transport layer and the services that it 
provides. Let's quickly review what we have already learned about the transport layer: 

●     A transport layer protocol provides for logical communication between application processes running 
on different hosts. By "logical" communication, we mean that although the communicating 
application processes are not physically connected to each other (indeed, they may be on different 
sides of the planet, connected via numerous routers and a wide range of link types), from the 
applications' viewpoint, it is as if they were physically connected.  Application processes use the 
logical communication provided by the transport layer to send messages to each other, free for the 
worry of the details of the physical infrastructure used to carry these messages.  Figure 3.1-1 
illustrates the notion of logical communication.

●     As shown in Figure 3.1-1,  transport layer protocols are implemented in the end systems but not in 
network routers.  Network routers only act on the network-layer fields of the layer-3 PDUs; they do 
not act on the transport-layer fields.

●     At the sending side, the transport layer converts the messages it receives from a sending application 
process  into 4-PDUs (that is, transport-layer protocol data units). This is done by (possibly) breaking 
the application messages into smaller chunks and  adding a transport-layer header to each chunk to 
create  4-PDUs. The transport layer then passes the 4-PDUs to the network layer, where each 4-PDU 
is encapsulated into a 3-PDU. At the receiving side, the transport layer receives the 4-PDUs from the 
network layer, removes the transport header from the 4-PDUs, reassembles the messages and passes 
them to a receiving application process.

●     A computer network can make more than one transport layer protocol available to network 
applications. For example, the Internet has two protocols -- TCP and UDP. Each of these protocols 
provides a different set of transport layer services to the invoking application.

●     All transport layer protocols provide an application multiplexing/demultiplexing service. This service 
will be described in detail in the next section. As discussed in Section 2.1,  in addition to multiplexing/
demultiplexing service, a transport protocol can possibly provide other services to invoking 
applications, including reliable data transfer, bandwidth guarantees, and delay guarantees.
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Figure 3.1-1: The transport layer provides logical rather than physical communication between applications.

3.1.1 Relationship between Transport and Network Layers

From the perspective of network applications, the transport layer is the underlying communication 
infrastructure. Of course, there is more to the communication infrastructure than just the transport layer. For 
example, the network layer lies just below the transport layer in the protocol stack. Whereas a transport layer 
protocol provides logical communication between processes running on different hosts, a network layer 
protocol provides logical communication between hosts. This distinction is subtle but important. Let's 
examine this distinction with the aid of a household analogy. 

Consider two houses, one on the East Coast and the other on the West Coast,  with each house being home to 
a dozen kids. The kids in the East Coast household are cousins with the kids in the West Coast households. 
The kids in the two households love to write each other  -- each kid writes each cousin every week, with each 
letter delivered by the traditional postal service in a separate envelope. Thus, each household sends 144 
letters to the other household every week. (These kids would save a lot of money if they had e-mail!). In each 
of the households there is one kid  -- Alice in the West Coast house and Bob in the East Coast house -- 
responsible for mail collection and mail distribution. Each week Alice visits all her brothers and sisters, 
collects the mail, and gives the mail to a postal-service mail person who makes daily visits to the house. 
When letters arrive to the West Coast house, Alice also has the job of distributing the mail to her brothers and 
sisters. Bob has a similar job on the East coast. 

In this example, the postal service provides logical communication between the two houses -- the postal 
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service moves mail from house to house, not from person to person. On the other hand, Alice and Bob 
provide logical communication between the cousins -- Alice and Bob pick up mail from and deliver mail to, 
their brothers and sisters. Note that, from the cousins' perspective, Alice and Bob are the mail service, even 
though Alice and Bob are only a part (the end system part) of the end-to-end delivery process. This 
household example serves as a nice analogy for explaining how the transport layer relates to the network 
layer: 

●     hosts (also called end systems) = houses
●     processes = cousins
●     application messages = letters in envelope
●     network layer protocol = postal service (including mail persons)
●     transport layer protocol = Alice and Bob

Continuing with this analogy, observe that Alice and Bob do all their work within their respective homes; 
they are not involved, for example, in sorting mail in any intermediate mail center or in moving mail from 
one mail center to another. Similarly, transport layer protocols live in the end systems. Within an end system, 
a transport protocol moves messages from application processes to the network edge (i.e., the network layer) 
and vice versa; but it doesn't have any say about how the messages are moved within the network core. In 
fact, as illustrated in Figure 3.1-1, intermediate routers neither act on, nor recognize, any information that the 
transport layer may have appended to the application messages. 

Continuing with our family saga, suppose now that when Alice and Bob go on vacation, another cousin pair 
-- say, Susan and Harvey -- substitute for them and provide the household-internal collection and delivery of 
mail. Unfortunately for the two families, Susan and Harvey do not do the collection and delivery in exactly 
the same way as Alice and Bob. Being younger kids, Susan and Harvey pick up and drop off the mail less 
frequently and occasionally lose letters (which are sometimes chewed up by the family dog). Thus, the 
cousin-pair Susan and Harvey do not provide the same set of services (i.e., the same service model) as Alice 
and Bob. In an analogous manner, a computer network may make available multiple transport protocols, with 
each protocol offering a different service model to applications. 

The possible services that Alice and Bob can provide are clearly constrained by the possible services that the 
postal service provides. For example, if the postal service doesn't provide a maximum bound on how long it 
can take to deliver mail between the two houses (e.g., three days), then there is no way that Alice and Bob 
can guarantee a maximum delay for mail delivery between any of the cousin pairs. In a similar manner, the 
services that a transport protocol can provide are often constrained by the service model of the underlying 
network-layer protocol. If the network layer protocol cannot provide delay or bandwidth guarantees for 4-
PDUs sent between hosts, then the transport layer protocol can not provide delay or bandwidth guarantees for 
the messages sent between processes. 

Nevertheless, certain services can be offered by a transport protocol even when the underlying network 
protocol doesn't offer the corresponding service at the network layer. For example, as we'll see in this 
chapter, a transport protocol can offer reliable data transfer service to an application even when the 
underlying network protocol is unreliable, that is, even when the network protocol loses, garbles and 
duplicates packets. As another example (which we'll explore in Chapter 7 when we discuss network security), 
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a transport protocol can use encryption to guarantee that application messages are not read by intruders, even 
when the network layer cannot guarantee the secrecy of 4-PDUs. 

3.1.2 Overview of the Transport Layer in the Internet

The Internet, and more generally a TCP/IP network, makes available two distinct transport-layer protocols to 
the application layer. One of these protocols is UDP (User Datagram Protocol), which provides an unreliable, 
connectionless service to the invoking application. The second of the these protocols is TCP (Transmission 
Control Protocol), which provides a reliable, connection-oriented service to the invoking application. When 
designing a network application, the application developer must specify one of these two transport protocols. 
As we saw in Sections 2.6 and 2.7, the application developer selects between UDP and TCP when creating 
sockets. 

To simplify terminology, when in an Internet context, we refer to the 4-PDU as a segment. We mention, 
however, that the Internet literature (e.g., the RFCs) also refers to the PDU for TCP as a segment but often 
refers to the PDU for UDP as a datagram. But this same Internet literature also uses the terminology 
datagram for the network-layer PDU! For an introductory book on computer networking such as this one, we 
believe that it is less confusing to refer to both TCP and UDP PDUs as segments, and reserve the terminology 
datagram for the network-layer PDU. 

Before preceding with our brief introduction of UDP and TCP, it is useful to say a few words about the 
Internet's network layer. (The network layer is examined in detail in Chapter 4.) The Internet's network-layer 
protocol has a name -- IP, which abbreviates "Internet Protocol". IP provides logical communication between 
hosts. The IP service model is a best-effort delivery service. This means that IP makes its "best effort" to 
deliver segments between communicating hosts, but it makes no guarantees. In particular,  it does not 
guarantee segment delivery, it does not guarantee orderly delivery of segments, and it does it guarantee the 
integrity of the data in the segments. For these reasons, IP is said to be an unreliable service. We also 
mention here that every host has an IP address. We will examine IP addressing in detail in Chapter 4; for this 
chapter we need only keep in mind that each host has a unique IP address. 

Having taken a glimpse at the IP service model, let's now summarize the service model of UDP and TCP. 
The most fundamental responsibility of  UDP and TCP is to extend  IP's delivery service between two end 
systems  to a delivery service  between two processes running on the end systems. Extending  host-to-host 
delivery to process-to-process delivery is called application multiplexing and demultiplexing. We'll 
discuss application multiplexing and demultiplexing in the next section. UDP and TCP also provide integrity 
checking by including error detection fields in its header.  These two minimal transport-layer services --  host-
to-host data delivery and error checking -- are the only two services that UDP provides! In particular, like IP, 
UDP is an unreliable service -- it does not guarantee data sent by one process will arrive in tact to the 
destination process. UDP is discussed in detail in Section 3.3. 

TCP, on the other hand, offers several additional services to applications.. First and foremost, it provides 
reliable data transfer. Using flow control, sequence numbers, acknowledgments and timers (techniques 
we'll explore in detail in this Chapter), TCP's guarantee of reliable data transfer ensures that data is delivered 
from sending process to receiving process, correctly and in order. TCP thus converts  IP's unreliable service 
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between end systems into a reliable data transport service between processes. TCP also uses congestion 
control. Congestion control is not so much a service provided to the invoking application as it is a service for 
the Internet as a whole -- a service for the general good. In loose terms, TCP congestion control prevents any 
one TCP connection from swamping the links and switches between communicating hosts with an excessive 
amount of traffic. In principle,  TCP permits TCP connections traversing a congested network link to equally 
share that link's bandwidth. This is done by regulating the rate at which an the sending-side TCPs can send 
traffic into the network.  UDP traffic, on the other hand, is unregulated. A an application using UDP transport 
can send traffic at any rate it pleases, for as long as it pleases. 

A  protocol that provides reliable data transfer and congestion control is necessarily complex. We will need 
several sections to cover the principles of reliable data transfer and congestion control, and additional 
sections to cover the TCP protocol itself. These topics are investigated in Sections 3.4 through 3.8. The 
approach taken in this chapter is to alternative between the basic principles and the TCP protocol. For 
example, we first discuss reliable data transfer in a general setting and then discuss how TCP specifically 
provides reliable data transfer. Similarly, we first discuss congestion control in a general setting and then 
discuss how TCP uses congestion control. But before getting into all this good stuff, let's first look at 
application multiplexing and demultiplexing in the next section. 
  

Return to Table of Contents 

Copyright 1996-2000 Keith W. Ross and James F. Kurose 

file:///D|/Downloads/Livros/computação/Computer%20Netwo...proach%20Featuring%20the%20Internet/transport_layer.htm (5 of 5)20/11/2004 15:52:04



Multiplexing and Demultiplexing Network Applications

3.2 Multiplexing and Demultiplexing Applications

In this section we discuss the multiplexing/demultiplexing of messages by the transport layer from/to the 
application layer. In order to keep the discussion concrete, we'll discuss this basic service in the context of the 
Internet's transport layer. We emphasize, however, that multiplexing and demultiplexing services are provided in 
almost every protocol architecture ever designed. Moreover, multiplexing/demultiplexing are generic services, 
often found in several layers within a given protocol stack. 

Although the multiplexing/demultiplexing service is not among the most exciting services that can be provided by 
a transport layer protocol, it is an absolutely critical one. To understand why it so critical, consider the fact that IP 
delivers data between two end systems, with each end system identified with a unique IP address. IP does not 
deliver data between the application processes that run on these end systems.  Extending  host-to-host delivery to a 
process-to-process delivery is the  job of the transport layer's application multiplexing and demultiplexing service. 

At the destination host, the transport layer receives segments (i.e., transport-layer PDUs) from the network layer 
just below. The transport layer has the responsibility of delivering the data in these segments to the appropriate 
application process running in the host.  Let's take a look at an example. Suppose you are sitting in front of your 
computer, and you are downloading Web pages while running one FTP session and two Telnet sessions. You 
therefore have four network application processes running -- two Telnet processes, one FTP process, and one 
HTTP process. When the transport layer in your computer receives data from the network layer below,  it needs to 
direct the received data to one of these four processes. Let's now examine how this is done. 

Each transport-layer segment has a field that contains information that is used to determine the process to which 
the segment's data is to be delivered.  At the receiving end, the transport layer can then examine this field to 
determine the receiving process, and then direct the segment to that process. This job of delivering the data in a 
transport-layer segment to the correct application process is called demultiplexing. The job of gathering data at 
the source host from different application processes, enveloping the data with header information (which will later 
be used in demultiplexing) to create segments, and passing the segments to the network layer is called 
multiplexing. 

To illustrate the demultiplexing job, let us return to the household saga in the previous section. Each of the kids is  
distinguished by his or her name. When Bob receives a batch of mail from the mail person, he performs a 
demultiplexing operation by observing to whom the letters are addressed and then hand delivering the mail to his 
brothers and sisters. Alice performs a multiplexing operation when she collects letters from her brothers and sisters 
and gives the collected mail to the mail person. 

UDP and TCP perform the demultiplexing and multiplexing jobs by including two special fields in the segment 
headers: the source port number field and the destination port number field. These two fields are illustrated in 
Figure 3.2-1. When taken together, the fields uniquely identify an application process running on the destination 
host. (The UDP and TCP segments have other fields as well, and they will be addressed in the subsequent sections 
of this chapter.) 
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Figure 3.2-1: Source and destination port number fields in a transport layer segment.

The notion of port numbers was briefly introduced in Sections 2.6-2.7, in which we studied application 
development and socket programming. The port number is a 16-bit number, ranging from from 0 to 65535. The 
port  numbers ranging from 0 - 1023 are called well-known port numbers and are restricted, which means that 
they are reserved for use by well-known application protocols such as HTTP and FTP. HTTP uses port number 80; 
FTP uses port number 21. The list of well-known port numbers is given in [RFC 1700]. When we develop a new 
application (such as one of the applications developed in Sections 2.6-2.8), we must assign the application a port 
number. 

Given that each type of application running on an end system has a unique port number, then why is it that the 
transport-layer segment has fields for two port numbers, a source port number and a destination port number? The 
answer is simple: An end system may be running two processes of same type at the same time, and thus the port 
number of an application may not suffice to identify a specific process. For example, many Web servers spawn a 
new HTTP process for every request it receives; whenever such a Web server is servicing more than one request 
(which is by no means uncommon), the server is running more than one process with port number 80. Therefore, 
in order to uniquely identify processes, a second port number is needed. 

How is this second port number created? Which port number goes in the source port number field of a segment? 
Which goes in the destination port number field of a segment? To answer these questions, recall from Section 2.1 
that networked applications are organized around the client-server model. Typically, the host that initiates the 
application is the client and the other host is the server. Now let's look at a specific example. Suppose the 
application has port number 23 (the port number for Telnet). Consider a transport layer segment leaving the client 
(i.e., the host that initiated the Telnet session) and destined for the server. What are the destination and source port 
numbers for this segment? For the destination port number, this segment has the port number of the application, 
namely, 23. For the source port number, the client uses a number that is not being used by any of its other 
processes. (This is can be done automatically by the transport-layer software running on the client and is 
transparent to the application developer. An application can also explicitly request a specific port number using the 
bind() system call on many Unix-like systems.) Let's say the client chooses port number x. Then each segment 
that this process sends will have its source port number set to x and destination port number set to 23. When the 
segment arrives at the server, the source and destination port numbers in the segment enable the server host to pass 
the data of the segment to the correct application process: the destination port number 23 identifies a Telnet 
process and the source port number x identifies the specific Telnet process. 

The situation is reversed for the segments flowing from the server to the client. The source port number is now the 
application port number, 23. The destination port number is now x. (The same x used for the source port number 
for the segments sent from client to server.) When a segment arrives at the client, the source and destination port 
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numbers in the segment will enable the client host to pass the data of the segment to the correct application 
process, which is identified by the port number pair. Figure 3.2-2 summarizes the discussion: 

Figure 3.2-2: Use of source and destination port numbers in a client-server application
 

Now you may be wondering, what happens if two different clients establish a Telnet session to a server, and each 
of these clients choose the same source port number x? How will the server be able to demultiplex the segments 
when the two sessions have exactly the same port number pair? The answer to this question is that server also uses 
the IP addresses in the IP datagrams carrying these segments. (We will discuss IP datagrams and addressing in 
detail in Chapter 4.) The situation is illustrated in Figure 3.2-3, in which host A initiates two Telnet sessions to 
host C, and host A initiates one Telnet session to host C. Hosts A, B and C each have their own unique IP address; 
host A has IP address A, host B has IP address B, and host C has IP address C. Host A assigns two different source 
port (SP) numbers (x and y) to the two Telnet connections emanating from host A. But because host B is choosing 
source port numbers independently from A, it can also assign SP=x to its Telnet connection. Nevertheless, host C 
is still able to demultiplex the two connections since the two connections have different source IP addresses. In 
summary, we see that when a destination host receives data from the network layer, the triplet [source IP address, 
source port number, destination port number] is used to forward the data to the appropriate process. 
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Figure 3.2-3: Two clients, using the same port numbers to communicate with the same server application

Now that we understand how the transport layer can multiplex and demultiplex messages from/to network 
applications, let's move on and discuss one of the Internet's transport protocols, UDP. In the next section we shall 
see that UDP adds little more to the network layer protocol than multiplexing/demultiplexing service. 
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3.3 Connectionless Transport: UDP

The Internet makes two transport protocols available to its applications, UDP and TCP.  In this section 
we take a close look at UDP:  how it works and what it does. The reader is encouraged to refer back to 
material in Section 2.1, which includes an overview of the UDP service model, and to the material in 
Section 2.7, which discusses socket programming over UDP. 

To motivate our discussion about UDP, suppose you were interested in designing a no-frills, bare-bones 
transport protocol. How might you go about doing this? You might first consider using a vacuous 
transport protocol. In particular, on the sending side, you might consider taking the messages from the 
application process and passing them directly to the network layer; and on the receiving side, you might 
consider  taking the messages arriving from the network layer and passing them directly to the 
application process. But as we learned in the previous section, we have to do a little more than nothing. 
At the very least, the transport layer must provide a multiplexing/demultiplexing service in order to pass 
data between the network layer and the correct application. 

UDP, defined in [RFC 768],  does just about as little as a transport protocol can. Aside from the 
multiplexing/demultiplexing function and some light error checking, it adds nothing to IP. In fact, if the 
application developer chooses UDP instead of TCP, then the application is talking almost directly with 
IP. UDP takes messages from application process, attaches source and destination port number fields for 
the multiplexing/demultiplexing service, adds two other fields of minor importance, and passes the 
resulting "segment" to the network layer. The network layer encapsulates the segment into an IP 
datagram and then makes a best-effort attempt to deliver the segment to the receiving host. If the 
segment arrives at the receiving host, UDP uses the port numbers and the IP source and destination 
addresses to deliver the data in the segment to the correct application process. Note that with UDP there 
is no handshaking between sending and receiving transport-layer entities before sending a segment. For 
this reason, UDP is said to be connectionless. 

DNS is an example of an application-layer protocol that uses UDP. When the DNS application (see 
section 2.5)  in a host wants to make a query, it constructs a DNS query message and passes the message 
to a UDP socket (see Section 2.7). Without performing any handshaking, UDP adds a header fields to 
the message and passes the resulting segment to the network layer. The network layer encapsulates the 
UDP segment into a datagram and sends the datagram to a name server. The DNS application at the 
querying host then waits for a reply to its query. If it doesn't receive a reply (possibly because UDP lost 
the query or the reply), it either tries sending the query to another nameserver, or it informs the invoking 
application that it can't get a reply. We mention that the DNS specification permits DNS to run over 
TCP instead of UDP; in practice, however, DNS almost always runs over UDP. 

Now you might be wondering why an application developer would ever choose to build an application 
over UDP rather than over TCP. Isn't TCP always preferable to UDP since TCP provides a reliable data 
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transfer service and UDP does not? The answer is no, as many applications are better suited for UDP for 
the following reasons: 

●     No connection establishment. As we shall discuss in Section 3.5, TCP uses a three-way 
handshake before it starts to transfer data. UDP just blasts away without any formal 
preliminaries. Thus UDP does not introduce any delay to establish a connection. This is probably 
the principle reason why DNS runs over UDP rather than TCP -- DNS would be much slower if it 
ran over TCP. HTTP uses TCP rather than UDP, since reliability is critical for Web pages with 
text. But, as we briefly discussed in Section 2.2, the TCP connection establishment delay in 
HTTP is an important contributor to the "world wide wait".

●     No connection state. TCP maintains connection state in the end systems. This connection state 
includes receive and send buffers, congestion control parameters, and sequence and 
acknowledgment number parameters. We will see in Section 3.5 that this state information is 
needed to implement TCP's reliable data transfer service and to provide congestion control. UDP, 
on the other hand, does not maintain connection state and does not track any of these parameters. 
For this reason, a server devoted to a particular application can typically support many more 
active clients when the application runs over UDP rather than TCP.

●     Small segment header overhead. The TCP segment has 20 bytes of header overhead in every 
segment, whereas UDP only has 8 bytes of overhead.

●     Unregulated send rate. TCP has a congestion control mechanism that throttles the sender when 
one or more links between sender and receiver becomes excessively congested. This throttling 
can have a severe impact on real-time applications, which can tolerate some packet loss but 
require a minimum send rate. On the other hand, the speed at which UDP sends data is only 
constrained by the rate at which the application generates data, the capabilities of the source 
(CPU, clock rate, etc.) and the access bandwidth to the Internet. We should keep in mind, 
however, that the receiving host does not necessarily receive all the data - when the network is 
congested,  a significant fraction of the UDP-transmitted data could be lost due to router buffer 
overflow. Thus, the receive rate is limited by network congestion even if the sending rate is not 
constrained.

Table 3.1-1 lists popular Internet applications and the transport protocols that they use. As we expect, e-
mail, remote terminal access, the Web and file transfer run over TCP --  these applications need the 
reliable data transfer service of TCP. Nevertheless, many important applications run over UDP rather 
TCP. UDP is used for  RIP routing table updates (see Chapter 4 on the network layer), because the 
updates are sent periodically, so that lost updates are replaced by more up-to-date updates. UDP is used 
to carry network management (SNMP - see Chapter 8)  data.  UDP is preferred to TCP in this case, since 
network management must often run when the network is in a stressed state - precisely when reliable, 
congestion-controlled data transfer is difficult to achieve. Also, as we mentioned earlier, DNS runs over 
UDP, thereby avoiding TCP's connection establishment delays. 
  
  

Application Application-layer protocol Underlying Transport Protocol
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electronic mail SMTP TCP

remote terminal access Telnet TCP

Web HTTP TCP

file transfer FTP TCP

remote file server NFS typically UDP

streaming multimedia proprietary typically UDP

Internet telephony proprietary typically UDP

Network Management SNMP typically UDP

Routing Protocol RIP typically UDP

Name Translation DNS typically UDP

Figure 3.1-1: Popular Internet applications and their underlying transport protocols.
  
  
  

As shown in Figure 3.1-1, UDP is also commonly used today with multimedia applications, such as 
Internet phone, real-time video conferencing, and streaming of stored audio and video. We shall take a 
close look at these applications in Chapter 6. We just mention now that all of these applications can 
tolerate a small fraction of packet loss, so that reliable data transfer is not absolutely critical for the 
success of the application. Furthermore, interactive real-time applications, such as Internet phone and 
video conferencing, react very poorly to TCP's congestion control. For these reasons, developers of 
multimedia applications often choose to run the applications over UDP instead of TCP. Finally, because 
TCP cannot be employed with multicast, multicast applications run over UDP. 

Although commonly done today, running multimedia applications over UDP is controversial to say the 
least. As we mentioned above, UDP lacks any form of congestion control. But congestion control is 
needed to prevent the network from entering a congested state in which very little useful work is done. If 
everyone were to start streaming high bit-rate video without using any congestion control, there would 
be so much packet overflow at routers that no one would see anything. Thus, the lack of congestion 
control in UDP is a potentially serious problem. Many researchers have proposed new mechanisms to 
force all sources, including UDP sources, to perform adaptive congestion control [Mahdavi]. 

Before discussing the UDP segment structure, we mention that it is possible for an application to have 
reliable data transfer when using UDP. This can be done if reliability is built into the application itself (e.
g., by adding acknowledgement and retransmission mechanisms, such as those we shall study in the next 
section). But this a non-trivial task that would keep an application developer busy debugging for a long 
time. Nevertheless, building reliability directly into the application allows the application to "have its 
cake and eat it too" -- that is, application processes can communicate reliably without being constrained 
by the transmission rate constraints imposed by TCP's congestion control mechanism. Application-level 
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reliability also allows an application to tailor its own application-specific form of error control.  An 
interactive real-time may occasionally choose to retransmit a lost message, provided that round trip 
network delays are small enough to avoid adding significant playout delays [Papadopoulos 1996]. 

Many of today's proprietary streaming applications do just this -- they run over UDP, but they have built 
acknowledgements and retransmissions into the application in order reduce packet loss. 

UDP Segment Structure

The UDP segment structure, shown in Figure 3.3-2, is defined in [RFC 768]. 

Figure 3.3-2: UDP segment structure

The application data occupies the data field of the UDP datagram. For example, for DNS, the data field 
contains either a query message or a response message. For a streaming audio application, audio samples 
fill the data field. The UDP header has only four fields, each consisting of four bytes. As discussed in 
the previous section, the port numbers allow the destination host to pass the application data to the 
correct process running on that host (i.e., perform the demultiplexing function). The checksum is used 
by the receiving host to check if errors have been introduced into the segment during the course of its 
transmission from source to destination. (Basic principles of error detection are described in Section 
5.2.). 
  

UDP Checksum

The UDP checksum provides for error detection. UDP at the sender side performs the one's complement 
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of the sum of all the 16-bit words in the  segment. This result is put in the checksum field of the UDP 
segment. (In truth, the checksum is also calculated over a few of the fields in the IP header in addition to 
the UDP segment. But we ignore this detail in order to see the forest through the trees.) When the 
segment arrives (if it arrives!) at the receiving host, all 16-bit words are added together, including the 
checksum. If  this sum equals 1111111111111111, then the segment has no detected errors. If one of the 
bits is a zero, then we know that errors have been introduced into the segment. 

Here we give a simple example of the checksum calculation. You can find details about efficient 
implementation of the calculation in the [RFC 1071]. As an example, suppose that we have the 
following three 16-bit words: 

0110011001100110 
0101010101010101 
0000111100001111

The sum of first of these 16-bit words is: 

0110011001100110 
0101010101010101 
--------------------- 
1011101110111011

Adding the third word to the above sum gives 

1011101110111011 
0000111100001111 
--------------------- 
1100101011001010

The 1's complement is obtained by converting all the 0s to 1s and converting all the 1s to 0s. Thus the 1's 
complement of the sum 1100101011001010 is 0011010100110101, which becomes the checksum. At 
the receiver, all four 16-bit words are added, including the checksum. If no errors are introduced into the 
segment, then clearly the sum at the receiver will be 1111111111111111. If one of the bits is a zero, then 
we know that errors have been introduced into the segment. In section 5.1, we'll see that the Internet 
checksum is not foolproof -- even if the sum equals 111111111111111, it is still possible that there are 
undetected errors in the segment.  For this reason, a number of protocols use more sophisticated error 
detection techniques than simple checksumming. 

You may wonder why UDP provides a checksum in the first place, as many link-layer protocols 
(including the popular Ethernet protocol) also provide error checking? The reason is that there is no 
guarantee that all the links between source and destination provide error checking  -- one of the links 
may use a protocol that does not provide error checking. Because IP is supposed to run over just about 
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any layer-2 protocol, it is useful for the transport layer to provide error checking as a safety measure. 
Although UDP provides error checking, it does not do anything to recover from an error. Some 
implementations of UDP simply discard the damaged segment; others pass the damaged segment to the 
application with a warning. 

That wraps up our discussion of UDP. We will soon see that TCP offers reliable data transfer to its 
applications as well as other services that UDP doesn't offer. Naturally, TCP is also more complex than 
UDP. Before discussing TCP, however, it will be useful to step back and first discuss the underlying 
principles of reliable data transfer, which we do in the subsequent section. We will then explore TCP in 
Section 3.5, where we will see that TCP has it foundations in these underlying principles. 
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Principle of Reliable Data Transfer

3.4 Principles of Reliable Data Transfer

In this section, we consider the problem of reliable data transfer in a general context. This is appropriate since the problem of 
implementing reliable data transfer occurs not only at the transport layer, but also at the link layer and the application layer as well. 
The general problem is thus of central importance to networking. Indeed, if one had to identify a ``top-10'' list of fundamentally 
important problems in all of networking, this would be a top candidate to lead that list. In the next section we will examine TCP 
and show, in particular, that TCP exploits many of the principles that we are about to describe. 

Figure 3.4-1:  Reliable data transfer: service model and service implementation.

Figure 3.4-1 illustrates the framework for our study of reliable data transfer. The service abstraction provided to the upper layer 
entities is that of a reliable channel through which data can be transferred. With a reliable channel, no transferred data bits are 
corrupted (flipped from 0 to 1, or vice versa) or lost, and all are delivered in the order in which they were sent.  This is precisely 
the service model offered by TCP to the Internet applications that invoke it. 

It is the responsibility of a reliable data transfer protocol to implement this service abstraction.  This  task is made difficult by 
the fact that layer below the reliable data transfer protocol may be unreliable.  For example, TCP is a reliable data transfer protocol 
that is implemented on top of an unreliable (IP) end-end network layer.  More generally, the layer beneath the two reliably-
communicating endpoints might consist of a single physical link (e.g., as in the case of a link-level data transfer protocol) or a 
global internetwork (e.g., as in the case of a transport-level protocol). For our purposes, however, we can view this lower layer 
simply as an unreliable point-to-point channel. 

In this section, we will incrementally develop the sender and receiver sides of a reliable data transfer protocol, considering 
increasingly complex models of the underlying channel. Figure 3.4-1(b) illustrates the interfaces for our data transfer protocol. The 
sending side of the data transfer protocol will be invoked from above by a call to rdt_send(). It will be passed the data to be 
delivered to the upper-layer at the receiving side. (Here rdt stands for ``reliable data transfer'' protocol and _send indicates that 
the sending side of rdt is being called. The first step in developing any protocol is to choose a good name!) On the receiving side, 
rdt_rcv() will be called when a packet arrives from the receiving side of the channel. When the rdt protocol wants to deliver 
data to the upper-layer, it will do so by calling deliver_data(). In the following we use the terminology "packet" rather than 
"segment" for the protocol data unit.. Because the theory developed in this section applies to computer networks in general, and 
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not just to the Internet transport layer, the generic term "packet" is perhaps more appropriate here. 

In this section we consider only the case of unidirectional data transfer, i.e., data transfer from the sending to receiving side. The 
case of reliable bidirectional (i.e., full duplex) data transfer is conceptually no more difficult but considerably more tedious. 
Although we consider only unidirectional data transfer, it is important to note that the sending and receiving sides of our protocol 
will nonetheless need to transmit packets in both directions, as indicated in Figure 3.4-1. We will see shortly that in addition to 
exchanging packets containing the data to be transferred, the sending and receiving sides of rdt will also need to exchange 
control packets back and forth. Both the send and receive sides of rdt send packets to the other side by a call to udt_send() 
(unreliable data transfer). 
  

3.4.1 Building a Reliable Data Transfer Protocol

Reliable Data Transfer over a Perfectly Reliable Channel: rdt1.0

We first consider the simplest case in which the underlying channel is completely reliable. The protocol itself, which we will call 
rdt1.0, is trivial. The finite state machine (FSM) definitions for the rdt1.0 sender and receiver are shown in Figure 3.4-2.   
The sender and receiver FSMs in Figure 3.4-2 each have just one state.  The arrows in the FSM description indicate the transition 
of the protocol from one state to another. (Since each FSM in Figure 3.4-2 has just one state, a transition is necessarily from the 
one state back to itself; we'll see more complicated state diagrams shortly.).  The event causing the transition is shown above the 
horizontal line labeling the transition, and the action(s) taken when the event occurs are shown below the horizontal line. 

The sending side of rdt simply accepts data from the upper-layer via the rdt_send(data)event, puts the data into a packet 
(via the action make_pkt(packet,data)) and sends the packet into the channel. In practice, the rdt_send(data)event 
would result from a procedure call (e.g., to rdt_send()) by the upper layer application. 

On the receiving side, rdt receives a packet from the underlying channel via the rdt_rcv(packet) event, removes the data 
from the packet (via the action extract(packet,data)) and passes the data up to the upper-layer. In practice, the rdt_rcv
(packet)event would result from a procedure call (e.g., to rdt_rcv()) from the lower layer protocol. 

In this simple protocol, there is no difference between a unit of data and a packet. Also, all packet flow is from the sender to 
receiver - with a perfectly reliable channel there is no need for the receiver side to provide any feedback to the sender since nothing 
can go wrong! 

Figure 3.4-2: rdt1.0 - a protocol for a completely reliable channel

 Reliable Data Transfer over a Channel with Bit Errors: rdt2.0

 A more realistic model of the underlying channel is one in which bits in a packet may be corrupted. Such bit errors typically occur 
in the physical components of a network as a packet is transmitted, propagates, or is buffered. We'll continue to assume for the 
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moment that all transmitted packets are received (although their bits may be corrupted) in the order in which they were sent. 

Before developing a protocol for reliably communicating over such a channel, first consider how people might deal with such a 
situation. Consider how you yourself might dictate a long message over the phone. In a typical scenario, the message taker might 
say ``OK'' after each sentence has been heard, understood, and recorded. If the message taker hears a garbled sentence, you're 
asked to repeat the garbled sentence. This message dictation protocol uses both positive acknowledgements (``OK'') and negative 
acknowledgements (``Please repeat that''). These control messages allow the receiver to let the sender know what has been 
received correctly, and what has been received in error and thus requires repeating. In a computer network setting, reliable data 
transfer protocols based on such retransmission are known ARQ (Automatic Repeat reQuest) protocols. 

Fundamentally, two additional protocol capabilities are required in ARQ protocols to handle the presence of bit errors: 

●     Error detection. First, a mechanism is needed to allow the receiver to detect when bit errors have occurred. Recall from 
Sections 3.3 that the UDP transport protocol uses the Internet checksum field for exactly this purpose. In Chapter 5 we'll 
examine error detection and correction techniques in greater detail; These techniques allow the receiver to detect, and 
possibly correct packet bit errors. For now, we need only know that these techniques require that extra bits (beyond the bits 
of original data to be transferred) be sent from the sender to receiver; these bits will be gathered into the packet checksum 
field of the rdt2.0 data packet.

●     Receiver feedback. Since the sender and receiver are typically executing on different end systems, possibly separated by 
thousands of miles, the only way for the sender to learn of the receiver's view of the world (in this case, whether or not a 
packet was received correctly) is for the receiver to provide explicit feedback to the sender. The positive (ACK) and 
negative acknowledgement (NAK) replies in the message dictation scenario are an example of such feedback. Our rdt2.0 
protocol will similarly send ACK and NAK packets back from the receiver to the sender. In principle, these packets need 
only be one bit long, e.g., a zero value could indicate a NAK and a value of 1 could indicate an ACK.

Figure  3.4-3 shows the FSM representation of rdt2.0, a data transfer protocol employing error detection, positive 
acknowledgements (ACKs), and negative acknowledgements (NAKs). 

The send side of rdt2.0 has two states. In one state, the send-side protocol is waiting for data to be passed down from the upper 
layer. In the other state, the sender protocol is waiting for an ACK or a NAK packet from the receiver. If an ACK packet is 
received (the notation rdt_rcv(rcvpkt) && isACK(rcvpkt) in Figure 3.4-3 corresponds to this event), the sender knows 
the most recently transmitted packet has been received correctly and thus the protocol returns to the state of waiting for data from 
the upper layer. If a NAK is received, the protocol retransmits the last packet and waits for an ACK or NAK to be returned by the 
receiver in response to the retransmitted data packet. It is important to note that when the receiver is in the wait-for-ACK-or-NAK 
state, it can not get more data from the upper layer; that will only happen after the sender receives an ACK and leaves this state. 
Thus, the sender will not send a new piece of data until it is sure that the receiver has correctly received the current packet. 
Because of this behavior, protocols such as rdt2.0 are known as stop-and-wait protocols. 

The receiver-side FSM for rdt2.0 still has a single state. On packet arrival, the receiver replies with either an ACK or a NAK, 
depending on whether or not the received packet is corrupted. In Figure 3.4-3, the notation rdt_rcv(rcvpkt) && corrupt
(rcvpkt) corresponds to the event where a packet is received and is found to be in error. 
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Figure 3.4-3: rdt2.0 -  a protocol for a channel with bit-errors

Protocol rdt2.0 may look as if it works but unfortunately has a fatal flaw. In particular, we haven't accounted for the possibility 
that the ACK or NAK packet could be corrupted! (Before proceeding on, you should think about how this problem may be fixed.) 
Unfortunately, our slight oversight is not as innocuous as it may seem. Minimally, we will need to add checksum bits to ACK/
NAK packets in order to detect such errors. The more difficult question is how the protocol should recover from errors in ACK or 
NAK packets. The difficulty here is that if an ACK or NAK is corrupted, the sender has no way of knowing whether or not the 
receiver has correctly received the last piece of transmitted data. 

Consider three possibilities for handling corrupted ACKs or NAKs: 

●     For the first possibility, consider what a human might do in the message dictation scenario. If the speaker didn't understand 
the ``OK'' or ``Please repeat that'' reply from the receiver, the speaker would probably ask ``What did you say?'' (thus 
introducing a new type of sender-to-receiver packet to our protocol). The speaker would then repeat the reply. But what if 
the speaker's ``What did you say'' is corrupted? The receiver, having no idea whether the garbled sentence was part of the 
dictation or a request to repeat the last reply, would probably then respond with ``What did you say?'' And then, of course, 
that response might be garbled. Clearly, we're heading down a difficult path.

●     A second alternative is to add enough checksum bits to allow the sender to not only detect, but recover from, bit errors. This 
solves the immediate problem for a channel which can corrupt packets but not lose them.

●     A third approach is for the sender to simply resend the current data packet when it receives a garbled ACK or NAK packet. 
This, however, introduces duplicate packets into the sender-to-receiver channel. The fundamental difficulty with duplicate 
packets is that the receiver doesn't know whether the ACK or NAK it last sent was received correctly at the sender. Thus, it 
can not know a priori  whether an arriving packet contains new data or is a retransmission!

A simple solution to this new problem (and one adopted in almost all existing data transfer protocols including TCP) is to add a 
new field to the data packet and have the sender number its data packets by putting a sequence number into this field. The 
receiver then need only check this sequence number to determine whether or not the received packet is a retransmission. For this 
simple case of a stop-and-wait protocol, a 1-bit sequence number will suffice, since it will allow the receiver to know whether the 
sender is resending the previously transmitted packet (the sequence number of the received packet has the same sequence number 
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as the most recently received packet) or a new packet (the sequence number changes, i.e., moves ``forward'' in modulo 2 
arithmetic). Since we are currently assuming a channel that does not lose packets, ACK and NAK packets do not themselves need 
to indicate the sequence number of the packet they are ACKing or NAKing, since the sender knows that a received ACK or NAK 
packet (whether garbled or not) was generated in response to its most recently transmitted data packet. 

Figure 3.4-4: rdt2.1 sender
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Figure 3.4-5: rdt2.1 recevier

Figures 3.4-4 and 3.4-5 show the FSM description for rdt2.1, our fixed version of rdt2.0. The rdt2.1 sender and receiver 
FSM's each now have twice as many states as before. This is because the protocol state must now reflect whether the packet 
currently being sent (by the sender) or expected (at the receiver) should have a sequence number of 0 or 1. Note that the actions in 
those states where a 0-numbered packet is being sent or expected are mirror images of those where a 1-numbered packet is being 
sent or expected; the only differences have to do with the handling of the sequence number. 

Protocol rdt2.1 uses both positive and negative acknowledgements from the receiver to the sender.  A negative acknowledgement 
is sent whenever a corrupted packet, or an out of order packet, is received.  We can accomplish the same effect as a NAK if instead 
of sending a NAK, we instead send an ACK for the last correctly received packet. A sender that receives two ACKs for the same 
packet (i.e., receives duplicate ACKs) knows that the recevier did not correctly receive the packet following the packet that is 
being ACKed twice.  Many TCP implementations use the receipt of so-called "triple duplicate ACKs" (three ACK packets all 
ACK'ing the same packet) to trigger a retransmission at the sender.  Our NAK-free reliable data transfer protocol for a channel 
with bit errors is rdt2.2, shown in Figure 3.4-6 and 3.4-7. 
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Figure 3.4-6: rdt2.2 sender
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Figure 3.4-7: rdt2.2 receiver

Reliable Data Transfer over a Lossy Channel with Bit Errors: rdt3.0

Suppose now that in addition to corrupting bits, the underlying channel can lose packets as well, a not uncommon event in today's 
computer networks (including the Internet). Two additional concerns must now be addressed by the protocol: how to detect packet 
loss and what to do when this occurs. The use of checksumming, sequence numbers, ACK packets, and retransmissions - the 
techniques already developed in rdt 2.2 - will allow us to answer the latter concern. Handling the first concern will require 
adding a new protocol mechanism. 

There are many possible approaches towards dealing with packet loss (several more of which are explored in the exercises at the 
end of the chapter). Here, we'll put the burden of detecting and recovering from lost packets on the sender. Suppose that the sender 
transmits a data packet and either that packet, or the receiver's ACK of that packet, gets lost. In either case, no reply is forthcoming 
at the sender from the receiver. If the sender is willing to wait long enough so that it is certain that a packet has been lost, it can 
simply retransmit the data packet. You should convince yourself that this protocol does indeed work. 

But how long must the sender wait to be certain that something has been lost? It must clearly wait at least as long as a round trip 
delay between the sender and receiver (which may include buffering at intermediate routers or gateways) plus whatever amount of 
time is needed to process a packet at the receiver. In many networks, this worst case maximum delay is very difficult to even 
estimate, much less know with certainty. Moreover, the protocol should ideally recover from packet loss as soon as possible; 
waiting for a worst case delay could mean a long wait until error recovery is initiated. The approach thus adopted in practice is for 
the sender to ``judiciously'' chose a time value such that packet loss is likely, although not guaranteed, to have happened. If an 
ACK is not received within this time, the packet is retransmitted. Note that if a packet experiences a particularly large delay, the 
sender may retransmit the packet even though neither the data packet nor its ACK have been lost. This introduces the possibility of 
duplicate data packets in the sender-to-receiver channel. Happily, protocol rdt2.2 already has enough functionality (i.e., 
sequence numbers) to handle the case of duplicate packets. 
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From the sender's viewpoint, retransmission is a panacea. The sender does not know whether a data packet was lost, an ACK was 
lost, or if the packet or ACK was simply overly delayed. In all cases, the action is the same: retransmit. In order to implement a 
time-based retransmission mechanism, a countdown timer will be needed that can interrupt the sender after a given amount of 
timer has expired. The sender will thus need to be able to (i) start the timer each time a packet (either a first time packet, or a 
retransmission) is sent, (ii) respond to a timer interrupt (taking appropriate actions), and (iii) stop the timer. 

The existence of sender-generated duplicate packets and packet (data, ACK) loss also complicates the sender's processing of any 
ACK  packet it receives. If an ACK is received, how is the sender to know if it was sent by the receiver in response to its (sender's) 
own most recently transmitted packet, or is a delayed ACK sent in response to an earlier transmission of a different data packet? 
The solution to this dilemma is to augment the ACK packet with an acknowledgement field. When the receiver generates an 
ACK, it will copy the sequence number of the data packet being ACK'ed  into this acknowledgement field. By examining the 
contents of the acknowledgment field, the sender can determine the sequence number of the packet being positively  
acknowledged. 

Figure 3. 4-8: rdt 3.0 sender FSM
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Figure 3.4-9: Operation of rdt 3.0, the alternating bit protocol
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Figure 3.4-8 shows the  sender  FSM for rdt3.0, a protocol that reliably transfers data over a channel that can corrupt or lose 
packets.  Figure 3.4-9 shows how the protocol operates with no lost or delayed packets, and how it handles lost data packets. In 
Figure 3.4-9, time moves forward from the top of the diagram towards the bottom of the diagram; note that a receive time for a 
packet is neccessarily later than the send time for a packet as a result of transmisison and propagation delays.  In Figures 3.4-9(b)-
(d), the send-side brackets indicate the times at which a timer is set and later times out. Several of the more subtle aspects of this 
protocol are explored in the exercises at the end of this chapter. Because packet sequence numbers alternate between 0 and 1, 
protocol rdt3.0 is sometimes known as the alternating bit protocol. 

We have now assembled the key elements of a data transfer protocol. Checksums, sequence numbers, timers, and positive and 
negative acknowledgement packets each play a crucial and necessary role in the operation of the protocol. We now have a working 
reliable data transfer protocol! 
  

3.4.2 Pipelined Reliable Data Transfer Protocols

Protocol rdt3.0 is a functionally correct protocol, but it is unlikely that anyone would be happy with its performance, 
particularly in today's high speed networks. At the heart of rdt3.0's performance problem is the fact that it is a stop-and-wait 
protocol. 

To appreciate the performance impact of this stop-and-wait behavior, consider an idealized case of two end hosts, one located on 
the west coast of the United States and the other located on the east cost. The speed-of-light propagation delay, Tprop, between 

these two end systems is approximately 15 milliseconds. Suppose that they are connected by a channel with a capacity, C, of 1 
Gigabit (10**9 bits) per second. With a packet size, SP, of 1K bytes per packet including both header fields and data, the time 
needed to actually transmit the packet into the 1Gbps link is 

Ttrans = SP/C = (8 Kbits/packet)/ (10**9 bits/sec) = 8 microseconds

With our stop and wait protocol, if the sender begins sending the packet at t = 0, then at t = 8 microsecs the last bit enters the 
channel at the sender side. The packet then makes its 15 msec cross country journey, as depicted in Figure 3.4-10a, with the last bit 
of the packet emerging at the receiver at t = 15.008 msec. Assuming for simplicity that ACK packets are the same size as data 
packets and that the receiver can begin sending an ACK packet as soon as the last bit of a data packet is received, the last bit of the 
ACK packet emerges back at the receiver at t = 30.016 msec. Thus, in 30.016 msec, the sender was only busy (sending or 
receiving) for .016 msec. If we define the utilization of the sender (or the channel) as the fraction of time the sender is actually 
busy sending bits into the channel, we have a rather dismal sender utilization, Usender, of 

Usender = (.008/ 30.016) = 0.00015

That is, the sender was busy only 1.5 hundredths of one percent of the time. Viewed another way, the sender was only able to send 
1K bytes in 30.016 milliseconds, an effective throughput of only 33KB/sec - even thought a 1Gigabit per second link was 
available! Imagine the unhappy network manager who just paid a fortune for a gigabit capacity link but manages to get a 
throughput of only 33KB! This is a graphic example of how network protocols can limit the capabilities provided by the 
underlying network hardware. Also, we have neglected lower layer protocol processing times at the sender and receiver, as well as 
the processing and queueing delays that would occur at any intermediate routers between the sender and receiver. Including these 
effects would only serve to further increase the delay and further accentuate the poor performance. 
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Figure 3.4-10: Stop-and-wait versus pipelined protocols

The solution to this particular performance problem is a simple one: rather than operate in a stop-and-wait manner, the sender is 
allowed to send multiple packets without waiting for acknowledgements, as shown in Figure 3.4-10(b). Since the many in-transit 
sender-to-receiver packets can be visualized as filling a pipeline, this technique is known as pipelining. Pipelining has several 
consequences for reliable data transfer protocols: 

●     The range of sequence numbers must be increased, since each in-transit packet (not counting retransmissions) must have a 
unique sequence number and there may be multiple, in-transit, unacknowledged packets.

●     The sender and receiver-sides of the protocols may have to buffer more than one packet. Minimally, the sender will have to 
buffer packets that have been transmitted, but not yet acknowledged. Buffering of correctly-received packets may also be 
needed at the receiver, as discussed below.

The range of sequence numbers needed and the buffering requirements will depend on the manner in which a data transfer protocol 
responds to lost, corrupted, and overly delayed packets. Two basic approaches towards pipelined error recovery can be identified: 
Go-Back-N and selective repeat. 
  

3.4.3 Go-Back-N (GBN)

Figure 3.4-11: Sender's view of sequence numbers in Go-Back-N

In a Go-Back-N (GBN) protocol, the sender is allowed to transmit multiple packets (when available) without waiting for an 
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acknowledgment, but is constrained to have no more than some maximum allowable number, N, of unacknowledged packets in the 
pipeline. Figure 3.4-11 shows the sender's view of the range of sequence numbers in a GBN protocol. If we define base to be the 
sequence number of the oldest unacknowledged packet and nextseqnum to be the smallest unused sequence number (i.e., the 
sequence number of the next packet to be sent), then four intervals in the range of sequence numbers can be identified. Sequence 
numbers in the interval [0,base-1] correspond to packets that have already been transmitted and acknowledged. The interval [base,
nextseqnum-1] corresponds to packets that have been sent but not yet acknowledged. Sequence numbers in the interval 
[nextseqnum,base+N-1] can be used for packets that can be sent immediately, should data arrive from the upper layer. Finally, 
sequence numbers greater than or equal to base+N can not be used until an unacknowledged packet currently in the pipeline has 
been acknowledged. 

As suggested by Figure 3.4-11, the range of permissible sequence numbers for transmitted but not-yet-acknowledged packets can 
be viewed as a ``window'' of size N over the range of sequence numbers. As the protocol operates, this window slides forward over 
the sequence number space. For this reason, N is often referred to as the window size and the GBN protocol itself as a sliding 
window protocol.  You might be wondering why even limit the number of outstandstanding, unacknowledged packet to a value 
of  N in the first place.  Why not allow an unlimited number of such packets?  We will see in Section 3.5 that flow conontrol is one 
reason to impose a limt on the sender.  We'll examine another reason to do so in section 3.7, when we study TCP congestion 
control. 

In practice, a packet's sequence number is carried in a fixed length field in the packet header. If k is the number of bits in the 
packet sequence number field, the range of sequence numbers is thus [0,2k-1]. With a finite range of sequence numbers, all 
arithmetic involving sequence numbers must then be done using modulo 2k arithmetic. (That is, the sequence number space can be 
thought of as a ring of size 2k, where sequence number 2k-1 is immediately followed by sequence number 0.) Recall that rtd3.0 
had a 1-bit sequence number and a range of sequence numbers of [0,1].Several of the problems at the end of this chapter explore 
consequences of a finite range of sequence numbers.  We will see in Section 3.5 that TCP has a 32-bit sequence number field, 
where TCP sequence numbers count bytes in the byte stream rather than packets. 

Figure 3.4-12 Extended FSM description of GBN sender.
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Figure 3.4-13 Extended FSM description of GBN receiver.

Figures 3.4-12 and 3.4-13 give an extended-FSM description of the sender and receiver sides of an ACK-based, NAK-free, GBN 
protocol. We refer to this FSM description as an extended-FSM since we have added variables (similar to programming language 
variables) for base and nextseqnum, and also added operations on these variables and conditional actions involving these variables. 
Note that the extended-FSM specification is now beginning to look somewhat like a programming language specification. 
[Bochman 84] provides an excellent survey of additional extensions to FSM techniques as well as other programming language-
based techniques for specifying protocols. 

The GBN sender must respond to three types of events: 

●     Invocation from above. When rdt_send() is called from above, the sender first checks to see if the window is full, i.e., 
whether there are N outstanding, unacknowledged packets. If the window is not full, a packet is created and sent, and 
variables are appropriately updated. If the window is full, the sender simply returns the data back to the upper layer, an 
implicit indication that the window is full. The upper layer would presumably then have to try again later. In a real 
implementation, the sender would more likely have either buffered (but not immediately sent) this data, or would have a 
synchronization mechanism (e.g., a semaphore or a flag) that would allow the upper layer to call rdt_send() only when 
the window is not full.

●     Receipt of an ACK. In our GBN protocol, an acknowledgement for packet with sequence number n will be taken to be a 
cumulative acknowledgement, indicating that all packets with a sequence number up to and including n have been 
correctly received at the receiver. We'll come back to this issue shortly when we examine the receiver side of GBN.

●     A timeout event. The protocol's name, ``Go-Back-N,'' is derived from the sender's behavior in the presence of lost or 
overly delayed packets. As in the stop-and-wait protocol, a timer will again be used to recover from lost data or 
acknowledgement packets. If a timeout occurs, the sender resends all packets that have been previously sent but that have 
not yet been acknowledged. Our sender in Figure 3.4-12 uses only a single timer, which can be thought of as a timer for the 
oldest tranmitted-but-not-yet-acknowledged packet.  If an ACK is received but there are still additional transmitted-but-yet-
to-be-acknowledged packets, the timer is restarted. If there are no outstanding unacknowledged packets, the timer is 
stopped.

The receiver's actions in GBN are also simple. If a packet with sequence number n is received correctly and is in-order (i.e., the 
data last delivered to the upper layer came from a packet with sequence number n-1), the receiver sends an ACK for packet n and 
delivers the data portion of the packet to the upper layer. In all other cases, the receiver discards the packet and resends an ACK for 
the most recently received in-order packet. Note that since packets are delivered one-at-a-time to the upper layer, if packet k has 
been received and delivered, then all packets with a sequence number lower than k have also been delivered. Thus, the use of 
cumulative acknowledgements is a natural choice for GBN. 

In our GBN protocol, the receiver discards out-of-order packets. While it may seem silly and wasteful to discard a correctly 
received (but out-of-order) packet, there is some justification for doing so. Recall that the receiver must deliver data, in-order, to 
the upper layer. Suppose now that packet n is expected, but packet n+1 arrives. Since data must be delivered in order, the receiver 
could buffer (save) packet n+1 and then deliver this packet to the upper layer after it had later received and delivered packet n. 
However, if packet n is lost, both it and packet n+1 will eventually be retransmitted as a result of the GBN retransmission rule at 
the sender. Thus, the receiver can simply discard packet n+1. The advantage of this approach is the simplicity of receiver buffering 
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- the receiver need not buffer any out-of-order packets. Thus, while the sender must maintain the upper and lower bounds of its 
window and the position of nextseqnum within this window, the only piece of information the receiver need maintain is the 
sequence number of the next in-order packet. This value is held in the variable expectedseqnum, shown in the receiver FSM in 
Figure 3.4-13. Of course, the disadvantage of throwing away a correctly received packet is that the subsequent retransmission of 
that packet might be lost or garbled and thus even more retransmissions would be required. 

Figure 3.4-14: Go-Back-N  in operation

Figure 3.4-14 shows the operation of the GBN protocol for the case of a window size of four packets. Because of this window size 
limitation, the sender sends packets 0 through 3 but then must wait for one or more of these packets to be acknowledged before 
proceeding. As each successive ACK (e.g., ACK0 and ACK1) is received, the window slides forwards and the sender can transmit 
one new packet (pkt4 and pkt5, respectively). On the receiver side, packet 2 is lost and thus packets 3, 4, and 5 are found to be out-
of-order and are discarded. 

Before closing our discussion of GBN, it is worth noting that an implementation of this protocol in a protocol stack would likely be 
structured similar to that of the extended FSM in Figure 3.4-12. The implementation would also likely be in the form of various 
procedures that implement the actions to be taken in response to the various events that can occur. In such event-based 
programming, the various procedures are called (invoked) either by other procedures in the protocol stack, or as the result of an 
interrupt. In the sender, these events would be (i) a call from the upper layer entity to invoke rdt_send(), (ii) a timer interrupt, 
and (iii) a call from the lower layer to invoke rdt_rcv() when a packet arrives. The programming exercises at the end of this 
chapter will give you a chance to actually implement these routines in a simulated, but realistic, network setting. 

We note here that the GBN protocol incorporates almost all of the techniques that we will enounter when we study the reliable data 
transfer components of TCP in Section 3.5: the use of sequence numbers, cumulative acknowledgements, checksums, and a time-
out/retransmit operation.  Indeed, TCP is often referred to as a GBN style of protocol.  There are, however, some differences.  
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Many TCP implementations will buffer correctly-received but out-of-order segments [Stevens 1994].  A proposed modification to 
TCP, the so-called selective acknowledgment [RFC 2018], will also allow a TCP receiver to selectively acknowledge a single out-
of-order packet rather than cumulatively acknowledge the last correctly received packet.  The notion of a selective 
acknowledgment is at the heart of the second broad class of  pipelined protocols: the so called selective repeat protocols. 

3.4.4 Selective Repeat (SR)

The GBN protocol allows the sender to potentially ``fill the pipeline'' in Figure 3.4-10 with packets, thus avoiding the channel 
utilization problems we noted with stop-and-wait protocols. There are, however, scenarios in which GBN itself will suffer from 
performance problems. In particular, when the window size and bandwidth-delay product are both large, many packets can be in 
the pipeline. A single packet error can thus cause GBN to retransmit a large number of packets, many of which may be 
unnecessary. As the probability of channel errors increases, the pipeline can become filled with these unnecessary retransmissions. 
Imagine in our message dictation scenario, if every time a word was garbled, the surrounding 1000 words (e.g., a window size of 
1000 words) had to be repeated. The dictation would be slowed by all of the reiterated words. 

As the name suggests, Selective Repeat (SR) protocols avoid unnecessary retransmissions by having the sender retransmit only 
those packets that it suspects were received in error (i.e., were lost or corrupted) at the receiver. This individual, as-needed, 
retransmission will require that the receiver individually acknowledge correctly-received packets. A window size of N will again 
be used to limit the number of outstanding, unacknowledged packets in the pipeline. However, unlike GBN, the sender will have 
already received ACKs for some of the packets in the window. Figure 3.4-15 shows the SR sender's view of the sequence number 
space. Figure 3.4-16 details the various actions taken by the SR sender. 

The SR receiver will acknowledge a correctly received packet whether or not it is in-order. Out-of-order packets are buffered until 
any missing packets (i.e., packets with lower sequence numbers) are received, at which point a batch of packets can be delivered in-
order to the upper layer. Figure figsrreceiver itemizes the the various actions taken by the SR receiver. Figure 3.4-18 shows an 
example of SR operation in the presence of lost packets. Note that in Figure 3.4-18, the receiver initially buffers packets 3 and 4, 
and delivers them together with packet 2 to the upper layer when packet 2 is finally received. 
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Figure 3.4-15: SR sender and receiver views of sequence number space

 
 

1.  Data received from above. When data is received from above, the SR sender checks the next available sequence number 
for the packet. If the sequence number is within the sender's window, the data is packetized and sent; otherwise it is either 
buffered or returned to the upper layer for later transmission, as in GBN.

2.  Timeout. Timers are again used to protect against lost packets. However, each packet must now have its own logical timer, 
since only a single packet will be transmitted on timeout.  A single hardware timer can be used to mimic the operation of 
multiple logical timers.

3.  ACK received. If an ACK is received, the SR sender marks that packet as having been received, provided it is in the 
window. If the packet's sequence number is equal to sendbase, the window base is moved forward to the 
unacknowledged packet with the smallest sequence number. If the window moves and there are untransmitted packets with 
sequence numbers that now fall within the window, these packets are transmitted.

 
Figure 3.4-16: Selective Repeat sender actions

 

 
1.  Packet with sequence number in [rcvbase, rcvbase+N-1] is correctly received. In this case, the received packet falls 

within the receivers window and a selective ACK packet is returned to the sender. If the packet was not previously 
received, it is buffered. If this packet has a sequence number equal to the base of the receive window (rcvbase in Figure 
3.4-15), then this packet, and any previously buffered and consecutively numbered (beginning with rcvbase) packets are 
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delivered to the upper layer. The receive window is then moved forward by the number of packets delivered to the upper 
layer.As an example, consider Figure 3.4-18  When a packet with a sequence number of rcvbase=2 is received, it and 
packets rcvbase+1 and rcvbase+2 can be delivered to the upper layer.

2.  Packet with sequence number in [rcvbase-N,rcvbase-1] is received. In this case, an ACK must be generated, even though 
this is a packet that the receiver has previously acknowledged.

3.  Otherwise. Ignore the packet.
Figure 3.4-17: Selective Repeat Receiver Actions

It is important to note that in step 2 in Figure 3.4-17, the receiver re-acknowledges (rather than ignores) already received packets 
with certain sequence numbers below the current window base. You should convince yourself that this re-acknowledgement is 
indeed needed. Given the sender and receiver sequence number spaces in Figure 3.4-15 for example, if there is no ACK for packet 
sendbase propagating from the receiver to the sender, the sender will eventually retransmit packet sendbase, even though it is clear 
(to us, not the sender!) that the receiver has already received that packet. If the receiver were not to ACK this packet, the sender's 
window would never move forward! This example illustrates an important aspect of SR protocols (and many other protocols as 
well): the sender and receiver will not always have an identical view of what has been received correctly and what has not. For SR 
protocols, this means that the sender and reeciver windows will not always coincide. 

Figure 3.4-18: SR Operation
 
 

file:///D|/Downloads/Livros/computação/Computer%20Netw...proach%20Featuring%20the%20Internet/principles_rdt.htm (18 of 20)20/11/2004 15:52:09



Principle of Reliable Data Transfer

Figure 3.4-19: SR receiver dilemma with too large windows: a new packet or a retransmission?

The lack of synchronization between sender and receiver windows has important consequences when we are faced with the reality 
of a finite range of sequence numbers. Consider what could happen, for example, with a finite range of four packet sequence 
numbers, 0,1,2,3 and a window size of three. Suppose packets 0 through 2 are transmitted and correctly received and 
acknowledged at the receiver. At this point, the receiver's window is over the fourth, fifth and sixth packets, which have sequence 
numbers 3, 0, and 1, respectively. Now consider two scenarios. In the first scenario, shown in Figure 3.4-19(a), the ACKs for the 
first three packets are lost and the sender retransmits these packets. The receiver thus next receives a packet with sequence number 
0 - a copy of the first packet sent. 

In the second scenario, shown in Figure 3.4-19(b), the ACKs for the first three packets are all delivered correctly. The sender thus 
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moves its window forward and sends the fourth, fifth and sixth packets, with sequence numbers 3, 0, 1, respectively. The packet 
with sequence number 3 is lost, but the packet with sequence number 0 arrives - a packet containing new data. 

Now consider the receiver's viewpoint in Figure 3.4-19, which has a figurative curtain between the sender and the receiver, since 
the receiver can not ``see'' the actions taken by the sender. All the receiver observes is the sequence of messages it receives from 
the channel and sends into the channel. As far as it is concerned, the two scenarios in Figure 3.4-19 are identical. There is no way 
of distinguishing the retransmission of the first packet from an original transmission of the fifth packet. Clearly, a window size that 
is one smaller than the size of the sequence number space won't work. But how small must the window size be? A problem at the 
end of the chapter asks you to show that the window size must be less than or equal to half the size of the sequence number space. 

Let us conclude our discussion of reliable data transfer protocols by considering one remaining assumption in our underlying 
channel model.  Recall that we have assumed  that packets can not be re-ordered within the channel between the sender and 
rceiver. This is generally a reasonable assumption when the sender and receiver are connected by a single physical wire. However, 
when the ``channel'' connecting the two is a network, packet reordering can occur. One manifestation of packet ordering is that old 
copies of a packet with a sequence or acknowledgement number of x can appear, even though neither the sender's nor the receiver's 
window contains x. With packet reordering, the channel can be thought of as essentially buffering packets and spontaneously 
emitting these packets at any point in the future. Because sequence numbers may be reused, some care must be taken to guard 
against such duplicate packets. The approach taken in practice is to insure that a sequence number is not reused until the sender is 
relatively ``sure'' than any previously sent packets with sequence number x are no longer in the network. This is done by assuming 
that a packet can not ``live'' in the network for longer than some fixed maximum amount of time. A maximum packet lifetime of 
approximately three minutes is assumed in the TCP extensions for high-speed networks [RFC 1323]. Sunshine [Sunshine 1978] 
describes a method for using sequence numbers such that reordering problems can be completely avoided. 
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3.5 Connection-Oriented Transport: TCP

Now that we have covered the underlying principles of reliable data transfer, let's  turn to TCP --  the Internet's transport-layer,  connection-oriented, 
reliable transport protocol. In this section, we'll see that in order to provide reliable data transfer, TCP relies on many of the underlying principles 
discussed in the previous section, including error detection, retransmissions, cumulative acknowledgements, timers and header fields for sequence and 
acknowledgement numbers. TCP is defined in [RFC 793], [RFC 1122], [RFC 1323], [RFC 2018] and [RFC 2581]. 

3.5.1 The TCP Connection

TCP provides multiplexing, demultiplexing, and error detection (but not recovery) in exactly the same manner as UDP. Nevertheless, TCP and UDP 
differ in many ways. The most fundamental difference is that UDP is connectionless, while TCP is connection-oriented. UDP is connectionless 
because  it sends data without ever establishing a connection. TCP is connection-oriented because before one application process can begin to send 
data to another, the two processes must first "handshake" with each other  -- that is, they must send some preliminary segments to each other to 
establish the parameters of the ensuing data transfer.  As part of the TCP connection establishment, both sides of the connection will initialize many 
TCP "state variables" (many of which will be discussed in this section and in Section 3.7) associated with the TCP connection. 

The TCP "connection" is not an end-to-end TDM or FDM circuit as in a circuit-switched network. Nor is it a virtual circuit (see Chapter 1), as the 
connection state resides entirely in the two end systems. Because the TCP protocol runs only  in the end systems and not in the intermediate network 
elements (routers and bridges), the intermediate network elements do not maintain TCP connection state. In fact, the intermediate routers are 
completely oblivious to TCP connections; they see datagrams, not connections. 

A TCP connection provides for full duplex data transfer. That is, application-level data can be transferred in both directions between two hosts - if 
there is a TCP connection between  process A on one host and process B on another host, then application-level data can flow from A to B at the same 
time as application-level data flows from B to A. TCP connection is also always point-to-point, i.e., between a single sender and a single receiver. So 
called "multicasting" (see Section 4.8) -- the transfer of data from one sender to many receivers in a single send operation -- is not possible with TCP. 
With TCP, two hosts are company and three are a crowd! 

Let us now take a look at how a TCP connection is established. Suppose a process running in one host wants  to initiate a connection with another 
process in another host.  Recall that the host that is initiating the connection is called the client host, while the other host is called the server host. The 
client application process first informs the client TCP that it wants to establish a connection to a process in the server. Recall from Section 2.6, a Java 
client program does this by issuing the command: 

Socket clientSocket = new Socket("hostname", "port number");
The TCP in the client then proceeds to establish a TCP connection with the TCP in the server. We will discuss in some detail the connection 
establishment procedure at the end of this section. For now it suffices to know that the client first sends a special TCP segment; the server responds 
with a second special TCP segment; and finally the client responds again with a third special segment. The first two segments contain no "payload," i.
e., no application-layer data; the third of these segments may carry a payload. Because three segments are sent between the two hosts, this connection 
establishment procedure is often referred to as a three-way handshake. 
  
Once a TCP connection is established, the two application processes can send data to each other; because TCP is full-duplex they can send data at the 
same time. Let us consider the sending of data from the  client process to the server  process. The client process passes a stream of data through the 
socket (the door of the process), as described in Section 2.6. Once the data passes through the door, the data is now in the hands of TCP running in the 
client. As shown in the Figure 3.5-1, TCP directs this data to the connection's send buffer, which is one of the buffers that is set aside during the initial 
three-way handshake.  From time to time, TCP will "grab" chunks of data from the send buffer. The maximum amount of data that can be grabbed and 
placed in a segment is limited by the Maximum Segment Size (MSS). The MSS depends on the TCP implementation (determined by the operating 
system) and can often be configured; common values are 1,500 bytes, 536 bytes and 512 bytes. (These segment sizes are often chosen in order to avoid 
IP fragmentation, which will be discussed in the next chapter.) Note that the MSS is the maximum amount of application-level data in the segment, not 
the maximum size of the TCP segment including headers. (This terminology is confusing, but we have to live with it, as it is well entrenched.) 
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Figure 3.5-1: TCP send and receive buffers

TCP encapsulates each chunk of client data with TCP header, thereby forming TCP segments. The segments are passed down to the network layer, 
where they are separately encapsulated within network-layer IP datagrams. The IP datagrams are then sent into the network. When TCP receives a 
segment at the other end, the segment's data is placed in the TCP connection's receive buffer. The application reads the stream of data from this 
buffer. Each side of the connection has its own send buffer and its own receive buffer.  The send and receive buffers for data flowing in one direction 
are shown in Figure 3.5-1. 

 
We see from this discussion that a TCP connection consists of buffers, variables and a socket connection to a process in one host, and another set of 
buffers, variables and a socket connection to a process in another host. As mentioned earlier, no buffers or variables are allocated to the connection in 
the  network elements (routers, bridges and repeaters) between the hosts. 
  

3.5.2 TCP Segment Structure

Having taken a brief look at the TCP connection, let's examine the TCP segment structure. The TCP segment consists of  header fields and a data field. 
The data field contains a chunk of application data. As mentioned above, the MSS limits the maximum size of a segment's data field.  When TCP 
sends a large file, such as an encoded image as part of a Web page, it typically breaks the file into chunks of size MSS (except for the last chunk, 
which will often be less than the MSS). Interactive applications, however, often transmit  data chunks that are smaller than the MSS; for example, with 
remote login applications like Telnet, the data field in the TCP segment is often only one byte. Because the TCP header is typically 20 bytes (12 bytes 
more than the UDP header), segments sent by Telnet may only be 21 bytes in length. 

Figure 3.3-2 shows the structure of the TCP segment.  As with UDP, the header includes source and destination port numbers, that are used for 
multiplexing/demultiplexing data from/to upper layer applications. Also as with UDP, the header includes a checksum field.  A TCP segment header 
also contains the following fields: 

●     The32-bit sequence number field, and the 32-bit acknowledgment number field are used by the TCP sender and receiver in implementing a 
reliable data transfer service, as discussed below.

●     The 16-bit  window size field is used for the purposes of flow control.  We will see shortly that it is used to indicate the number of bytes that a 
receiver is willing to accept.

●     The 4-bit  length field specifies the length of the TCP header in 32-bit words.  The TCP header can be of variable length due to the TCP 
options field, discussed below. (Typically, the options field is empty, so that the length of the typical TCP header is 20 bytes.)

●     The optional and variable length options field is used when a sender and receiver negotiate the  maximum segment size (MSS) or as a window 
scaling factor for use in high-speed networks. A timestamping option is also defined.  See [RFC 854], [RFC1323] for additional details.

●     The flag field contains 6 bits.  The  ACK bit is used to indicate that the value carried in the acknowledgment field is valid.  The  RST, SYN 
and FIN bits are used for connection  setup and teardown, as we will discuss at the end of this section. When the PSH bit is set, this is an 
indication that the receiver should pass the data to the upper layer immediately.  Finally, the URG  bit is used to indicate there is data in this 
segment that the sending-side  upper layer entity has marked as ``urgent.''  The location of the last byte of this urgent data is indicated by the 16-
bit  urgent data pointer.  TCP must inform the receiving-side upper  layer entity when urgent data exists and pass it a pointer to the end of the 
urgent data. (In practice, the PSH, URG and pointer to urgent data are not used. However, we mention these fields for completeness.)
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 Figure 3.5-2: TCP segment structure

3.5.3 Sequence Numbers and Acknowledgment Numbers

Two of the most important fields in the TCP segment header are the sequence number field and the acknowledgment number field. These fields are a 
critical part of TCP's reliable data transfer service. But before discussing how these fields are used to provide reliable data transfer, let us first explain 
what exactly TCP puts in these fields. 

TCP views data as an unstructured, but ordered, stream of bytes. TCP's use of sequence numbers reflects this view in that sequence numbers are over 
the stream of transmitted bytes and not over the series of transmitted segments. The sequence number for a segment is the byte-stream number of the 
first byte in the segment. Let's look at an example. Suppose that a process in host A wants to send a stream of data to a process in host B over a TCP 
connection. The TCP in host A will implicitly number each byte in the data stream.  Suppose that the data stream consists of a file consisting of 
500,000  bytes, that the MSS is 1,000 bytes, and that the first byte of the data stream is numbered zero. As shown in Figure 3.5-3, TCP constructs 500 
segments out of the data stream. The first segment gets assigned sequence number 0, the second segment gets assigned sequence number 1000, the 
third segment gets assigned sequence number 2000, and so on.. Each sequence number is inserted in the sequence number field in the header of the 
appropriate TCP segment. 

Figure 3.5-3: Dividing  file data into TCP segments.

Now let us consider acknowledgment numbers. These are a little trickier than sequence numbers. Recall that TCP is full duplex, so that host A may be 
receiving data from host B while it sends data to host B (as part of the same TCP connection). Each of the segments that arrive from host B have a 
sequence number for the data flowing from B to A. The acknowledgment number that host A puts in its segment is sequence number of the next byte 
host A is expecting from host B. It is good to look at a few examples to understand what is going on here. Suppose that host A has received all bytes 
numbered 0 through 535 from B and suppose that it is about to send a segment to host B. In other words, host A is waiting for byte 536 and all the 
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subsequent bytes in host B's data stream. So host A puts 536 in the acknowledgment number field of the segment it sends to B. 

As another example, suppose that host A has received one segment from host B containing bytes 0 through 535 and another segment containing bytes 
900 through 1,000.  For some reason host A has not yet received bytes 536 through 899. In this example, host A is still waiting for byte 536 (and 
beyond) in order to recreate B's data stream. Thus, A's next segment to B will contain 536 in the acknowledgment number field. Because TCP only 
acknowledges bytes up to the first missing byte in the stream, TCP is said to provide cumulative acknowledgements. 

This last example also brings up an important but subtle issue. Host A received the third segment (bytes 900 through 1,000) before receiving the 
second segment (bytes 536 through 899). Thus, the third segment arrived out of order. The subtle issue is: What does a host do when it receives out of 
order segments in a TCP connection? Interestingly, the TCP RFCs do not impose any rules here, and leave the decision up to the people programming 
a TCP implementation. There are basically two choices: either (i) the receiver immediately discards out-of-order bytes; or (ii) the receiver keeps the 
out-of-order bytes and waits for the missing bytes to fill in the gaps. Clearly, the latter choice is more efficient in terms of network bandwidth, whereas 
the former choice significantly simplifies the TCP code. Throughout the remainder of this introductory discussion of TCP, we focus on the former 
implementation, that is, we assume that the TCP receiver discards out-of-order segments. 

In Figure 3.5.3 we assumed that the initial sequence number was zero. In truth, both sides of a TCP connection randomly choose an initial sequence 
number. This is done to minimize the possibility a segment that is still present in the network from an earlier, already-terminated connection  between 
two hosts is mistaken for a valid segment  in a later connection between these same two hosts (who also happen to be using the same port numbers as 
the old connection) [Sunshine 78]. 
  

3.5.4 Telnet: A Case Study for Sequence and Acknowledgment Numbers

Telnet, defined in [RFC 854],  is a popular application-layer protocol used for remote login. It runs over TCP and is designed to work between any pair 
of hosts. Unlike the bulk-data transfer applications discussed in Chapter 2, Telnet is an interactive application. We discuss a Telnet example here, as it 
nicely illustrates TCP sequence and acknowledgment numbers. 

Suppose one host, 88.88.88.88, initiates a Telnet session with host 99.99.99.99. (Anticipating our discussion on IP addressing in the next chapter, we 
take the liberty to use IP addresses to identify the hosts.) Because host 88.88.88.88 initiates the session, it is labeled the client and host 99.99.99.99 is 
labeled the server. Each character typed by the user (at the client) will be sent to the remote host; the remote host will send back a copy of each 
character, which will be displayed on the Telnet user's screen. This "echo back" is used to ensure that characters seen by the Telnet user have already 
been received and processed at the remote site.  Each character thus traverses the network twice between when the user hits the key and when the 
character is displayed on the user's monitor. 

Now suppose the user types a single letter, 'C',  and then grabs a coffee. Let's examine the TCP segments that are sent between the client and server. As 
shown in Figure 3.5-4, we suppose the starting sequence numbers are 42 and 79 for the client and server, respectively. Recall that the sequence number 
of a segment is the sequence number of first byte in the data field.  Thus the first segment sent from the client will have sequence number 42; the first 
segment sent from the server will have sequence number 79. Recall that the acknowledgment number is the sequence number of the next byte of data 
that the host is waiting for. After the TCP connection is established but before any data is sent, the client is waiting for byte 79 and the server is 
waiting for byte 42. 
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Figure 3.5-4: Sequence and acknowledgment numbers for a simple Telnet application over TCP

As shown in Figure 3.5-4,  three segments are sent. The first segment is sent from the client to the server, containing the one-byte ASCII representation 
of the letter 'C' in its data field. This first segment also has 42 in its sequence number field, as we just described.  Also, because the client has not yet 
received any data from the server, this first segment will have 79 in its acknowledgment number field. 

The second segment is sent from the server to the client. It serves a dual purpose. First it provides an acknowledgment for the data the client has 
received. By putting 43 in the acknowledgment field, the server is telling the client that it has successfully received everything up through byte 42 and 
is now waiting for bytes 43 onward. The second purpose of this segment is to echo back the letter 'C'. Thus, the second segment has the ASCII 
representation of 'C' in its data field. This second segment has the sequence number 79, the initial sequence number of the server-to-client data flow of 
this TCP connection, as this is the very first byte of data that the server is sending.  Note that the acknowledgement for client-to-server data is carried 
in a segment carrying server-to-client data; this acknowledgement is said to be piggybacked on the server-to-client data segment. 

The third segment is sent from the client to the server. Its sole purpose is to acknowledge the data it has received from the server. (Recall that the 
second segment contained data -- the letter 'C' -- from the server to the client.) This segment has an empty data field (i.e., the acknowledgment is not 
being piggybacked with any cient-to-server data). The segment has 80 in the acknowledgment number field because the client has received the stream 
of bytes up through byte sequence number 79 and it is now waiting for bytes 80 onward. You might think it odd that this segment also has a sequence 
number since the segment contains no data. But because TCP has a sequence number field, the segment needs to have some sequence number. 

3.5.5 Reliable Data Transfer

Recall that the Internet's network layer service (IP service) is unreliable. IP does not guarantee datagram delivery, does not guarantee in-order delivery 
of datagrams, and does not guarantee the integrity of the data in the datagrams. With IP service,  datagrams can overflow router buffers and never 
reach their destination, datagrams can arrive out of order, and bits in the datagram can get corrupted (flipped from 0 to 1 and vice versa). Because 
transport-layer segments are carried across the network by IP datagrams, transport-layer segments can also suffer from these problems as well. 

TCP creates a reliable data transfer service on top of IP's unreliable best-effort service. Many popular application protocols -- including FTP, SMTP, 
NNTP, HTTP and Telnet -- use TCP rather than UDP primarily because TCP provides reliable data transfer service.  TCP's reliable data transfer 
service ensures that the data stream that a process reads out of its TCP receive buffer is uncorrupted, without gaps, without duplication, and in 
sequence, i.e.,  the byte stream is exactly the same byte stream that was sent by the end system on the other side of the connection. In this subsection 
we provide an informal overview of how TCP provides reliable data transfer. We shall see that the reliable data transfer service of TCP uses many of 
the principles that we studied in Section 3.4. 
  

Retransmissions 
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Retransmission of lost and corrupted data  is crucial for providing reliable data transfer. TCP provides reliable data transfer by using positive 
acknowledgments and timers in much the same way as we studied in section 3.4. TCP acknowledges data that has been received correctly, and 
retransmits segments when segments or their corresponding acknowledgements are thought to be lost or corrupted. Just as in the case of our reliable 
data transfer protocol, rdt3.0, TCP can not itself tell for certain if a segment, or its ACK, is lost, corrupted, or overly delayed.  In all cases, TCP's 
response will be the same: retransmit the segment in question. 

TCP also uses pipelining, allowing the sender to have multiple transmitted but yet-to-be-acknowledged segments outstanding at any given time. We 
saw in the previous section that pipelining can greatly improve the throughput of a TCP connection when the ratio of the segment size to round trip 
delay is small. The specific number of outstanding unacknowledged segments that a sender can have is determined by TCP's flow control and 
congestion control mechanisms. TCP flow control is discussed at the end of this section; TCP congestion control is discussed in Section 3.7. For the 
time being, we must simply be aware that the sender can have multiple transmitted, but unacknowledged, segments at any given time. 

/* assume sender is not constrained by TCP flow or congestion control,
   that data from above is less than MSS in size, and that data transfer is
   in one direction only */

sendbase = initial_sequence number    /* see Figure 3.4-11 */ 
nextseqnum = initial_sequence number 
  
loop (forever) { 
    switch(event) 

      event:data received from application above 
            create TCP segment with sequence number nextseqnum 
            start timer for segment nextseqnum 
            pass segment to IP 
            nextseqnum = nextseqnum + length(data) 
  
      event: timer timeout for segment with sequence number y 
            retransmit segment with sequence number y 
            compue new timeout interval for segment y 
            restart timer for sequence number y 

      event: ACK received, with ACK field value of y 
            if (y > sendbase) { /* cumulative ACK of all data up to y */ 
                cancel all timers for segments with sequence numbers < y 
             sendbase = y 
                } 
            else { /* a duplicate ACK for already ACKed segment */ 
                increment number of duplicate ACKs received for y 
                if (number of duplicate ACKS received for y == 3) { 
                    /* TCP fast retransmit */ 
                    resend segment with sequence number y 
                    restart timer for segment y 
                } 
     }  /* end of loop forever */ 
 

Figure 3.5-5: simplified TCP sender

    

Figure 3.5-5  shows the three major events related to data transmission/retransmission at a simplified TCP sender. Let us consider a TCP connection 
between host A and B and focus on the data stream being sent from host A to host B. At the sending host (A), TCP is passed application-layer data, 
which it frames into segments and then passes on to IP. The passing of data from the application to TCP and the subsequent framing and transmission 
of a segment is the first important event that the TCP sender must handle. Each time TCP releases a segment to IP, it starts a timer for that segment. If 
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this timer expires, an interrupt event is generated at host A.  TCP responds to the timeout event, the second major type of event that the TCP sender 
must handle, by retransmitting the segment that caused the timeout. 

The third major event that must be handled by the TCP sender is the arrival of an acknowledgement segment (ACK) from the receiver (more 
specifically, a segment containing a valid ACK field value). Here, the sender's TCP must determine whether the ACK is a first-time ACK for a 
segment that the sender has yet to receive an acknowledgement  for, or a so-called duplicate ACK  that re-acknowledges a segment for which the 
sender has already received an earlier acknowledgement.  In the case of the arrival of a first-time ACK, the sender now knows that all data up to the 
byte being acknowledged has been received correctly at the receiver. The sender can thus update its TCP state variable that tracks the sequence number 
of the last byte that is known to have been received correctly and in-order at the receiver. 

To understand the sender's response to a duplicate ACK, we must look at why the receiver sends a duplicate ACK in the first place.  Table 3.5-1 
summarizes the TCP receiver's ACK generation policy.  When a TCP receiver receives a segment with a sequence number that is larger than the next, 
expected, in-order sequence number, it detects a gap in the data stream - i.e., a missing segment. Since TCP does not use negative acknowledgements, 
the receiver can not send an explicit negative acknowledgement back to the sender.  Instead, it simply re-acknowledges (i.e., generates a duplicate 
ACK for) the last in-order byte of data it has received. If the TCP sender receives three duplicate ACKs for the same data, it takes this as an indication 
that the segment following the segment that has been ACKed three times  has been lost.  In this case, TCP performs a fast retransmit [RFC 2581], 
retransmitting the missing segment before that segment's timer expires. 
  
  

Event TCP receiver action

Arrival of in-order segment with expected  
sequence number. All data up to up to expected  
sequence number already acknowledged.  
No gaps in the received data.

Delayed ACK.  Wait up to 500 ms for arrival  
of another in-order segment. If  next in-order segment  
does not arrives in this interval, send an ACK

Arrival of in-order segment with expected  
sequence number. One other in-order  
segment waiting for ACK transmission.  
No gaps in the received data.

Immediately send single cumulative ACK,  
ACKing both in-order segments

Arrival of out-of-order segment with higher-
than  
expected sequence number.  Gap detected.

Immediately send duplicate ACK, indicating 
sequence  
number of next expected byte 

Arrival of segment that partially or completely  
fills in gap in  received data

Immediately send ACK, provided that segment starts  
at  the lower end of gap.

Table 3.5-1: TCP ACK generation recommendations [RFC 1122, RFC 2581]
  

A Few Interesting Scenarios

We end this discussion by looking at a few simple scenarios. Figure 3.5-6 depicts the scenario where host A sends one segment to host B. Suppose that 
this segment has sequence number 92 and contains 8 bytes of data. After sending this segment, host A waits for a segment from B with 
acknowledgment number 100. Although the segment from A is received at B, the acknowledgment from B to A gets lost.  In this case, the timer 
expires, and  host A retransmits the same segment. Of course, when host B receives the retransmission, it will observe that the bytes in the segment 
duplicate bytes it has already deposited in its receive buffer. Thus TCP in host B will discard the bytes in the retransmitted segment. 
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Figure 3.5-6:  Retransmission due to a lost acknowledgment
  
In a second scenario, host A sends two segments back to back. The first segment has sequence number 92 and 8 bytes of data, and the second segment 
has sequence number 100 and 20 bytes of data. Suppose that both segments arrive intact at B, and B sends two separate acknowledgements for each of 
these segments. The first of these acknowledgements has acknowledgment number 100; the second has acknowledgment number 120. Suppose now 
that neither of the acknowledgements arrive at host A before the timeout of the first segment. When the timer expires, host A resends the first segment 
with sequence number 92. Now, you may ask, does A also resend second segment? According to the rules described above, host A resends the 
segment only if the timer expires before the arrival of an acknowledgment with an acknowledgment number of 120 or greater. Thus, as shown in 
Figure 3.5-7, if the second acknowledgment does not get lost and arrives before the timeout of the second segment, A does not resend the second 
segment. 

Figure 3.5-7: Segment is not retransmitted because its acknowledgment arrives before the timeout.

In a third and final scenario, suppose host A sends the two segments, exactly as in the second example. The acknowledgment of the first segment is 
lost in the network, but just before the timeout of the first segment, host A receives an acknowledgment with acknowledgment number 120. Host A 
therefore knows that host B has received everything up through byte 119; so host A does not resend either of the two segments. This scenario is 
illustrated in the Figure 3.5-8. 
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Figure 3.5-8:  A cumulative acknowledgment avoids retransmission of first segment
Recall that in the previous section we said that TCP is a Go-Back-N style protocol. This is because acknowledgements are cumulative and correctly-
received but out-of-order segments are not individually ACKed by the receiver. Consequently, as shown in   Figure 3.5-5 (see also Figure 3.4-11), the 
TCP sender need only maintain the smallest sequence number of a transmitted but unacknowledged byte (sendbase) and the sequence number of 
the next byte to be sent (nextseqnum). But the reader should keep in mind that although the reliable-data-transfer component of TCP resembles 
Go-Back-N, it is by no means a pure implementation of Go-Back-N. To see that there are some striking differences between TCP and Go-Back-N, 
consider what happens when the sender sends a sequence of segments 1, 2,..., N,  and all of the segments arrive in order without error at the receiver. 
Further suppose that the acknowledgment for packet n < N gets lost, but the remaining N-1 acknowledgments arrive at the sender before their 
respective timeouts. In this example, Go-Back-N would retransmit not only packet n, but also all the subsequent packets n+1, n+2,...,N. TCP, on the 
other hand, would retransmit at most one segment, namely, segment n. Moreover, TCP would not even retransmit segment n if the acknowledgement 
for segment n+1 arrives before the timeout for segment n. 

There have recently been several proposals [RFC 2018, Fall 1996, Mathis 1996]  to extend the TCP ACKing scheme to be more similar to a selective 
repeat protocol.  The key idea in these proposals is to provide the sender with explicit information about which segments have been received correctly, 
and which are still missing at the receiver. 

3.5.6 Flow Control

Recall that the hosts on each side of a TCP connection each set aside a receive buffer for the connection. When the TCP connection receives bytes that 
are correct and in sequence, it places the data in the receive buffer. The associated application process will read data from this buffer, but not 
necessarily at the instant the data arrives. Indeed, the receiving application may be busy with some other task and may not even attempt to read the data 
until long after it has arrived. If the application is relatively slow at reading the data, the sender can very easily overflow the connection's receive 
buffer by sending too much data too quickly.  TCP thus provides a flow control service to its applications by eliminating the possibility of the sender 
overflowing the receiver's buffer. Flow control is thus a speed matching service - matching the rate at which the sender is seding to the rate at which 
the receiving application is reading.  As noted earlier, a TCP sender can also be throttled due to congestion within the IP network; this form of sender 
control is referred to as congestion control, a topic we will explore in detail in Sections 3.6 and 3.7. While the actions taken by flow and congestion 
control are similar (the throttling of the sender), they are obviously taken for very different reasons.  Unfortunately, many authors use the term 
interchangeably, and the savvy reader would be careful to distinguish between the two cases. Let's now discuss how TCP provides its flow control 
service. 

TCP provides flow control by having the sender maintain a variable called the receive window.  Informally, the receive window is used to give the 
sender an idea about how much free buffer space is available at the receiver. In a  full-duplex connection, the sender at each side of the connection 
maintains a distinct receive window. The receive window is dynamic, i.e., it changes throughout a connection's lifetime. Let's investigate the receive 
window in the context of a file transfer. Suppose that host A is sending a large file to host B over a TCP connection. Host B allocates a receive buffer 
to this connection; denote its size by RcvBuffer. From time to time, the application process in host B reads from the buffer. Define the following 
variables: 

LastByteRead =  the number of the last byte in the data stream read from the buffer by the application process in B.

LastByteRcvd = the number of the last byte in the data stream that has arrived from the network and has been placed in the receive buffer at 
B.
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Because TCP is not permitted to overflow the allocated buffer, we must have: 

LastByteRcvd - LastByteRead <= RcvBuffer

The receive window, denoted RcvWindow, is set to the amount of spare room in the buffer: 

RcvWindow = RcvBuffer - [ LastByteRcvd - LastByteRead]

Because the spare room changes with time, RcvWindow is dynamic. The variable RcvWindow is illustrated in Figure 3.5-9. 
  

Figure 3.5-9: The receive window (RcvWindow) and the receive buffer (RcvBuffer)

How does the connection use the variable RcvWindow to provide the flow control service? Host B informs host A of how much spare room it has in 
the  connection buffer by placing its current value of RcvWindow in the window field of every segment it sends to A. Initially host B sets 
RcvWindow = RcvBuffer. Note that to pull this off, host B must keep track of several connection-specific variables. 

Host A in turn keeps track of two variables, LastByteSent and LastByteAcked, which have obvious meanings. Note that the difference 
between these two variables, LastByteSent - LastByteAcked, is the amount of unacknowledged data that A has sent into the connection. By 
keeping the amount of unacknowledged data less than the value of RcvWindow, host A is assured that it is not overflowing the receive buffer at host 
B. Thus host A makes sure throughout the connection's life that 

LastByteSent - LastByteAcked <= RcvWindow.

There is one minor technical problem with this scheme. To see this, suppose host B's receive buffer becomes full so that RcvWindow = 0. After 
advertising RcvWindow = 0 to host A, also suppose that B has nothing to send to A. As the application process at B empties the buffer, TCP does 
not send new segments with new RcvWindows to host A -- TCP will only send a segment to host A  if it has data to send or if it has an 
acknowledgment to send. Therefore host A is never informed that some space has opened up in host B's receive buffer: host A is blocked and can 
transmit no more data! To solve this problem, the TCP specification requires host A to continue to send segments with one data byte when B's receive 
window is zero. These segments will be acknowledged by the receiver. Eventually the buffer will begin to empty and the acknowledgements will 
contain non-zero RcvWindow. 

Having described TCP's flow control service, we briefly mention here that UDP does not provide flow control. To understand the issue here, consider 
sending a series of UDP segments from a process on host A to a process on host B. For a typical UDP implementation, UDP will append the segments 
(more precisely, the data in the segments) in a finite-size queue that "precedes" the corresponding socket (i.e., the door to the process). The process 
reads one entire segment at a time from the queue. If the process does not read the segments fast enough from the queue, the queue will overflow and 
segments will get lost. 

Following this section we provide an interactive Java applet which should provide significant insight into the TCP receive window. 
  

3.5.7 Round Trip Time and Timeout

  
Recall that when a host sends a segment into a TCP connection, it starts a timer. If the timer expires before the host receives an acknowledgment for 
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the data in the segment, the host retransmits the segment. The time from when the timer is started until when it expires is called the timeout of the 
timer. A  natural question is, how large should timeout be? Clearly, the timeout should be larger than the connection's round-trip time, i.e., the time 
from when a segment is sent until it is acknowledged. Otherwise, unnecessary retransmissions would be sent.  But the timeout should not be  much 
larger than the round-trip time; otherwise, when a segment is lost, TCP would not quickly retransmit the segment, thereby introducing significant data 
transfer delays into the application. Before discussing the timeout interval in more detail, let us take a closer look at the round-trip time (RTT). The 
discussion below is based on the TCP work in [Jacobson 1988]. 

Estimating the Average Round-Trip Time

The sample RTT, denoted SampleRTT, for a segment is the time from when the segment is sent (i.e., passed to IP) until an acknowledgment for the 
segment is received. Each segment sent will have its own associated SampleRTT. Obviously, the SampleRTT values will fluctuate from segment to 
segment due to congestion in the routers and to the varying load on the end systems. Because of this fluctuation, any given SampleRTT value may be 
atypical. In order to estimate a typical RTT, it is therefore natural to take some sort of average of the SampleRTT values. TCP maintains an average, 
called EstimatedRTT, of the SampleRTT values. Upon receiving an acknowledgment and obtaining a new SampleRTT, TCP updates 
EstimatedRTT according to the following formula: 

EstimatedRTT = (1-x) EstimatedRTT + x SampleRTT.

The above formula is written in the form of a programming language statement - the new value of EstimatedRTT is a weighted combination of the 
previous value of Estimated RTT and the new value for SampleRTT. A typical value of x is x = .1, in which case the above formula becomes: 

EstimatedRTT = .9 EstimatedRTT + .1 SampleRTT.

Note that EstimatedRTT is a weighted average of the SampleRTT values. As we will see in the homework, this weighted average puts more 
weight on recent samples than on old samples, This is natural, as the more recent samples better reflect the current congestion in the network. In 
statistics, such an average is called an exponential weighted moving average (EWMA). The word "exponential" appears in EWMA because the 
weight of a given SampleRTT decays exponentially fast as the updates proceed. In the homework problems you will be asked to derive the exponential 
term in EstimatedRTT. 

Setting the Timeout

The timeout should be set so that a timer expires early (i.e., before the delayed arrival of a segment's ACK) only on rare occasions. It is therefore 
natural to set the timeout equal to the EstimatedRTT plus some margin. The margin should be large when there is a lot of fluctuation in the 
SampleRTT values; it should be small when there is little fluctuation. TCP uses the following formula: 

Timeout = EstimatedRTT + 4*Deviation,

where Deviation is an estimate of how much SampleRTT typically deviates from EstimatedRTT: 

Deviation = (1-x) Deviation + x | SampleRTT - EstimatedRTT |

Note that Deviation is an EWMA of how much SampleRTT deviates from EstimatedRTT. If the SampleRTT values have little fluctuation, 
then Deviation is small and Timeout is hardly more than EstimatedRTT; on the other hand, if there is a lot of fluctuation, Deviation will 
be large and Timeout will be much larger than EstimatedRTT. 
  

3.5.8 TCP Connection Management

In this subsection we take a closer look at how a TCP connection is established and torn down. Although this particular topic may not seem 
particularly exciting, it is important because TCP connection establishment can significantly add to perceived delays (for example, when surfing the 
Web). Let's now take a look at how a TCP connection is established. Suppose a process running in one host wants  to initiate a connection with another 
process in another host.  The host that is initiating the connection is called the client host whereas the other host is called the server host. The client 
application process first informs the client TCP that it wants to establish a connection to a process in the server. Recall from Section 2.6, that a Java 
client program does this by issuing the command: 

                                        Socket clientSocket = new Socket("hostname", "port number"); 

The TCP in the client then proceeds to establish a TCP connection with the TCP in the server in the following manner: 
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●     Step 1. The client-side TCP first sends a special TCP segment to the server-side TCP. This special segment contains no application-layer data. 
It does, however, have one of the flag bits in  the segment's header (see Figure 3.3-2), the so-called SYN bit, set to 1.  For  this reason, this 
special segment is referred to as a SYN segment. In addition, the client chooses an initial sequence number (client_isn) and puts this number in 
the sequence number field of the initial TCP SYN segment.This segment is encapsulated within an IP datagram and sent into the Internet.

●     Step 2. Once the IP datagram containing the TCP SYN segment arrives at the server host (assuming it does arrive!), the server extracts the TCP 
SYN segment from the datagram, allocates the TCP buffers and variables to the connection, and sends a connection-granted segment to client 
TCP. This connection-granted segment also contains no application-layer data.  However, it does contain three important pieces of information 
in the segment header.  First, the SYN bit is set to 1.  Second, the acknowledgment field of the TCP segment header is set to isn+1.  Finally, the 
server chooses its own initial sequence number (server_isn) and puts this value in the sequence number field of the TCP segment header.  This 
connection granted segment is saying, in effect, "I received your SYN packet to start a connection with your initial sequence number, 
client_isn. I agree to establish this connection.  My own initial sequence number is server_isn."  The conenction-granted segment is sometimes 
referred to as a SYNACK segment.

●     Step 3.  Upon receiving the connection-granted segment, the client also allocates buffers and variables to the connection. The client host then 
sends the server yet another segment; this last segment acknowledges the server's connection-granted segment (the client does so by putting the 
value server_isn+1 in the acknowledgment field of the TCP segment header). The SYN bit is set to 0, since the connection is established.

Once the following three steps have been completed, the client and server hosts can send segments containing data to each other. In each of these 
future segments, the SYN bit will be set to zero.  Note that in order to establish the connection, three packets are sent between the two hosts, as 
illustrated in Figure 3.5-10. For this reason, this connection establishment procedure is often referred to as a three-way handshake. Several aspects of 
the TCP three-way handshake (Why are initial sequence numbers needed? Why is a three-way handshake, as opposed to a two-way handshake, 
needed?) are explored in the homework problems. 
  

Figure 3.5-10: TCP three-way handshake: segment exchange
 

All good things must come to an end, and the same is true with a TCP connection. Either of the two processes participating in a TCP connection can 
end the connection. When a connection ends, the "resources" (i.e., the buffers and variables) in the hosts are de-allocated. As an example, suppose the 
client decides to close the connection. The client application process issues a close command. This causes the client TCP to send a special TCP 
segment  to the server process. This special segment has a flag bit in the segment's header, the so-called FIN bit (see Figure 3.3-2), set to 1. When the 
server receives this segment, it sends the client an acknowledgment segment in return. The server then sends its own shut-down segment, which has 
the FIN bit set to 1. Finally, the client acknowledges the server's shut-down segment. At this point, all the resources in the two hosts are now de-
allocated. 

During the life of a TCP connection, the TCP protocol running in each host makes transitions through various TCP states. Figure 3.5-11 illustrates a 
typical sequence of TCP states that are visited by the client TCP. The client TCP begins in the closed state. The application on the client side initiates a 
new TCP connection (by creating a Socket object in our Java examples). This causes TCP in the client to send a SYN segment to TCP in the server. 
After having sent the SYN segment, the client TCP enters the SYN_SENT sent. While in the SYN_STATE the client TCP waits for a segment from 
the server TCP that includes an acknowledgment for the client's previous segment as well as the SYN bit set to 1. Once having received such a 
segment, the client TCP enters the ESTABLISHED state. While in the ESTABLISHED state, the TCP client can send and receive TCP segments 
containing payload (i.e., application-generated) data. 

Suppose that the client application decides it wants to close the connection. This causes the client TCP to send a TCP segment with the FIN bit set to 1 
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and to enter the FIN_WAIT_1 state. While in the FIN_WAIT state, the client TCP waits for a TCP segment from the server with an acknowledgment.  
When it receives this segment, the client TCP enters the FIN_WAIT_2 state. While in the FIN_WAIT_2 state, the client waits for another segment 
from the server with the FIN bit set to 1; after receiving this segment, the client TCP acknowledges the server's segment and enters the TIME_WAIT 
state. The TIME_WAIT state lets the TCP client resend the final acknowledgment in the case the ACK is lost. The time spent in the TIME-WAIT state 
is implementation dependent, but typical values are 30 seconds, 1 minute and 2 minutes. After the wait, the connection formally closes and all 
resources on the client side (including port numbers) are released. 

Figure 3.5-11:  A typical sequence of TCP states  visited by a client TCP
  

Figure 3.5-12 illustrates the series of states typically visited by the server-side TCP; the transitions are self-explanatory. In these two state transition 
diagrams, we have only shown how a TCP connection is normally established and shut down. We are not going to describe what happens in certain 
pathological scenarios, for example, when both sides of a connection want to shut down at the same time. If you are interested in learning about this 
and other advanced issues concerning TCP, you are encouraged to see Steven's comprehensive book [Stevens 1994]. 
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Figure 3.5-12:  A typical sequence of TCP states  visited by a server-side TCP
  
This completes our introduction to TCP. In Section 3.7 we will return to TCP and look at TCP congestion control in some depth. Before doing so, in 
the next section we step back and examine congestion control issues in a broader context. 

References 

[Fall 1996]   K. Fall,  S. Floyd, "Simulation-based Comparisons of Tahoe, Reno and SACK TCP", ACM Computer Communication Review, July 1996. 
[Jacobson 1988] V. Jacobson, "Congestion Avoidance and Control," Proc. ACM Sigcomm 1988 Conference, 
in Computer Communication Review, vol. 18, no. 4, pp. 314-329, Aug. 1988 
[Mathis 1996] M.  Mathis,  J. Mahdavi, "Forward Acknowledgment: Refining TCP Congestion Control", Proceedings of ACM SIGCOMM'96, 
August 1996, Stanford, CA. 
[RFC 793] "Transmission Control Protocol," RFC 793, September 1981. 
[RFC 854] J. Postel and J. Reynolds, "Telnet Protocol Specifications,"  RFC 854, May 1983. 
[RFC 1122] R. Braden, "Requirements for Internet Hosts -- Communication Layers," RFC 1122, October 1989. 
[RFC13 23] V. Jacobson, S. Braden, D. Borman, "TCP Extensions for High Performance," RFC 1323, May 1992. 
[RFC 2018]  Mathis, M., Mahdavi, J., Floyd, S. and A. Romanow, "TCP  Selective Acknowledgement Options", RFC 2018, October 1996. 
[RFC 2581] M. Allman, V. Paxson, W. Stevens, " TCP Congestion Control, RFC 2581, April 1999. 
[Stevens 1994] W.R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, Reading, MA, 1994. 
  
  

Search RFCs and Internet Drafts

  

If you are interested in an Internet Draft relating to a certain subject or protocol enter the keyword(s) here. 

Query:  

Press button to submit your query or reset the form:  

file:///D|/Downloads/Livros/computação/Computer%20Net...%20Approach%20Featuring%20the%20Internet/segment.html (14 of 15)20/11/2004 15:52:11

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs9.htm#929
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs9.htm#930
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/papers-1.html
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#116
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#117
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#118
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#119


Transmission Control Protocol

Query Options: 

Case insensitive 

Maximum number of hits: 

  

Return to Table Of Contents 

Copyright Keith W. Ross and James F. Kurose 1996-2000 
  
  
  

file:///D|/Downloads/Livros/computação/Computer%20Net...%20Approach%20Featuring%20the%20Internet/segment.html (15 of 15)20/11/2004 15:52:11



TCP Flow Control 3

TCP Flow Control

NOTES :

1.  Host B comsumes data in 2Kbyte  chunks at random times.
2.  When Host A receives an acknowledgment with WIN=0, Host A sends a packet with one 

byte of data. It is assumed for simplicity, that this one byte is not comsumed by the 
receiver.
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3.6 Principles of Congestion Control

In the previous sections, we've examined both the general principles and specific TCP mechanisms used to provide for a 
reliable data transfer service in the face of  packet loss.  We mentioned earlier that , in practice, such loss typically results 
from the overflowing of router buffers as the network becomes congested. Packet retransmission thus treats a symptom of 
network congestion (the loss of a specific transport-layer packet) but does not treat the cause of network congestion -- too 
many sources attempting to send data at too high a rate.  To treat the cause of network congestion, mechanisms are needed 
to throttle the sender in the face of network congestion. 

In this section, we consider the problem of congestion control in a general context, seeking to understand why congestion is 
a "bad thing,"   how network congestion is manifested in the performance received by upper-layer applications, and various 
approaches that can be taken to avoid, or react to, network congestion. This more general study of congestion control is 
appropriate since, as with reliable data transfer, it is high on the "top-10" list of fundamentally important problems in 
networking. We conclude this section with a discussion of congestion control in the ATM ABR protocol.  The following 
section contains a detailed study of TCP's congestion control algorithm. 

3.6.1 The Causes and the "Costs" of Congestion

Let's begin our general study of congestion control by examing three increasingly complex scenarios in which congestion 
occurs.  In each case, we'll look at why congestion occurs in the first place, and the  "cost" of congestion (in terms of  
resources not fully utilized and poor performance received by the end systems). 

Scenario 1: Two senders, a router with infinte buffers

We begin by considering perhaps the simplest congestion scenario possible: two hosts (A and B) each have a connection 
that share a single hop between source and destination, as shown in Figure 3.6-1. 

Figure 3.6-1: Congestion scenario 1:  two connections sharing a single hop with infinte buffers

Let's assume that the application in Host A is sending data into the connection (e.g., passing data to the transport-level 
protocol via a socket) at an average rate of λin bytes/sec. These data are "original"  in the sense that each unit of data is sent 
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into the socket only once.  The underlying transport-level protocol is a simple one: data is encapsulated and sent; no error 
recovery (e.g., retransmission), flow control, or congestion control is performed.  Host B operates in a similar manner and 
we assume for simplicity that it too is sending at a rate of   λin bytes/sec. Packets from hosts A and B pass through a router 

and over a shared outgoing link of capacity C. The router has buffers that allow it to store incoming packets when the 
packet arrival rate exceeds the outgoing link's capacity.  In this first scenario, we'll assume that the router has an infinite 
amount of buffer space. 

Figure 3.6-2: Congestion scenario 1: throughtput and delay as a function of host sending rate

Figure 3.6-2 plots the performance of Host A's connection under this first scenario.  The left graph plots the per-
connection throughput (number of bytes per second at the receiver) as a function of the connection sending rate.  For a 
sending rate between zero and C/2, the throughput at the receiver equals the sender's sending rate  - everything sent by the 
sender is received at the receiver with a finite delay. When the sending rate is above C/2, however, the throughput is only 
C/2.  This upper limit on throughput is a consequence of the sharing of link capacity between two connections - the link 
simply can not deliver packets to a receiver at a steady state rate that exceeds C/2.  No matter how high Hosts A and B set 
their sending rates, they will each never see a throughput higher than C/2. 

Achieving a per-connection throughput of C/2 might actually appear to be a "good thing,"  as the link is fully utilized in 
delivering packets to their destinations.  The right graph in Figure 3.6-2, however, shows the consequences of operating 
near link capacity.  As the sending rate approaches C/2 (from the left), the average delay becomes larger and larger.  When 
the sending rate exceeds C/2, the average number of queued packets in the router is unbounded and the average delay 
between source and destination becomes infinite (assuming that the connections operate at these sending rates for an 
infinite period of time). Thus, while operating at an aggregate throughput of near C may be ideal from a throughput 
standpoint, it is far from ideal from a delay standpoint.  Even in this (extremely) idealized scenario, we've already found 
one cost of a congested network - large queueing delays are experienced as the packet arrival rate nears the link capacity. 
  

Scenario 2: Two senders, a router with finite buffers

Let us now slightly modify scenario 1 in the following two ways.  First, the amount of router buffering is assumed to be 
finite.  Second, we assume that each connection is reliable.  If a packet containing a transport-level segment is dropped at 
the router, it will eventually be retransmitted by the sender.  Because packets can be retransmitted, we must now be more 
careful with our use of the term "sending rate."  Specifically, let us again denote the rate at which the application sends 
original data into the socket by λin bytes/sec.  The rate at which the transport layer sends segments (containing original data 

or  retransmitted data) into the network will be denoted λin' bytes/sec. λin'  is sometimes referred to as the offered load to 

the network. 
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Figure 3.6-3: Scenario 2: two hosts (with retransmissions) and a router with finite buffers
  
  
  
  

 

Figure 3.6-4:  Scenario 2 performance: (a) no retransmissions
(b) only needed retransmisisons (c) extraneous, undeeded retransmissions

The performance realized under scenario 2 will now depend strongly on how retransmission is performed.  First, consider 
the unrealistic case that Host A is able to somehow (magically!) determine whether or not a buffer is free in the router and 
thus sends a packet only when a buffer is free.  In this case, no loss would occur,  λin would be equal to λin ' , and the 

throughput of the connection would be equal to λin.  This case is shown in Figure 3.6-4(a).  From a throughput standpoint, 

performance is ideal - everything that is sent is received. Note that the average host sending rate can not exceed C/2 under 
this scenario, since packet loss is assumed never to occur. 

file:///D|/Downloads/Livros/computação/Computer%20Netwo...%20Featuring%20the%20Internet/principles_congestion.htm (3 of 9)20/11/2004 15:52:13



Principles of congestion control

Consider next the slightly more realistic case that the sender retransmits only when a packet is known for certain to be lost. 
(Again, this assumption is a bit of a stretch.  However, it possiible that the sending host might set its timeout large enough 
to be virtually assured that a packet that has not been ACKed has been lost.) In this case, the performance might look 
something like that shown in Figure 3.6-4(b).  To appreciate what is happening here, consider the case that the offered 
load, λin'  (the rate of original data transmission plus retransmissions), equals .6C.  According to FIgure 3.6-4(b), at this 

value of the offered load, the rate at which data are delivered to the receiver application is C/3.  Thus, out of the .6C units 
of data transmitted, .3333 bytes/sec (on average) are original data and .26666 bytes per second (on average) are 
retransmitted data.  We see here another "cost" of a congested network - the sender must perform retransmissions in order 
to compensate for dropped (lost) packets due to buffer overflow. 

Finally, let us consider the more realistic case that the sender may timeout prematurely and retransmit a packet that has 
been delayed in the queue, but not yet lost.  In this case, both the original data packet and the retransmission may both 
reach the receiver.  Of course, the receiver  needs but one copy of this packet and will discard the retransmission.  In this 
case, the "work" done by the router in forwarding the retransmitted copy of the original packet was "wasted," as the 
receiver will have already received the original copy of this packet.   The router would have better used the link 
transmission capacity transmitting a different packet instead.  Here then is yet another "cost" of a congested network - 
unneeded retransmissions by the sender  in the face of large delays may cause a router to use its link bandwidth to forward 
uneeded copies of  a packet.  Figure 3.6.4(c) shows the throughput versus offered load when each packet is assumed to be 
forwarded (on average) at least twice by the router.  Since each packet is forwarded twice, the throughput achieved will be 
bounded above by the two-segment curve with the asymptotic value of C/4. 
  

Scenario 3: Four senders, routers with finite buffers, and  multihop paths

In our final congestion scenario, four hosts transmit packets, each over overlapping two-hop paths, as shown in Figure 3.6-
5. We again assume that each host uses a timeout/retransmission mechanism to implement a reliable data transfer service, 
that all hosts have the same value of  λin , and that all router links have capacity C bytes/sec. 
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Figure 3.6-5: Four senders, routers with finite buffers, and  multihop paths

Let us consider the connection from Host A to Host C, passing through Routers R1 and R2.  The A-C connection shares 
router R1 with the D-B connection and shares router R2 with the B-D connection.  For extremely small values of  λin , 

buffer overflows are rare (as in congestion scenarios 1 and 2), and the throughput approximately equals the offered load.  
For slightly larger values of  λin , the corresponding throughput is also larger, as more original data is being transmitted 

into the network and delivered to the destination, and overflows are still rate . Thus, for small values of  λin , an increase in 

λin results in an increase in λ out. 

Having considered the case of extremely low traffic, let us next examine the case that  λin   (and hence λin') is extremely 

large.  Consider router R2.  The A-C traffic arriving to router R2 (which arrives at R2 after being forwarded from R1)  can 
have an arrival rate at R2 that is at most C, the capacity of the link from R1 to R2, regardless of the value of λin.  If λin'  is 

extremely large for all connections (including the B-D connection), then the arrival rate of B-D traffic at R2 can be much 
larger than that of the A-C traffic.  Because the A-C and B-D traffic must compete at router R2 for the limited amount of 
buffer space, the amount of A-C traffic that successfully gets through R2 (i.e., is not lost due to buffer overflow) becomes 
smaller and smaller as the offered load from B-D gets larger and larger.  In the limit, as the offered load approaches 
infinity, an empty buffer at R2 is immediately filled by a B-D packet and the throughput of the A-C connection at R2 goes 
to zero.  This, in turn, implies that the A-C end-end throughput goes to zero in the limt of heavy traffic.  These 
considerations give rise to the offered load versus throughput tradeoff shown below in Figure 3.6-6. 

Figure 3.6-6: Scenario 2 performance with finite buffers and multihope paths

The reason for the eventual decrease in throughput with increasing offered load  is evident when one considers the amount 
of wasted "work" done by the network.  In the high traffic scenario outlined above, whenever a packet is dropped at a 
second-hop router, the "work" done by the first-hop router in forwarding a packet to the second-hop router ends up being 
"wasted."  The network would have been equally well off (more accurately, equally as bad off) if the first router had simply 
discarded that packet and remained idle.  More to the point, the transmission capacity used at the first router to forward the 
packet to the second router could have been much more profitably used to transmit a different packet. (For example, when 
selecting a packet for transmission, it might be better for a router to give priorty to packets that have already traversed 
some number of upstream routers).  So here we see yet another cost of dropping a packet due to congestion - when a packet 
is dropped along a path, the transmission capacity that was used at each of the upstream routers to forward that packet to 
the point at which it is dropped ends up having been wasted. 
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3.6.2 Approaches Toward Congestion Control

In Section 3.7, we will examine TCP's specific approach towards congestion control in great detail.  Here, we identify the 
two broad approaches that are taken in practice towards congestion control, and discuss specific network architectures and 
congestion control protocols embodying these approaches. 

At the broadest level, we can distinguish among congestion control approaches based on the whether or not the network 
layer provides any explicit assistance to the transport layer for congestion control purposes: 

●     End-end congestion control.  In an end-end approach towards congestion control,  the network layer provides no 
explicit support to the transport layer for congestion control purposes.  Even the presence of congestion in the 
network must be inferred by the end systems based only on observed network behavior (e.g., packet loss and 
delay).  We will see in Section 3.7 that TCP must necessarily take this end-end approach towards congestion 
control, since the IP layer provides no feedback to the end systems regarding network congestion.  TCP segment 
loss (as indicated by a timeout or a triple duplicate acknowledgement) is taken as an indication of network 
congestion and TCP decreases its window size accordingly.   We also see that new proposals for TCP use increasing 
round-trip delay values as indicators of increased network congestion.

●     Network-assisted congestion control.  With network-assisted congestion control, network-layer components (i.e., 
routers) provide explicit feedback to the sender regarding the congestion state in the network.  This feedback may 
be as simple as a single bit indicating congestion at a link .  This approach was taken in the early IBM SNA 
[Schwartz 1982] and DEC DECnet [Jain 1989] [Ramakrishnan 1990] architectures, was recently proposed for TCP/
IP networks [Floyd 1994] [Ramakrishnan 1998], and is used in ATM ABR congestion control as well, as discussed 
below.  More sophisticated network-feedback is also possible.  For example, one form of  ATM ABR congestion 
control that we will study shortly allows a router to explictly inform the sender of the transmission rate it (the 
router) can support on an outgoing link.

For network-assisted congestion control, congestion information is typically fed back from the network to the sender in one 
of two ways, as shown in Figure 3.6-7.  Direct feedback may be sent from a network router to the sender.  This form of 
notification typically takes the form of a choke packet (essentially saying, "I'm congested!").  The second form of 
notification occurs when a router marks/updates a field in a packet flowing from sender to receiver to indiciate congestion.  
Upon receipt of a marked packet, the receiver then notifies the sender of the congestion indication.  Note that this latter 
form of notification takes up to a full round-trip time. 
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Figure 3.6-7: Two feedback pathways for network-indicated congestion information

3.6.3 ATM ABR Congestion Control

Our detailed study of TCP congestion control in Section 3.7 will provide an in-depth case study of an end-end approach 
towards congestion control.  We conclude this section with a brief case study of the network-assisted congestion control 
mechanisms used in ATM ABR (Available Bit Rate) service. ABR has been designed as an elastic data transfer service in a 
manner reminiscent of TCP. When the network is underloaded, ABR service should be able to take advantage of the spare 
available bandwidth; when the network is congested, ABR service should throttle its transmission rate to some 
predetermined minimum transmititon rate. A detailed tutorial on ATM ABR congestion control and traffic management is 
provided in [Jain 1996]. 

Figure 3.6-8 shows the framework for ATM ABR congestion control.  In our discussion below we adopt ATM terminology 
(e.g., using the term "switch" rather than "router," and the term "call" rather than "packet).  With ATM ABR service, data 
cells are transmitted from a source to a destination through a series of intermediate switches.  Interpersed with the data cells 
are so-called RM (Resource Management) cells; we will see shortly that these RM cells can be used to convey 
congestion-related information among the hosts and switches.  When an RM cell is at a destination, it will be "turned 
around" and sent back to the sender (possibly after the destination has modified the contents of the RM cell). It is also 
possible for a switch to generate an RM cell itself and send this RM cell directly to a source.  RM cells can thus be used to 
provide both direct network feedback and network-feedback-via-the-receiver, as shown in Figure 3.6-8. 
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Figure 3.6-8: Congestion control framework for ATM ABR service

ATM ABR congestion control is a rate-based approach.  That is, the sender explicitly computes a maximum rate at which it 
can send and regulates itself accordingly.  ABR provides three mechanisms for signaling congestion-related information 
from the siwtches to the receiver: 

●     EFCI bit.  Each data cell contains an EFCI  (Explicit Forward Congestion Indication) bit.  A congested network 
switch can set the EFCI bit in a data cell to 1 to signal congestion to the destination host. . The destination must 
check the EFCI bit in all received data cells.  When an RM cell arrives at the destination, if the most recently-
received data cell had the EFCI bit set to 1, then the destination sets the CI (Congestion Indication) bit of the RM 
cell to 1 and sends the RM cell back to the sender. Using the EFCI in data cells and the CI bit in RM cells, a sender 
can thus be notified about congestion at a network switch.

●     CI and NI bits.  As noted above, sender-to-receiver RM cells are interpersed with data cells. The rate of RM cell 
interspersion is a tunable parameter, with one RM cell every 32 data cells being the default value. These RM cells 
have a CI bit and a NI  (No Increase) bit that can be set by a congested network switch. Specifically, a switch can 
set the NI bit in a passing RM cell to1 under mild congestion and can set the CI bit to 1 under severe congestion 
conditions.  When a  destination host receives an RM cell, it will send the RM cell back to the sender with its CI and 
NI bits intact (except that CI may be set to 1 by the destination as a result of the EFCI mechanism decribed above).

●     Explicit Rate (ER) setting. Each RM cell also contains a 2-byte ER (Explicit Rate) field. A congested switch may 
lower the value contained in the ER field in a passing RM cell.  In this manner, the ER field will be set to the 
minimum supportable rate of all switches on the source-to-destination path.

An ATM ABR source adjusts the rate at which it can send cells as a function of the CI, NI and ER values in a returned RM 
cell.  The rules for making this rate adjustment are rather complicated and tedious.  The interested reader is referred to [Jain 
1996] for details. 
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3.7 TCP Congestion Control

In this section we return to our study of TCP. As we learned in Section 3.5, TCP provides a reliable transport service 
between two processes running on different hosts. Another extremely important component of TCP is its congestion control 
mechanism. As we indicated in the previous section, TCP must use end-to-end congestion control rather than network-
assisted congestion control, since the IP layer provides no feedback to the end systems regarding network congestion.  
Before diving into the details of TCP congestion control, let's first get a high-level view of  TCP's congestion control 
mechanism, as well as the overall goal that TCP strives for when multiple TCP connections must share the bandwidth of a 
congested link. . 

A TCP connection controls its transmission rate by limiting its number of transmitted-but-yet-to-be-acknowledged 
segments.  Let us denote this number of permissible unacknowledged segments as w, often referred to as the TCP window 
size.  Ideally, TCP connections should be allowed to transmit as fast as possible (i.e., to have as large a number of 
outstanding unacknowledged packets as possible) as long as segments are not lost (dropped at routers) due to congestion.  In 
very broad terms, a TCP connection starts with a small value of w and then "probes" for the existence of additional unused  
link bandwidth at the links on its end-to-end path by increasing w. A TCP connection continues to increase w until a segment 
loss occurs (as detected by a timeout or duplicate acknowledgements).  When such a loss occurs, the TCP connection 
reduces w to a "safe level" and then  begins probing again for unused bandwidth by slowly increasing w . 

An important measure of the performance of a TCP connection is its throughput - the rate at which it transmits data from the 
sender to the receiver.  Clearly, throughput will depend on the value of w. W.  If  a TCP sender transmits all w segments 
back-to-back, it must then wait for one round trip time (RTT) until it receives acknowledgments for these segments, at which 
point it can send w additional segments. If  a connection transmits w segments of size MSS bytes every RTT seconds, then 
the connection's throughput, or transmission rate, is  (w*MSS)/RTT bytes per second. 

Suppose now that K TCP connections are traversing a link of capacity R. Suppose also that there are no UDP packets 
flowing over this link, that each TCP connection is transferring a very large amount of data, and that none of these TCP 
connections traverse any other congested link.  Ideally, the window sizes in the TCP connections traversing this link should 
be such that each connection achieves a throughput of R/K.  More generally, if a connection passes through N links, with link 
n having transmission rate Rn and supporting a total of Kn TCP connections, then ideally this connection should achieve  a 

rate of  Rn/Kn on the nth link. However, this connection's end-to-end average rate cannot exceed the minimum rate achieved 

at all of the links along the end-to-end path. That is, the end-to-end transmission rate for this connection is  r = min{R1/K1,...,

RN/KN}. The goal of TCP is to provide this connection with this end-to-end rate, r. (In actuality, the formula for r is more 

complicated, as we should take into account the fact that one or more of the intervening connections may be bottlenecked at 
some other link that is not on this end-to-end path and hence can not use their bandwidth share, Rn/Kn. In this case, the value 

of  r would be higher than min{R1/K1,...,RN/KN}. ) 

  
  

3.7.1 Overview of TCP Congestion Control

In Section 3.5 we saw that each side of a TCP connection consists of a receive buffer, a send buffer, and several variables 
(LastByteRead, RcvWin, etc.)  The TCP congestion control mechanism has each side of the connection keep track of two 
additional variables: the congestion window and the threshold. The congestion window, denoted CongWin, imposes an 
additional constraint on how much traffic a host can send into a connection. Specifically, the amount of unacknowledged 
data that a host can have within a TCP connection may not exceed the minimum of CongWin and RcvWin, i.e., 

LastByteSent - LastByteAcked <= min{CongWin, RcvWin}.
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The threshold, which we discuss in detail below, is a variable that effects how CongWin grows. 

Let us now look at how the congestion window evolves throughout the lifetime of a TCP connection. In order to focus on 
congestion control (as opposed to flow control), let us assume that the TCP receive buffer is so large that the receive window 
constraint  can be ignored. In this case,  the amount of unacknowledged data hat a host can have within a TCP connection is 
solely limited by CongWin. Further let's assume that a sender has a very large amount of data to send to a receiver. 

Once a TCP connection is established between the two end systems, the application process at the sender writes bytes to the 
sender's TCP send buffer. TCP grabs chunks of size  MSS, encapsulates each chunk within a TCP segment, and passes the 
segments to the network layer for transmission across the network. The TCP congestion window regulates the times at which 
the segments are sent into the network (i.e., passed to the network layer). Initially, the congestion window is equal to one 
MSS. TCP sends the first segment into the network and waits for an acknowledgement. If this segment is acknowledged 
before its timer times out, the sender increases the congestion window by one MSS and sends out two maximum-size 
segments. If these segments are acknowledged before their timeouts, the sender increases the congestion window by one 
MSS for each of the acknowledged segments, giving a congestion window of four MSS, and sends out four maximum-sized 
segments. This procedure continues as long as (1) the congestion window is below the threshold and (2) the 
acknowledgements arrive before their corresponding timeouts. 

During this phase of the congestion control procedure, the congestion window increases exponentially fast, i.e., the 
congestion window is initialized to one MSS, after one RTT the window is increased to two segments, after two round-trip 
times the window is increased to four segments, after three round-trip times the window is increased to eight segments, etc. 
This phase of the algorithm is called slow start because it begins with a small congestion window equal to one MSS. (The 
transmission rate of the connection starts slowly but accelerates rapidly.) 

The slow start phase ends when the window size exceed the value of threshold. Once the congestion window is larger than 
the current value of  threshold, the congestion window grows linearly rather than exponentially. Specifically, if w is the 
current value of the congestion window, and w is larger than threshold, then after w acknowledgements have arrived, TCP 
replaces w with w + 1 . This has the effect of increasing the congestion window by one in each RTT for which an entire 
window's worth of acknowledgements arrives.  This phase of the algorithm is called congestion avoidance. 

The congestion avoidance phase continues as long as  the acknowledgements arrive before their corresponding timeouts. But 
the window size, and hence the rate at which the TCP sender can send, can not increase forever.  Eventually, the TCP rate 
will be such that one of the links along the path becomes saturated, and which point loss (and a resulting timeout at the 
sender) will occur. When a timeout occurs, the value of threshold is set to half  the value of the current congestion window, 
and the congestion window is reset to one MSS. The sender then again grows the congestion window exponentially fast 
using the slow start procedure until the congestion window hits the threshold. 

In summary: 

●     When the congestion window is below the threshold, the congestion window grows exponentially.
●     When the congestion window is above the threshold, the congestion window grows linearly.
●     Whenever there is a timeout, the threshold is set to one half of the current congestion window and the congestion 

window is then set to one.

If we ignore the slowstart phase, we see that TCP essentially increases its window size by 1 each RTT (and thus increases its 
transmission rate by an additive factor) when its network path is not congested, and decreases its window size by a factor of 
two each RTT when the path is congested.  For this reason, TCP is often referred to as an additive-increase, multiplicative-
decrease (AIMD) algorithm. 
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Figure 3.7-1: Evolution of TCP's congestion window

The evolution of TCP's congestion window is illustrated in  Figure 3.7-1. In this figure, the threshold is initially equal to 
8*MSS. The congestion window climbs exponentially fast during slow start and hits the threshold at the third transmission. 
The congestion window then climbs linearly until loss occurs, just after transmission 7. Note that the congestion window is 
12*MSS when loss occurs. The threshold is then set to .5*CongWin = 6*MSS and the congestion window is set 1. And the 
process continues. This congestion control algorithm is due to V. Jacobson [Jac88]; a number of modifications to Jacobson's 
initial algorithm are described in [Stevens 1994, RFC 2581]. 

A Trip to Nevada: Tahoe, Reno and Vegas

The TCP congestion control algorithm just described is often referred to as Tahoe. One problem with the Tahoe algorithm is 
that when a segment is lost the sender side of the application may have to wait a long period of time for the timeout. For this 
reason, a variant of Tahoe, called Reno, is implemented by most operating systems. Like Tahoe, Reno sets its congestion 
window to one segment upon the expiration of a timer. However, Reno also includes the fast retransmit mechanism that we 
examined in Section 3.5.  Recall that fast retransmit triggers the transmission of a dropped segment if three duplicate ACKs 
for a segment are received before the occurrence of the segment's timeout.  Reno also employs a fast recovery mechanism, 
which essentially cancels the slow start phase after a fast retransmission. The interested reader is encouraged so see [Stevens 
1994, RFC 2581] for details. 

Most TCP implementations currently use the Reno algorithm. There is, however, another algorithm in the literature, the 
Vegas algorithm, that can improve Reno's performance. Whereas Tahoe and Reno react to congestion (i.e., to overflowing 
router buffers), Vegas attempts to avoid congestion while maintaining good throughput. The basic idea of Vegas is to (1) 
detect congestion in the routers between source and destination before packet loss occurs, and (2) lower the rate linearly 
when this imminent packet loss is detected. Imminent packet loss is predicted by observing the round-trip times -- the longer 
the round-trip times of the packets, the greater the congestion in the routers. The Vegas algorithm is discussed in detail in 
[Brakmo 1995] ; a study of its performance is given in [Ahn 1995]. As of 1999, Vegas is  not a part of the most popular TCP 
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implementations. 

We emphasize that TCP congestion control has evolved over the years, and is still evolving. What was good for the Internet 
when the bulk of the TCP connections carried SMTP, FTP and Telnet traffic is not necessarily good for today's Web-
dominated Internet or for the Internet of the future, which will support who-knows-what kinds of services. 

Does TCP Ensure Fairness?

In the above discussion, we noted that the goal of TCP's congestion control mechanism is to share a bottleneck link's 
bandwidth evenly among the TCP connections traversing that link.  But why should TCP's additive increase, multiplicative  
decrease algorithm achieve that goal, particularly given that different TCP connections may start at different times and thus 
may have different window sizes at a given point in time?  [Chiu 1989] provides an elegant and intuitive explanation of why 
TCP congestion control converges to provide an equal share of a bottleneck link's bandwidth among competing TCP 
connections. 

Let's consider the simple case of two TCP connections sharing a single link with transmission rate R, as shown in Figure 3.7-
2. We'll assume that the two connections have the same MSS and RTT (so that if they have the same congestion window 
size, then they have the same throughput), that they have a large amount of data to send, and that no other TCP connections 
or UDP datagrams traverse this shared link. Also, we'll ignore the slow start phase of TCP, and assume the TCP connections 
are operating in congestion avoidance mode (additive increase, multiplicative decrease) at all times. 

 
Figure 3.7-2: Two TCP connections sharing a single bottleneck link

Figure 3.7-3 plots the throughput realized by the two TCP connections. If TCP is to equally share the link bandwidth 
between the two connections, then the realized throughput should fall along the 45 degree arrow ("equal bandwidth share")  
emanating from the origin.  Ideally, the sum of the two throughputs should equal R (certainly, each connection receiving an 
equal, but zero, share of the link capacity is not a desirable situation!), so the goal should be to have the achieved 
throughputs fall somewhere near the intersection of the "equal bandwidth share" line and the "full bandwidth utilization" line 
in. Figure 3.7-3. 

Suppose that the TCP window sizes are such that at a given point in time, connections 1 and 2 realize throughputs indicated 
by point A in Figure 3.7-3.   Because the amount of link bandwidth jointly consumed by the two connections is less than R, 
no loss will occur, and both connections will increase their window by 1 per RTT as a result of TCP's congestion avoidance 
algorithm.  Thus, the joint throughput of the two connections proceeds along a 45 degree line (equal increase for both 
connections) starting from point A.  Eventually, the link bandwidth jointly consumed by the two connections will be greater 
than R and eventually packet loss will occur.  Suppose that connections 1 and 2 experience packet loss when they realize 
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throughputs indicated by point B.  Connections 1 and 2 then decrease their windows by a factor of two.  The resulting 
throughputs realized are thus at point C,  halfway along a vector starting at B and ending at the origin.  Because the joint 
bandwidth use is less than R at point C, the two connections again increase their throughputs along a 45 degree line starting 
from C.  Eventually, loss will again occur, e.g., at  point D, and the two connections again decrease their window sizes by a 
factor of two.  And so on.  You should convince yourself that the bandwidth realized by the two connections eventually 
fluctuates along the equal bandwidth share line. You should also convince yourself that the two connections will converge to 
this behavior regardless of where they being in the two-dimensional space!  Although a number of  idealized assumptions lay 
behind this scenario, it still provides an intuitive feel for why TCP results in an equal sharing of bandwidth among 
connections. 

 
Figure 3.7-3: Throughput realized by TCP connections 1 and 2

In our idealized scenario, we assumed that only TCP connections traverse the bottleneck link, and that only a single TCP 
connection is associated with a host-destination pair. In practice, these two conditions are typically not met, and client-server 
applications can thus obtain very unequal portions of link bandwidth. 

Many network applications run over TCP rather than UDP because they want to make use of TCP's reliable transport service. 
But an application developer choosing TCP gets not only reliable data transfer but also TCP congestion control. We have 
just seen how TCP congestion control regulates an application's transmission rate via the congestion window mechanism. 
Many multimedia applications do not run over TCP for this very reason -- they do not want their transmission rate throttled, 
even if the network is very congested. In particular, many Internet telephone and Internet video conferencing  applications 
typically run over UDP. These  applications prefer to pump their audio and video into the network at a constant rate and 
occasionally lose packets, rather than reduce their rates to "fair" levels at times of congestion and not lose any packets. From 
the perspective of TCP, the multimedia applications running over UDP are not being fair  -- they do not cooperate with the 
other connections nor adjust their transmission rates appropriately. A major challenge in the upcoming years will be to 
develop congestion control mechanisms for the Internet that prevent UDP traffic from bringing the Internet's throughput to a 
grinding halt. 
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But even if we could force UDP traffic to behave fairly, the fairness problem would still not be completely solved. This is 
because there is nothing to stop an application running over TCP from using multiple parallel connections. For example, 
Web browsers often use multiple parallel TCP connections to transfer a Web page. (The exact number of multiple 
connections is configurable in most browsers.) When an application uses multiple parallel connections, it gets a larger 
fraction of the bandwidth in a congested link. As an example consider a link of rate R supporting 9 on-going client-server 
applications, with each of the applications using one TCP connection. If a new application comes along and also uses one 
TCP connection, then each application approximately gets the same transmission rate of R/10. But if this new application 
instead uses 11 parallel TCP connections, then  the new application gets an unfair allocation of R/2. Because Web traffic is 
so pervasive in the Internet, multiple parallel connections are not uncommon. 

Macroscopic Description of TCP Dynamics

Consider sending a very large file over a TCP connection. If we take a macroscopic view of the traffic sent by the source,  
we can ignore the slow start phase. Indeed, the connection is in the slow-start phase for a relatively short period of time 
because the connection grows out of the phase exponentially fast. When we ignore the slow-start phase, the congestion 
window grows linearly, gets chopped in half when loss occurs, grows linearly, gets chopped in half when loss occurs, etc. 
This gives rise to the saw-tooth behavior of TCP [Stevens 1994]  shown in Figure 3.7-1. 

Given this sawtooth behavior, what is the average throuphput of a TCP connection? During a particular round-trip interval, 
the rate at which TCP sends data is function of the congestion window and the current RTT: when the window size is 
w*MSS and the current round-trip time is RTT, then TCP's transsmission rate is (w*MSS)/RTT. During the congestion 
avoidance phase, TCP probes for additional bandwidth by increasing w by one each RTT until loss occurs; denote by W the 
value of w at which loss occurs. Assuming that the RTT and W are approximately constant over the duration of the 
connection, the TCP transmission rate ranges from (W*MSS)/(2RTT)  to (W*MSS)/RTT. 

These assumputions lead to a highly-simplified macroscopic model for the steady-state behavior of TCP: the network drops 
a packet from the connection when the connection's window size increases to W*MSS; the congestion window is then cut in 
half and then increases by one MSS per round-trip time until it again reaches W.  This process repeats itself over and over 
again. Because the TCP throughput increases linearly between the two extreme values, we have: 

average throughput of a connection = (.75*W*MSS)/RTT.

Using this highly idealized model for the steady-state dynamics of TCP, we can also derive an interesting expression that 
relates a connection's loss rate to its available bandwidth [Mahdavi 1997]. This derivation is outlined in the homework 
problems. 

3.7.2 Modeling Latency: Static Congestion Window

Many TCP connections transport  relatively small files from one host to another. For example, with HTTP/1.0 each object in 
a Web page is transported over a separate TCP connection, and many of these objects are small text files or tiny icons. When 
transporting  a small file, TCP connection establishment and slow start may have a significant impact on the latency. In this 
section we present an analytical model that quantifies the impact of connection establishment and slow start on latency. For a 
given object, we define the latency as the time from when the client initiates a TCP connection until when the client receives 
the requested object in its entirety. 

The analysis presented here assumes that that the network is uncongested, i.e., the TCP connection transporting the object 
does not have to share link bandwidth with other TCP or UDP traffic. (We comment on this assumption below.) Also, in 
order to not to obscure the central issues, we  carry out the analysis in the context of the simple one-link network as shown in 
Figure 3.7-4. (This link might model a single bottleneck on an end-to-end path. See also the homework problems for an 
explicit extention to the case of multiple links.) 
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Figure 3.7-4: A simple one-link network connecting a client and a server

We also make the following simplifying assumptions: 

1.  The amount of data that the sender can transmit is solely limited by the sender's congestion window. (Thus, the TCP 
receive buffers are large.)

2.  Packets are neither lost nor corrupted, so that there are no retransmissions.
3.  All protocol header overheads -- including TCP, IP and link-layer headers -- are negligible and  ignored.
4.  The object (that is, file) to be transferred consists of an integer number of segments of size MSS (maximum segment 

size).
5.  The only packets that have non-negligible transmission times are packets that carry maximum-size TCP segments. 

Request packets, acknowledgements and TCP connection establishment packets are  small and have negligible 
transmission times.

6.  The initial threshold in the TCP congestion control mechanism is a large value which is never attained by the 
congestion window.

We also introduce the following notation: 

1.  The size of the object to be transferred is O bits.
2.  The MSS (maximum size segment) is S bits (e.g., 536 bytes).
3.  The transmission rate of the link from the server to the client is R bps.
4.  The round-trip time is denoted by RTT.

In this section we define the RTT to be the time elapsed for a small packet to travel from client to server and then back to the 
client, excluding the transmission time of the packet. It includes the two end-to-end propagation delays between the two end 
systems and the processing times at the two end systems.  We shall assume that the RTT is also equal to the roundtrip time 
of a packet beginning at the server. 

Although the analysis presented in this section assumes an uncongested network with a single TCP connection, it 
nevertheless sheds insight on the more realistic case of multi-link congested network. For a congested network, R roughly 
represents the amount of bandwidth recieved in steady state in the end-to-end network connection; and RTT represents a 
round-trip delay that includes queueing delays at the routers preceding the congested links. In the congested network case, 
we model each TCP connection as a constant-bit-rate connection of rate R bps preceded by a single slow-start phase. (This is 
roughly how TCP Tahoe behaves when losses are detected with triplicate acknowledgements.) In our numerical examples 
we use values of R and RTT that reflect typical values for a congested network. 

Before beginning the formal analysis, let us try to gain some intuition. Let us consider what would be the latency if there 
were no congestion window constraint, that is, if the server were permitted to send segments back-to-back until the entire 
object is sent? To answer this question, first note that one RTT is required to initiate the TCP connection. After one RTT the 
client sends a request for the object (which is piggybacked onto the third segment in the three-way TCP handshake). After a 
total of two RTTs the client begins to receive data from the server. The client receives data from the server for a period of 
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time O/R, the time for the server to transmit the entire object. Thus, in the case of no congestion window constraint, the total 
latency is 2 RTT + O/R. This represents a lower bound; the slow start procedure, with its dynamic congestion window, will 
of course elongate this latency. 

Static Congestion Window

Although TCP uses a dynamic congestion window, it is instructive to first analyze the case of a static congestion window. 
Let W, a positive integer, denote a fixed-size static congestion window.  For the static congestion window, the server is not 
permitted to have more than W unacknowledged outstanding segments. When the server receives the request from the client, 
the server immediately sends W segments back-to-back to the client. The server then sends one segment into the network for 
each acknowledgement it receives from the client. The server continues to send one segment for each acknowledgement until 
all of the segments of the object have been sent.  There are two cases to consider: 

1.  WS/R > RTT + S/R. In this case, the server receives an acknowledgement for the first segment in the first window 
before the server completes the transmission of the first window.

2.  WS/R < RTT + S/R. In this case, the server transmits the first window's worth of segments before the server receives 
an acknowledgement for the first segment in the window.

Let us first consider Case 1, which is illustrated in Figure 3.7-5.. In this figure the window size is W = 4 segments. 

 
Figure 3.7-5: the case that WS/R > RTT + S/R

One RTT is required to initiate the TCP connection. After one RTT the client sends a request for the object (which is 
piggybacked onto the third segment in the three-way TCP handshake). After a total of two RTTs the client begins to receive 
data from the server. Segments arrive periodically from the server every S/R seconds, and the client acknowledges every 
segment it receives from the server. Because the server receives the first acknowledgement before it completes sending a 
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window's worth of segments, the server continues to transmit segments after having transmitted the first window's worth of 
segments. And because the acknowledgements arrive periodically at the server every S/R seconds from the time when the 
first acknowledgement arrives, the server transmits segments continuously until it has transmitted the entire object. Thus, 
once the server starts to transmit the object at rate R, it continues to transmit the object at rate R until the entire object is 
transmitted.  The latency therefore is 2 RTT + O/R. 

Now let us consider Case 2, which is illustrated in Figure 3.7-6. In this figure, the window size is W=2 segments. 

 
Figure 3.7-6: the case that WS/R < RTT + S/R

Once again, after a total of two RTTs the client begins to receive segments from the server. These segments arrive 
peridodically every S/R seconds, and the client acknowledges every segment it receives from the server. But now the server 
completes the transmission of the first window before the first acknowledgment arrives from the client. Therefore, after 
sending a window, the server must stall and wait for an acknowledgement before resuming transmission. When an 
acknowledgement finally arrives, the server sends a new segment to the client. Once the first acknowledgement arrives, a 
window's worth of acknowledgements arrive, with each successive acknowledgement spaced by S/R seconds. For each of 
these acknowledgements, the server sends exactly one segment. Thus, the server alternates between two states: a transmitting 
state, during which it transmits W segments; and a stalled state, during which it transmits nothing and waits for an 
acknowledgement. The latency is equal to 2 RTT plus the time required for the server to transmit the object, O/R, plus the 
amount of time that the server is in the stalled state. To determine the amount of time the server is in the stalled state, let K = 
O/WS; if O/WS is not an integer, then round K up to the nearest integer. Note that K is the number of windows of data there 
are in the object of size O. The server is in the stalled state between the transmission of each of the windows, that is, for K-1 
periods of time, with each period lasting RTT- (W-1)S/R (see above diagram). Thus, for Case 2, 

Latency = 2 RTT + O/R + (K-1)[S/R + RTT - W S/R] .

Combining the two cases, we obtain 
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Latency = 2 RTT + O/R + (K-1) [S/R + RTT - W S/R]+

where [x]+ = max(x,0). 

This completes our analysis of static windows. The analysis below for dynamic windows is more complicated, but parallels 
the analysis for static windows. 

3.7.3 Modeling Latency: Dynamic Congestion Window

We now investigate the latency for a file transfer when TCP's dynamic congestion window is in force. Recall that the server 
first starts with a congestion window of one segment and sends one segment to the client. When it receives an 
acknowledgement for the segment, it increases its congestion window to two segments and sends two segments to the client 
(spaced apart by S/R seconds). As it receives the acknowledgements for the two segments, it increases the congestion 
window to four segments and sends four segments to the client (again spaced apart by S/R seconds). The process continues, 
with the congestion window doubling every RTT. A timing diagram  for TCP is illustrated in Figure 3.7-7. 

file:///D|/Downloads/Livros/computação/Computer%20Net...Approach%20Featuring%20the%20Internet/congestion.html (10 of 15)20/11/2004 15:52:15



TCP Congestion Control

 
Figure 3.7-7: TCP timing during slow start

Note that O/S is the number of segments in the object; in the above diagram, O/S =15. Consider the number of segments 
that  are in each of the windows. The first window contains 1 segment; the second window contains 2 segments; the third 
window contains 4 segments. More generally, the kth window contains 2k-1 segments. Let K be the number of windows that 
cover the object; in the preceding diagram K=4. In general we can express K in terms of O/S as follows: 

After transmitting a window's worth of data, the server may stall (i.e., stop transmitting) while it waits for an 
acknowledgement. In the preceding diagram, the server stalls after transmitting the first and second windows, but not after 
transmitting the third. Let us now calculate the amount of stall time after transmitting the kth window.  The time from when 
the server begins to transmit the kth window until when the server receives an acknowledgement for the first segment in the 
window is S/R + RTT. The transmission time of the kth window is (S/R) 2k-1. The stall time is the difference of these two 
quantities, that is, 

[S/R + RTT - 2k-1(S/R)]+.

The server can potentially stall after the transmission of each of the first K-1 windows. (The server is done after the 
transmission of the Kth window.) We can now calculate the latency for transferring the file. The latency has three 
components: 2RTT for setting up the TCP connection and requesting the file; O/R, the transmission time of the object; and 
the sum of all the stalled times. Thus, 

The reader should compare the above equation for the latency equation for static congestion windows; all the terms are 
exactly the same except the term WS/R for static windows has been replaced by 2k-1S/R for dynamic windows. To obtain a 
more compact expression for the latency, let Q be the number of times the server would stall if the object contained an 
infinite number of segments: 
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The actual number of times the server stalls is P = min{Q,K-1}. In the preceding diagram P=Q=2. Combining the above two 
equations gives 

We can further simplify the above formula for latency by noting 

Combining the above two equations gives the following closed-form expression for the latency: 

Thus to calculate the latency, we simple must calculate K and Q, set P = min{Q,K-1}, and plug P into the above formula. 

It is interesting to compare the TCP latency to the latency that would occur if there were no congestion control (that is, no 
congestion window constraint). Without congestion control, the latency is 2RTT + O/R, which we define to be the Minimum 
Latency. It is simple exercise to show that 

We see from the above formula that TCP slow start will not significantly increase latency if RTT << O/R, that is, if the 
round-trip time is much less than the transmission time of the object. Thus, if we are sending a relatively large object over an 
uncongested, high-speed link, then slow start has an insignificant affect on latency. However, with the Web we are often 
transmitting many small objects over congested links, in which case slow start can significantly increase latency (as we shall 
see in the following subsection). 

Let us now take a look at some example scenarios. In all the scenarios we set S = 536 bytes, a common default value for 
TCP. We shall use a RTT of 100 msec, which is not an atypical value for a continental or inter-continental delay over 
moderately congested links. First consider sending a rather large object of size O = 100Kbytes. The number of windows that 
cover this object is K=8. For a number of  transmission rates, the following chart examines the affect of the the slow-start 
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mechanism on the latency. 
  
  

R O/R P
Minimum Latency:  

O/R + 2 RTT 
Latency  

with Slow Start

  28 Kbps 28.6 sec 1  28.8 sec  28.9 sec

   100 Kbps 8 sec 2  8.2 sec  8.4 sec

  1 Mbps 800 msec 5 1 sec 1.5 sec

  10 Mbps 80 msec 7 .28 sec .98 sec

We see from the above chart that for a large object, slow-start adds appreciable delay only when the transmission rate is 
high. If the transmission rate is low, then acknowledgments come back relatively quickly, and TCP quickly ramps up to its 
maximum rate. For example, when R = 100 Kbps, the number of stall periods is P=2 whereas the number of windows to 
transmit is K=8; thus the server stalls only after the first two of eight windows. On one otherhand, when R = 10 Mbps, the 
server stalls between each window, which causes a significant increase in the delay. 

Now consider sending a small object of size O = 5 Kbytes. The number of windows that cover this object is K= 4. For a 
number of  transmission rates, the following chart examines the affect of the the slow-start mechanism. 
  

R O/R P 
Minimum Latency:  

O/R + 2 RTT 
Latency  

with Slow Start

  28 Kbps  1.43 sec 1  1.63 sec  1.73 sec

   100 Kbps  .4 sec 2 .6 sec  .757 sec

  1 Mbps 40 msec 3 .24 sec .52 sec

  10 Mbps   4 msec 3 .20 sec .50 sec

Once again slow start  adds an appreciable delay when the transmission rate is high. For example, when R = 1Mbps the 
server stalls between each window, which causes the latency to be more than twice that of the minimum latency. 

For a larger RTT, the affect of slow start becomes significant for small objects for smaller transmission rates. The following 
chart examines the affect of slow start for  RTT = 1 second and O = 5 Kbytes (K=4). 
  

R O/R P 
Minimum Latency:  

O/R + 2 RTT 
Latency  

with Slow Start

  28 Kbps  1.43 sec 3  3.4 sec  5.8 sec

  100 Kbps .4 sec 3 2.4 sec 5.2 sec

1 Mbps 40 msec 3 2.0 sec 5.0 sec

10 Mbps 4 msec 3 2.0 sec 5.0 sec

In summary, slow start can significantly increase latency when the object size is relatively small and the RTT is relatively 
large. Unfortunately, this is often the scenario when sending of objects over the World Wide Web. 

An Example:  HTTP
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As an application of the the latency analysis, let's now calculate the response time for a Web page sent over non-persistent 
HTTP. Suppose that the page consists of one base HTML page and M referenced images. To keep things simple, let us 
assume that each of the M+1 objects contains exactly O bits. 

With non-persistent HTTP, each object is tranferred independently, one after the other. The response time of the Web page is 
therefore the sum of the latencies for the individual objects. Thus 

Note that the response time for non-persistent HTTP takes the form: 
response time =  (M+1)O/R + 2(M+1)RTT + latency due to TCP slow-start  for each of the M+1 objects.

Clearly if there are many objects in the Web page and if RTT is large, then non-persistent HTTP will have poor response-
time performance. In the homework problems we will investigate the response time for other HTTP transport schemes, 
including persistent connections and non-persistent connections with parallel connections. The reader is also encouraged to 
see [Heidemann] for a related analysis.. 
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summary

3.8 Summary

We began this chapter by studying the services that a transport layer protocol can provide to network 
applications. At one extreme, the transport layer protocol can be very simple and offer a no-frills service 
to applications, providing only the multiplexing/demultiplexing function for communicating processes. 
The Internet's UDP protocol is an example of such a no-frills (and no-thrills, from the persective of 
someone interested in networking) transport-layer protocol. At the other extreme, a transport layer 
protocol can provide a variety of guarantees to applications, such as reliable delivery of data, delay 
guarantees and bandwidth guarantees. Nevertheless, the services that a transport protocol can provide 
are often constrained by the service model of the underlying network-layer protocol. If the network layer 
protocol cannot provide delay or bandwidth guarantees to transport-layer segments, then the transport 
layer protocol cannot provide delay or bandwidth guarantees for the messages sent between processes. 

We learned in Section 3.4 that a transport layer protocol can provide reliable data transfer even if the 
underlying network layer is unreliable. We saw that providing reliable data transfer has many subtle 
points, but that the task can be accomplished by carefully combining acknowledgments, timers, 
retransmissions and sequence numbers. 

Although we covered reliable data transfer in this chapter, we should keep in mind that reliable data 
transfer can be provided by link, network, transport or application layer protocols. Any of upper four 
layers of the protocol stack can implement acknowledgments, timers, retransmissions and sequence 
numbers and provide reliable data transfer to the layer above. In fact, over the years, engineers and 
computer scientists have independently designed and implemented link, network, transport and 
application layer protocols that provide reliable data transfer (although many of these protocols have 
quietly disappeared). 

In Section 3.5 we took a close look at TCP, the Internet's connection-oriented and reliable transport-
layer protocol. We learned that TCP is complex, involving connection management, flow control, round-
trip time estimation, as well as reliable data transfer. In fact, TCP is actually more complex that we made 
it out to be -- we intentionally did not discuss a variety of TCP patches fixes, and improvements that are 
widely implemented in various versions of TCP. All of this complexity, however, is hidden from the 
network application. If  a client on one host wants to reliably send data to a server on another host, it 
simply opens a TCP socket to the server and then pumps data into that socket. The client-server 
application is oblivious to all of TCP's complexity. 

In Section 3.6 we examined congestion control from a broad perspective, and in Section 3.7 we showed 
how TCP implements congestion control. We learned that congestion is imperative for the well-being of 
the network. Without congestion control, a network can easily become grid locked, with little or no data 
being transported end-to-end. In Section 3.7 we learned that TCP implements an end-to-end congestion 
control mechanism that additively increases its transmission rate when the TCP connection's path is 
judged to be congestion-free, and nultiplicatively decreases its transmission rate when loss occurs. This 
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mechanism also strives to give each TCP connection passing through a congested link an equal share of 
the link bandwidth. We also examined in some depth the impact of TCP connection establishment and 
slow start on latency. We observed that in many important scenarios, connection establishment and slow 
start significantly contribute to end-to-end delay. We emphasize once more that TCP congestion control 
has evolved over the years, remains an area of intensive research, and will likely continue to evolve in 
the upcoming years. 

In Chapter 1 we said that a computer network can be partitioned into the "network edge" and the 
"network core". The network edge covers everything that happens in the end systems. Having now 
covered the application layer and the transport layer, our discussion of the network edge is now 
complete. It is time to explore the network core! This journey begins in the next chapter, where we'll 
study the network layer, and continues into Chapter 5, where we'll study the link layer. 

Copyright 1999. Keith W. Ross and James F. Kurose . All Rights Reserved. 
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Homework Problems and Discussion Questions

Chapter 3

Review Questions

Sections 3.1-3.3 

1) Consider a TCP connection between host A and host B. Suppose that the TCP segments traveling from host A to host B have source port number x 
and destination port number y. What are the source and destination port numbers for the segments travelling from host B to host A? 

2) Describe why an application developer may choose to run its application over UDP rather than TCP. 

3) Is it possible for application to enjoy reliable data transfer even when the application runs over UDP? If so, how? 

Section 3.5 

4) True or False: 

a) Host A is sending host B a large file over a TCP connection. Assume host B has no data to send A. Host B will not send acknowledgements 
to host A because B cannot piggyback the acknowledgementson data? 

b) The size of the TCP RcvWindow  never changes throughout the duration of the connection? 

c) Suppose host A is sending host B a large file over a TCP connection. The number of unacknowledged bytes that A sends cannot exceed the 
size of the receive buffer? 

d) Suppose host A is sending a large file to host B over a TCP connection. If the sequence number for a segment of this connection is m, then 
the sequence number for the subsequent segment will necessarily be m+1? 

e) The TCP segment has a field in its header for RcvWindow? 

f) Suppose that the last SampleRTT in a TCP connection is equal to 1 sec. Then Timeout for the connection will necessarily be set to a value 
>= 1 sec. 

g) Suppose host A sends host B one segment with sequence number 38 and 4 bytes of data. Then in this same segment the acknowledgement 
number is necessarily 42? 
 

5) Suppose A sends two TCP segments back-to-back to B. The first segment has sequence number 90; the second has sequence number 110.  a) How 
much data is the first segment? b) Suppose that the first segment is lost, but the second segment arrives at B. In the acknowledgement that B sends to 
A, what will be the acknowledgment number? 

6) Consider the Telent example discussed in Section 3.5. A few seconds after the user types the letter 'C' the user types the letter 'R'. After typing the 
letter 'R' how many segments are sent and what is put in the sequence number and acknowledgement fields of the segments. 

Section 3.7 

7) Suppose two TCP connections are present over some bottleneck link of rate R bps. Both connections have a huge file to send  (in the same 
direction over the bottleneck link). The transmissions of the files start at the same time. What is the transmission rate that TCP would like to give to 
each of the connections? 

8) True or False:  Consider congestion control in TCP. When a timer expires at the sender, the threshold is set to one half of its previous value? 
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Problems

1) Suppose client A initiates an FTP session with server S. At about the same time, client B also initiates an FTP session with server S. Provide 
possible source and destination port numbers for : 

(a) the segments sent from A to S? 
(b) the segments sent from B to S? 
(c) the segments sent from S to A? 
(d) the segments sent from S to B?

(e) If A and B are different hosts,  is it possible that the source port numbers in the segments from A to S are the same as those from B to S? (f) How 
about if they are the same host? 

2) UDP and TCP use 1's complement for their checksums. Suppose you have the following three 8-bit words: 01010101, 01110000, 11001100. What 
is the 1's complement of the sum of these words? Show all work. Why is it that UDP take the 1's complement of the sum, i.e., why not just use the 
sum? With the 1's complement scheme, how does the receiver detect errors. Is it possible that a 1-bit error will go undetected? How about a 2-bit 
error? 

3) Protocol rdt2.1 uses both ACK's and NAKs.  Redesign the protocol, adding whatever additional protocol mechanisms are needed,  for the case that 
only ACK messages are used. Assume that packets can be corrupted, but not lost. Give the sender and receiver FSMs, and a trace of your protocol in 
operation (using traces as in Figure \ref{fig57}).  Show also how the protocol works in the case of no errors, and show how your protocol recovers 
from channel bit errors. 

4) Consider the following (incorrect) FSM for  the receiver for protocol rtd2.1. 

 
Show that this receiver, when operating with the sender shown in Figure 3.4-5 can lead the sender and receiver to enter into a deadlock state, where 
each is waiting for an event that will never occur. 

5) In protocol rdt3.0, the ACK packets flowing from the receiver to the sender do not have sequence numbers (although they do have an ACK field 
that contains the sequence number of the packet they are acknowledging).  Why is it that our ACK packets do not require sequence numbers? 

6) Draw the FSM for the receiver side of protocol rdt 3.0. 

7) Give a trace of the operation of protocol rdt3.0 when data packets and acknowledgements packets are garbled. Your trace should be similar to that 
used in Figure 3.4-9. 

8) Consider a channel that can lose packets but has a maximum delay that is known.  Modify protocol rdt2.1 to include sender timeout and 
retransmit.  Informally argue why your protocol can communicate correctly over this channel. 
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9) The sender side of rdt3.0 simply ignores (i.e., takes no action on) all received packets which are either in error, or have the wrong value in the 
acknum field of an acknowledgement packet.  Suppose that in such circumstances, rdt3.0 were to simply retransmit the current data packet. Would 
the protocol still work?  (Hint: Consider what would happen in the case that there are only it errors; no packet losses and no premature timeouts 
occur.  Consider how many times the nth packet is sent, in the limit as n approaches infinity. 

10) Consider the cross-country example shown in Figure 3.4-10. How big would the window size have to be for the channel utilization to be greater 
than 90 %? 

11) Design a reliable, pipelined, data transfer protocol that uses only negative acknowledgements. How quickly will your protocol respond to lost 
packets when the arrival rate of data ot the sender is low?  Is high? 

12) Consider transferring an enormous file of L bytes from host A to host B. Assumme an MSS of 1460 bytes. 

 a) What us the maximum length of L such that TCP sequence numbers are not exhausted? Recall that the TCP number field has four bytes. 

b) For the L you obtain in (a), find how long it takes to transmit the file. Assme that a total of 66 bytes of transport, network and data-link 
header are added to each segment before  the resulting packet  is sent out over a 10 Mbps link. Ignore flow control and congestion control, so 
A can pump out the segments back-to-back and continuously.

13) In Figure 3.5-5, we see that TCP waits until it has received three duplicate ACK before performing a fas retransmit.  Why do you think the TCP 
designers chose not to perform a fast retransmit after the first duplicate ACK for a segment is received? 

14) Consider the TCP procedure for estimating RTT. Suppose that x = .1. Let  SampleRTT1 be the most recent sample RTT, let SampleRTT2  be the 

next most recent sample RTT, etc. (a) For a given TCP connection, suppose 4 acknowledgements have been returned with corresponding sample 
RTTs SampleRTT4, SampleRTT3, SampleRTT2, and SampleRTT1. Express EstimatedRTT in terms of the four sample RTTs. (b) Generalize your 

formula for n sample round-trip times. (c) For the formula in part (b) let n approach infinity. Comment on why this averaging procedure is called an 
exponential moving average. 

15) Refer to Figure 3.7-3 that illustrates the convergence of TCP's additive increase, multiplicative decrease algorithm.  Suppose that instead of a 
multiplicative decrease, TCP decreased the window size by a constant amount.  Would the resulting additive increase additive decrease converge to 
an equal share algorithm?  Justify your answer using a diagram similar to Figure 3.7-3. 

16) Recall the idealized model for the steady-state dynamics of TCP. In the period of time from when the connection's window size varies from 
(W*MSS)/2 to W*MSS, only one packet is lost (at the very end of the period). (a) Show that the  loss rate is equal to 

L = loss rate =  1/[(3/8)*W2 - W/4] .

(b) Use the above result to show that if a connection has loss rate L, then its average bandwidth is approximately given by: 

average  bandwidth of connection ~ 1.22 * MSS /  (RTT * sqrt(L) ).

17) Consider sending an object of size O = 100 Kbytes from server to client. Let S=536 bytes and RTT=100msec. Suppose the transport protocol 
uses static windows with window size W. 

a) For a transmission rate of 28 Kbps, determine the minimum possible latency. Determine the minimum window size that achieves this latency. 

b) Repeat (a) for 100 Kbps. 

c) Repeat (a) for 1 Mbps. 

d) Repeat (a) for 10 Mbps. 

18) Suppose TCP increased its congestion window  by two rather than by one for each received acknowledgement during slow start. Thus the first 
window consists of one segment, the second of three segments, the third of nine segments, etc. For this slow-start procedure: 

a) Express K in terms of O and S. 

b) Express Q in terms of RTT, S and R. 
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c) Express latency in terms of P = min(K-1,Q), O, R and RTT. 

19) Consider the case RTT = 1 second and O = 100 kBytes. Prepare a chart (similar to the charts in Section 3.5.2) that compares the minimum 
latency (O/R + 2 RTT) with the latency with slow start for R=28Kbps, 100 Kbps, 1 Mbps and 10 Mbps. 

20) True or False. 

a) If a Web page consists of exactly one object, then non-persistent and persistent connections have exactly the same response time 
performance?

b) Consider sending one object of size O from server to browser over TCP. If O > S, where S is the maximum segment size, then the server 
will stall at least once? 

c) Suppose a Web page consists of 10 objects, each of size O bits. For persistent HTTP, the RTT portion of the response time is 20 RTT ? 

d) Suppose a Web page consists of 10 objects, each of size O bits. For non-persistent HTTP with 5 parallel connections, the RTT portion of 
the response time is 12 RTT ?

21) The analysis for dynamic windows in the text assumes that there is one link between server and client. Redo the analysis for T links between 
server and client. Assume the network has no congestion, so the packets experience no queueing delays. The packets do experience a store-and-
forward delay, however. The definition of RTT is the same as that given in the section on TCP congestion control. (Hint: The time for the server to 
send out the first segment until it receives the acknowledgement is TS/R + RTT.) 

22) Recall the discussion at the end of Section 3.7.3 on the response time for a Web page.  For the case of non-persistent connections, determine a 
general expression for the fraction of the response time that is due to TCP slow start. 

23) With persistent HTTP, all objects are sent over the same TCP connection. As we discussed in Chapter 2, one of the motivations behind persistent 
HTTP (with pipelining) is to diminish  the affects of TCP connection establishment and slow start on the response time for a Web page. In this 
problem we investigate the response time for persistent HTTP. Assume that the client requests all the images at once, but only when it has it has 
received the entire HTML base page. Let M+1 denote the number of objects and let O denote the size of each object. 

a) Argue that the response time takes the form  (M+1)O/R + 3RTT + latency due to slow-start. Compare the contribution of the RTTs in this 
expression with that in non-persistent HTTP. 
b) Assume that K = log2(O/R+1) is an integer; thus, the last window of the base HTML file transmits an entire window's worth of segments, i.

e., window K transmits 2K-1segments. Let P' = min{Q,K'-1} and 

Note that K' is the number of windows that cover an object of size (M+1)O and P' is the number of stall periods when sending the large object 
over a single TCP connection. Suppose (incorrectly) the server can send the images without waiting for the formal request for the images from 
the client. Show that the response time is that of sending one large object of size (M+1)O: 

c) The actual response time for persistent HTTP is somewhat larger than the approximation. This is because the server must wait for a request 
for the images before sending the images. In particular, the stall time between the Kth and (K+1)st window is not [S/R + RTT - 2K-1(S/R)]+

but is instead RTT. Show that 

24) Consider the scenario of RTT = 100 msec, O = 5 Kbytes, and M= 10. Construct a chart that compares the response times for non-persistent and 
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persistent connections  for 28 kbps, 100 kbps, 1 Mbps and 10 Mbps.  Note that persistent HTTP has substantially lower response time than non-
persistent HTTP for all the transmission rates except 28 Kbps. 

25) Repeat the above question for the case of RTT = 1 sec, O = 5 Kbytes , M= 10. Note that for these parameters, persistent HTTP gives a 
significantly lower response time than non-persistent HTTP for all the transmission rates. 

26) Consider now non-persistent HTTP with parallel TCP connections. Recall that browsers typically operate in this mode when using HTTP/1.0. 
Let X denote the maximum number of parallel connections that the client (browser) is permitted to open. In this mode, the client first uses one TCP 
connection to obtain the base HTML file. Upon receiving the base HTML file, the client establishes M/X sets of TCP connections, with each set 
having X parallel connections. Argue that the total response time takes the form: 

response time =  (M+1)O/R + 2(M/X+1) RTT + latency due to slow-start stalling.
Compare the contribution of  the term involving RTT to that of persistent connections and non-persistent (non-parallel) connections. 
  

Discussion Questions

1) Consider streaming stored audio. Does it make sense to run the application over UDP or TCP?  Which one does RealNetworks use? Why? Are 
there any other streaming stored audio products? Which transport protocol do they use and why? 
  

Programming Assignment

In this  programming assignment, you will be writing the sending and receiving transport-level code for implementing a 
simple reliable data transfer protocol - for either the alternating bit protocol or a Go-Back-N protocol.  This should be FUN since your 
implementation will differ very little from what would be required in a real-world situation. 

Since you presumably do not have standalone machines (with an OS that you can modify), your code will have to execute in a simulated hardware/
software environment. However, the programming interface provided to your routines (i.e., the code that would call your entities from above (i.e., 
from layer 5) and from below (i.e., from layer 3)) is very close to what is done in an actual UNIX environment. (Indeed, the software interfaces 
described in this programming assignment are much more realistic that the infinite loop senders and receivers that many textbooks describe). 
Stopping/starting of timers are also simulated, and timer interrupts will cause your timer handling routine to be activated. 

You can find full details of the programming assignment, as well as C code that you will need to create the simulated hardware/software environment 
at http://gaia.cs.umass.edu/kurose/transport/programming_assignment.htm 
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4.1 Introduction and Network Service Models

We saw in  the previous chapter that the transport layer provides communication service between two processes running on 
two different hosts. In order to provide this service, the transport layer relies on the services of the network layer, which 
provides a communication service between hosts. In particular, the network-layer moves transport-layer segments from one 
host to another. At the sending host, the transport layer segment is passed to the network layer. The network layer  then 
"somehow" gets the segment to the destination host and passes the segment up the protocol stack to the transport layer.  
Exactly how the network layer moves a segment from the transport layer of an origin host to the transport layer of the 
destination host is the subject of this chapter. We will see that unlike the transport layers, the network layer  requires the 
coordination of each and every host and router in the network. Because of this, network layer protocols are among the 
most challenging (and therefore interesting!) in the protocol stack. 

Figure 4.1-1 shows a simple network with two hosts (H1 and H2) and four routers (R1, R2, R3 and R4).  The role of the 
network layer in a sending host is to begin the packet on its journey to the the receiving host.  For example, if H1 is sending 
to H2, the network layer in host H1 transfers these packets to it nearby router, R2.  At the receiving host (e.g., H2) , the 
network layer receives the packet from its nearby router (in this case, R3) and delivers the packet up to the transport layer 
at H2.  The primary role of the routers is to "switch" packets from input links to output links.  Note that the routers in 
Figure 4.1-1 are shown with a truncated protocol stack,  i.e., with no upper layers above the network layer, since routers do 
not run transport and application layer protocols  such as those we examined in Chapters 2 and 3. 

 

Figure 4.1-1: The network layer

The role of the network layer is thus deceptively simple -- to transport packets from a sending host to a receiving host.  To 
do so,  three important network layer functions can be identified: 

●     Path Determination.  The network layer must determine the route or path taken by packets as they flow from a 
sender to a receiver.  The algorithms that calculate these paths are referred to as routing algorithms.    A routing 
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algorithm would determine, for example, whether packets from H1 to H2 flow along the path R2-R1-R3 or path R2-
R4-R3 (or any other path between H1 and H2).   Much of this chapter will focus on routing algorithms.  In Section 
4.2 we will study the theory of routing algorithms, concentrating on the two most prevalent classes of routing 
algorithms: link state routing and distance vector routing.  We will see that the complexity of a routing algorithms 
grows considerably as the number of  routers in the network increases.  This motivates the use of hierarchical 
routing, a topic we cover in section 4.3.  In Section 4.8 we cover multicast routing --  the routing algorithms, 
switching function, and call setup mechanisms that allow a packet that is sent just once by a sender to be delivered 
to multiple destinations.

●     Switching.  When a packet arrives at the input to a router, the router must move it to the appropriate output link.  
For example, a packet arriving from host H1 to router R2 must either be forwarded towards H2 either along the link 
from R2 to R1 or along the link from R2 to R4.  In Section 4.6, we look inside a router and examine how a packet is 
actually switched (moved) from an input link to an output link.

●     Call Setup. Recall that in our study of TCP,  a three-way handshake was required before data actually flowed from 
sender to receiver.  This allowed the sender and receiver to setup the needed state information (e.g., sequence 
number and initial flow control window size).  In an analogous manner, some network layer architectures (e.g., 
ATM) requires that the routers along the chosen path from source to destination  handshake with each other in order 
to setup state before data actually begins to flow.  In the network layer, this process is referred to as call setup.  The 
network layer of the Internet architecture does not perform any such call setup.

Before delving into the details of the theory and implementation of the network layer, however,  let us first take the broader 
view and consider what  different types of service might be offered by the network layer. 
  

4.1.1 Network Service Model

When the transport layer at a sending host transmits a packet into the network (i.e., passes it down to the network layer at 
the sending host), can the transport layer count on the network layer to deliver the packet to the destination? When multiple 
packets are sent, will they be delivered to the transport layer in the receiving host in the order in which they were sent?  
Will the amount of  time between the sending of two sequential packet transmissions be the same as the amount of time 
between their  reception?  Will the network provide any feedback about congestion in the network?  What is the abstract 
view (properties) of the channel connecting the transport layer in the two hosts? The answers to these questions and others 
are determined by the service model provided by the network layer.  The network service model defines the characteristics 
of  end-to-end transport of data between one "edge" of the network and the other, i.e., between sending and receiving end 
systems. 

Datagram or Virtual Circuit?

Perhaps the most important abstraction provided by the network layer to the upper layers is whether or not the network 
layer uses virtual circuits (VCs) or not. You may recall from Chapter 1 that a virtual-circuit  packet network behaves 
much like a telephone network, which uses "real circuits" as opposed to "virtual circuits".  There are three identifiable 
phases in a virtual circuit: 

●     VC setup. During the setup phase, the sender contacts the network layer, specifies the receiver address, and waits 
for the network to setup the VC.  The network layer determines the path between sender and receiver, i.e., the series 
of links and switches through which all packets of the VC will travel. As discussed in Chapter 1, this typically 
involves updating tables in each of the packet switches in the path. During VC setup, the network layer may also 
reserve resources (e.g., bandwidth) along the path of the VC.

●     Data transfer.  Once theVC has been established, data can begin to flow along the VC.
●     Virtual circuit teardown.  This is initiated when the sender (or receiver)  informs the network layer of its desire to 

terminate the VC.  The network layer will then typically inform the end system on the other side of the network of 
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the call termination, and update the tables in each of the packet switches on the  path to indicate that the VC no 
longer exists.

There is a subtle but important distinction between VC setup at the network layer and connection setup at the transport 
layer (e.g., the TCP 3-way handshake we studied in Chapter 3).  Connection setup at the transport layer only involves the 
two end systems.  The two end systems agree to communicate and together determine the parameters (e.g., initial sequence 
number, flow control window size) of their transport level connection before data actually begins to flow on the transport 
level connection. Although the two end systems are aware of the transport-layer connection, the switches within the 
network are completely oblivious to it. On the otherhand, with a virtual-circuit network layer,  packet switches are involved 
in virtual-cicuit setup, and each packet switch is fully aware of all the VCs passing through it. 

The messages that the end systems send to the network to indicate the initiation or termination of a VC, and the messages 
passed between the switches to set up the VC (i.e. to modify switch tables) are known as signaling messages and the 
protocols used to exchange these messages are often referred to as signaling protocols. VC setup is shown pictorially in 
Figure 4.1-2. 
  
  

 
Figure 4.1-2: Virtual circuit service model

We mentioned in Chapter 1 that ATM uses virtual circuits, although virtual circuits in ATM jargon are called virtual 
channels. Thus ATM packet switches receive and process VC setup and tear down messages, and they also maintain VC 
state tables. Frame relay and X.25, which will be covered in Chapter 5, are two other networking technologies that use 
virtual circuits. 

With a datagram network layer, each time an end system wants to send a packet, it stamps the packet with the address of 
the destination end system, and then pops the packet into the network. As shown in Figure 4.1-3, this is done without any 
VC setup. Packet switches (called "routers" in the Internet)  do not maintain any state information about VCs because there 
are no VCs! Instead, packet switches route a packet towards its destination by examining the packet's destination address,  
indexing a routing table with the destination address, and forwarding the packet in the direction of the destination. (As 
discussed in Chapter 1, datagram routing is similar to routing ordinary postal mail.) Because routing tables can be modified 
at any time, a series of packets sent from one end system to another may follow different paths through the network and 
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may arrive out of order. The Internet uses a datagram network layer. 

 
Figure 4.1-3: Datagram service model

You may recall from Chapter 1 that a packet-switched network typically offers either a VC service or a datagram service to 
the transport layer, and not both services. For example, an ATM network offers only a VC service to the ATM transport 
layer (more precisely, to the ATM adaptation layer), and the Internet offers only a datagram sevice to the transport layer. 
The transport layer in turn offers services to communicating processes at the application layer. For example, TCP/IP 
networks (such as the Internet) offers a connection-oriented service (using TCP) and connectionless service (UDP) to its 
communicating processes. 

An alternative terminology for VC service and datagram service is network-layer connection-oriented service and 
network-layer connectionless service, respectively. Indeed, the VC service is a sort of connection-oriented service, as it 
involves setting up and tearing down a connection-like entity, and maintaining connection state information in the packet 
switches. The datagram service is a sort of connectionless service in that it doesn't employ connection-like entities. Both 
sets of terminology have advantages and disadvantages, and both sets are commonly used in the networking literature. We 
decided to use in this book the "VC service" and "datagram service" terminology for the network layer, and reserve the 
"connection-oriented service" and "connectionless service" terminology for the transport layer. We believe this decision 
will be useful in helping the reader delineate the services offered by the two layers. 
  

The Internet and ATM Network Service Models

  

Network 
Architecture

Service 
Model

Bandwidth 
Guarantee

No Loss 
Guarantee

Ordering Timing
Congestion 
indication

Internet Best Effort None None
Any order 
possible

Not maintained None

ATM CBR
Guaranteed 
constant rate

Yes In order maintained
congestion will 
not occur
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ATM VBR Guaranteed rate Yes In order maintained
congestion will 
not occur

ATM ABR
Guaranteed  
minimum 

None In order Not maintained
Congestion 
indication 
provided

ATM UBR None None In order Not maintained None

Table 4.1-1:  Internet and ATM Network Service Models

The key aspects of the service model of the Internet and  ATM  network architectures are summarized in Table 4.1-1.  We 
do not want to delve deeply into the details of the service models here (it can be quite "dry" and detailed discussions can be 
found in the standards themselves [ATM Forum 1997]). A comparison between the Internet and ATM service models is, 
however, quite instructive. 

The current Internet architecture provides only one service model,  the datagram service, which is also known as "best 
effort service."  From Table 4.1-1, it might appear that best effort service is a euphemism for "no service at all." With best 
effort service,  timing between packets is not guaranteed to be preserved,  packets are not guaranteed to be received in the 
order in which they were sent, nor is the  eventual delivery of transmitted packets guaranteed.  Given this definition, a 
network which delivered no packets to the destination would satisfy the definition best effort delivery service  (Indeed, 
today's congested public Internet might sometimes appear to be an example of a network that does so!).  As we will discuss 
shortly, however, there are sound reasons for such a minimalist network service model.  The Internet's best-effort only 
service model is currently being extended to include so-called "integrated services" and "differentiated service."  We will 
cover these still evolving service models later in Chapter 6. 

Let us next turn to the ATM service models. As noted in our overview of ATM in chapter 1,  there are two ATM standards 
bodies (the ITU and The ATM Forum) . Their network service model definitions contain only minor differences and we 
adopt here the terminology used in the ATM Forum standards.  The ATM architecture provides for multiple service models 
(that is, each of the two ATM standards each has multiple service models).  This means that within the same network, 
different connections can be provided with different classes of service. 

Constant bit rate (CBR) network service was the first ATM service model to be standardized,  probably reflecting the 
fact that telephone companies were the early prime movers behind ATM, and CBR network service  is ideally suited for 
carrying real-time, constant-bit-rate, streamline audio (e.g., a digitized telephone call) and video traffic.   The goal of CBR 
service is conceptually simple -- to make the network connection look like a dedicated copper or fiber connection between 
the sender and receiver.  With CBR service, ATM cells are carried across the network in such a way that the end-end delay  
experienced by a cell (the so-called cell transfer delay, CDT), the variability in the end-end delay (often referred to as 
"jitter" or "cell delay variation, CDV)"), and the fraction of cells that are lost or deliver late (the so-called cell loss rate, 
CLR) are guaranteed to be less than some specified values.  Also, an allocated transmission rate (the peak cell rate, PCR) is 
defined for the connection and the sender is expected to offer data to the network at this rate.  The values for the PCR, 
CDT, CDV, and CLR are  agreed upon by the sending host  and the ATM network when the CBR connection is first 
established. 

A second conceptually simple ATM service class is Unspecified Bit Rate (UBR) network service.  Unlike CBR service, 
which guarantees rate, delay, delay jitter, and loss, UBR makes no guarantees at all other than in-order delivery of cells 
(that is, cells that are fortunate enough to make it to the receiver).  With the exception of in-order delivery, UBR service is 
thus equivalent to the Internet best effort service model.  As with the Internet best effort service model, UBR also provides 
no feedback to the sender about whether or not a cell is dropped within the network.  For reliable transmission of data over 
a UBR network, higher layer protocols (such as those we studied in the previous chapter) are needed.  UBR service might 
be well suited for non-interactive data transfer applications such as email and newsgroups. 
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If UBR can be  thought of as a "best effort" service, then Available Bit Rate (ABR) network service might best be  
characterized as a "better" best effort service model.   The two most important additional features of ABR service over 
UBR service are: 

●     A minimum cell transmission rate (MCR)  is guaranteed to a connection using ABR service.  If, however,  the 
network has enough free resources at a given time, a sender may actually be able to successfully send traffic at a 
higher rate than the MCR.

●     Congestion feedback from the network.  An ATM network provides feedback to the sender (in terms of a 
congestion notification bit, or a lower rate at which to send) that controls how the sender should adjust its rate 
between the MCR  and some peak cell rate (PCR).  ABR senders must decrease their transmission rates in 
accordance with such feedback.

ABR provides a minimum bandwidth guarantee, but on the other hand will attempt to transfer data as fast as possible (up to 
the limit imposed by the PCR).  As such, ABR is well suited for data transfer where it is desirable to keep the transfer 
delays low (e.g., Web browsing). 

The final ATM service model is Variable Bit Rate (VBR) network service. VBR service comes in two flavors (and in the 
ITU specification of VBR-like service comes in four flavors -- perhaps indicating a service class with an identity crisis!). In 
real-time VBR service, the acceptable cell loss rate, delay, and delay jitter are specified as in CBR service.   However, the 
actual source rate is allowed to vary according to parameters specified by the user to the network.  The declared variability 
in rate may be used by the network (internally) to more efficiently allocate resources to its connections, but in terms of the 
loss, delay and jitter seen by the sender, the service is essentially the same as CBR service.  While early efforts in defining 
a VBR service models were clearly targeted towards real-time services (e.g., as evidenced by the PCR, CDT, CDV and 
CLR parameters), a second flavor of VBR service is now targeted towards non-real-time services and provides a cell loss 
rate guarantee.  An obvious question with VBR is what advantages it offers over CBR (for real-time applications) and over 
UBR and ABR for non-real-time applications.  Currently, there is not enough (any?) experience with VBR service to 
answer this questions. 

An excellent discussion of the rationale behind various aspects of the ATM Forum's Traffic Management Specification 4.0 
[ATM Forum 1996] for CBR, VBR, ABR and UBR service is [Garret 1996]. 

4.1.2 Origins of Datagram and Virtual Circuit Service

The evolution of the Internet and ATM network service models reflects their origins.  With the notion of a virtual circuit as 
a central organizing principle, and an early focus on CBR services, ATM reflects its roots in the telephony world (which 
uses "real circuits").  The subsequent definition of UBR and ABR service classes acknowledges the importance of  the 
types of data applications developed in the data networking community.  Given the VC architecture and a focus on 
supporting real-time traffic with guarantees about the level of received performance (even with data-oriented services such 
as ABR), the network layer is significantly more complex than the best effort Internet. This too, is in keeping with the 
ATM's telephony heritage.  Telephone networks, by necessity, had their "complexity' within the network, since they were 
connecting  "dumb" end-system devices such as a rotary telephone (For those too young to know, a rotary phone is a non-
digital telephone with no buttons - only a dial). 

The Internet, on the other hand, grew out of the need to connect computers (i.e., more sophisticated end devices) together. 
With sophisticated end-systems devices, the Internet architects chose to make the network service model (best effort) as 
simple as possible and to implement any additional functionality (e.g., reliable data transfer), as well as any new 
application level network services at a higher layer, at the end systems. This inverts the model of the telephone network, 
with some interesting consequences: 
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●     The resulting network service model which made minimal (no!) service guarantees (and hence posed minimal 
requirements on the network layer) also made it easier to interconnect networks that used very different link layer 
technologies (e.g., satellite, Ethernet, fiber, or  radio)  which had very different characteristics (transmission rates, 
loss characteristics).   We will address the interconnection of IP networks in detail  Section 4.4.

●     As we saw in Chapter 2,  applications such as email, the Web, and even a network-layer-centric service such as the 
DNS are implemented in hosts (servers) at the edge of the network.  The ability to add a new service simply by 
attaching a host to the network and defining a new higher layer protocol (such as HTTP) has allowed new services 
such as the WWW to be adopted in a breathtakingly short period of time.

As we will see in Chapter 6, however, there is considerable debate in the Internet community about how the network layer 
architecture must evolve in order to support the real-time services such a multimedia. An interesting comparison of the 
ATM and the proposed next generation Internet architecture is given in [Crowcroft 95]. 
  

References 

[ATM Forum 1996]  ATM Forum, "Traffic Management 4.0," ATM Forum document af-tm-0056.0000.  On-line 
[ATM Forum 1997] ATM Forum. "Technical Specifications: Approved ATM Forum Specifications." On-line. 
[Crowcroft 1995] J. Crowcroft, Z. Wang, A. Smith, J. Adams, "A Comparison of the IETF and ATM Service Models," 
IEEE Communications Magazine, Nov./Dec. 1995, pp. 12 - 16.  Compares the Internet Engineering Task Force int-serv 
service model with the ATM service model. On-line. 
[Garrett 1996] M. Garett, "A Service Architecture for ATM: From Applications to Scheduling," IEEE Network Magazine, 
May/June 1996, pp. 6 - 14. A thoughtful discussion of the the ATM Forum's recent TM 4.0 specification of CBR, VBR, 
ABR and UBR service. 

Copyright Keith W. Ross and Jim  Kurose, 1996-2000  All rights reserved. 

file:///D|/Downloads/Livros/computação/Computer%20Netw...wn%20Approach%20Featuring%20the%20Internet/service.htm (7 of 7)20/11/2004 15:52:17

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#103
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#101
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/tppmsgs/msgs1.htm#104


Point-to-Point Routing Algorithms

 4.2 Routing Principles

In order to transfer packets from a sending host to the destination host, the network layer must determine the path or route that the packets are 
to follow.  Whether the network layer provides a datagram service (in which case different packets between a given  host-destination pair may 
take different routes) or a virtual circuit service (in which case all packets between a given source and destination will take the same path),  
the network layer must nonetheless determine the path for a packet.  This is the job of the network layer routing protocol. 

At the heart of any routing protocol is the algorithm (the "routing algorithm") that determines the path for a packet. The purpose of a routing 
algorithm is simple: given a set of routers, with links connecting the routers, a routing algorithm finds a "good" path from source to 
destination.  Typically, a "good" path is one which has "least cost," but we will see that in practice, "real-world" concerns such as policy 
issues (e.g., a rule such as "router X, belonging to organization Y should not forward any packets originating from the network owned by 
organization Z") also come into play to complicate the conceptually simple and elegant algorithms whose theory underlies the practice of 
routing in today's networks. 

 
Figure 4.2-1: Abstract model of a network

The graph abstraction used to formulate routing algorithms is shown in Figure 4.2-1. (To view some graphs representing real network maps, 
see [Dodge 1999]; for a discussion of how well different graph-based models model the Internet, see [Zegura 1997]).  Here, nodes in the 
graph represent routers - the points at which packet routing decisions are made - and the lines ("edges" in graph theory terminology) 
connecting  these nodes represent the physical links between these routers.  A link also has a value representing the "cost" of sending a packet 
across the link.  The cost may reflect the level of congestion on that link (e.g., the current average delay for a packet across that link) or the 
physical distance traversed by that link (e.g., a transoceanic link might have a higher cost than a terrestrial link).  For our current purposes, we 
will  simply take the link costs as a given and  won't worry about how they are determined. 

Given the graph abstraction, the  problem of finding the least cost path from a source to a destination requires identifying a series of links 
such that: 

●     the first link in the path is connected to the source
●     the last link in the path is connected to the destination
●     for all i, the i and i-1st link in the path are connected to the same node
●     for the least cost path, the sum of the cost of the links on the path is the minimum over all possible paths between the source and 

destination. Note that if all link costs are the same, the least cost path is also the shortest path (i.e., the path crossing the smallest 
number of links between the source and the destination).

In Figure 4.2-1, for example, the least cost path between nodes A (source) and C (destination) is along the path ADEC. (We will find it 
notationally easier to refer to the path in terms of the nodes on the path, rather than the links on the path). 

Classification of Routing Algorithms
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As a simple exercise, try finding the least cost path from nodes A to F, and reflect for a moment on how you calculated that path. If you are 
like most people, you found the path from A to F by examining Figure 4.2-1, tracing a few routes from A to F, and somehow convincing 
yourself that the path you had chosen was the least cost among all possible paths (Did you check all of the 12 possible paths between A and 
F?  Probably not!).  Such a calculation is an example of a centralized routing algorithm.  Broadly, one way in which we can classify  routing 
algorithms is according to whether they are centralized or decentralized: 

●     A global routing algorithm computes the least cost path between a source and destination using complete, global knowledge about 
the network.  That is, the algorithm takes the connectivity between all nodes and all links costs as inputs.  This then requires that the 
algorithm somehow obtain this information before actually performing the calculation. The calculation itself can be run at one site (a 
centralized global routing algorithm) or replicated at multiple sites.  The key distinguishing feature here, however, is that a global 
algorithm has complete information about connectivity and link costs.  In practice, algorithms with global state information are often 
referred to as link state algorithms, since the algorithm must be aware of the state (cost) of each link in the network.  We will study a 
global link state algorithm  in section 4.2.1.

●     In a decentralized routing algorithm, the calculation of the least cost path is carried out in an iterative, distributed manner. No node 
has complete information about the costs of all network links.  Instead, each node begins with only knowledge of the costs of its own 
directly attached links and then through an iterative process of calculation and exchange of information with its neighboring nodes (i.
e., nodes which are at the "other end" of links to which it itself is attached) gradually calculates  the least cost path to a destination, or 
set of destinations.  We will study a decentralized routing algorithm known as a distance vector algorithm in section 4.2.2.  It is 
called a distance vector algorithm because a node never actually knows a complete path from source to destination.  Instead, it only 
knows the direction (which neighbor) to which it should forward a packet in order to reach a given destination along the least cost 
path, and the cost  of that path from itself to the destination.

A second broad  way to classify routing algorithms is according to whether they are static or dynamic.  In static routing algorithms, routes 
change very slowly over time, often as a result of human intervention (e.g.,  a human manually editing a router's forwarding table).  Dynamic 
routing algorithms change the routing paths as the network traffic loads (and the resulting delays experienced by traffic) or topology change. 
A dynamic algorithm can be run either periodically or in direct response to topology or link cost changes.  While dynamic algorithms are 
more responsive to network changes, they are also more susceptible to problems such as routing loops and oscillation in routes, issues we will 
consider in section 4.2.2. 

Only two types of  routing algorithms are typically used in the Internet: a dynamic global  link state algorithm, and a dynamic decentralized 
distance vector algorithm.  We cover these algorithms in section 4.2.1 and 4.2.2 respectively.  Other routing algorithms are surveyed briefly in 
section 4.2.3. 

4.2.1 A Link State Routing Algorithm

Recall that in a link state algorithm, the network topology and all link costs are  known, i.e., available as input to the link state algorithm.  In 
practice this is accomplished by having each node broadcast the identities and  costs of  its attached links to all other routers in the network.  
This  link state broadcast [Perlman 1999],  can be accomplished  without the nodes having to initially know the identities of all other nodes 
in the network  A node need only know the identities and costs to its directly-attached neighbors; it will then learn about the topology of the 
rest of the network by receiving link state broadcast from other nodes.  (In Chapter 5, we will learn how a router learns the identities of its 
directly attached neighbors). The result of the nodes' link state broadcast is that  all nodes have an identical and complete view of the 
network.  Each node can then run the link state algorithm and compute the same set of least cost paths as every other node. 

The link state algorithm we present below is known as Dijkstra's algorithm, named after its inventor (a closely related algorithm is Prim's 
algorithm; see [Corman 1990] for a general discussion of graph algorithms).  It computes the least cost path from one node (the source, which 
we will refer to as A) to all other nodes in the network.  Dijkstra's algorithm is iterative and has the property that after the kth iteration of the 
algorithm, the least cost paths are known to k destination nodes, and among the least cost paths  to all destination nodes, these k path will 
have the k smallest costs.  Let us define the following notation: 

●     c(i,j):  link cost from node i to node j.  If nodes i and j are not directly connected, then c(i,j) = infty. We will assume for simplicity that 
c(i,j) equals c(j,i).

●     D(v): the cost of path from the source node to destination v that has currently (as of this iteration of the algorithm)  the least cost.
●     p(v): previous node (neighbor of v) along current least cost path from source to v
●     N: set of nodes whose shortest path from the source is definitively known

The link state algorithm consists of an initialization step followed by a loop.  The number of times the loop is executed is equal to the number 
of  nodes in the network.  Upon termination, the algorithm will have calculated the shortest paths from the source node to every other node in 
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the network. 

Link State (LS) Algorithm:

1  Initialization: 
2    N = {A} 
3    for all nodes v 
4      if v adjacent to A 
5        then D(v) = c(A,v) 
6        else D(v) = infty 
7 
8   Loop 
9     find w not in N such that D(w) is a minimum 
10    add w to N 
11    update D(v) for all v adjacent to w and not in N: 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14     shortest path cost to w plus cost from w to v */ 
15  until all nodes in N 

 

As an example, let us consider the network in Figure 4.2-1 and compute the shortest path from A to all possible destinations.  A tabular 
summary of the algorithm's computation is shown in Table 4.2-1, where each line in the table gives the values of the algorithms variables at 
the end of the iteration.  Let us consider the few first steps in detail: 
  

step N D(B),p(B) D(C),P(C) D(D),P(D) D(E),P(E) D(F),p(F)

0 A 2,A 5,A 1,A infty infty

1 AD 2,A 4,D 2,D infty 

2 ADE 2,A 3,E 4,E 

3 ADEB 3E 4E 

4 ADEBC 4E 

5 ADEBCF

 Table 4.2-1: Steps in running the link state algorithm on network in Figure 4.2-1

●     In the initialization step, the currently known least path costs from A to its directly attached neighbors, B, C and D are initialized to 
2, 5 and 1 respectively.  Note in particular that the cost to C is set to 5 (even though we will soon see that a lesser cost path does indeed 
exists) since this is cost of the direct (one hop) link from A to C.  The costs to E and F are set to infinity since they are not directly 
connected to A.

●     In the first iteration, we look among those nodes not yet added to the set N and find that node with the least cost as of the end of the 
previous iteration.  That node is D, with a cost of 1, and thus D is added to the set N.  Line 12 of the LS algorithm is then performed to 
update D(v) for all nodes v,  yielding the results shown in the second line (step 1) in Table 4.2-1. The cost of the path to B is 
unchanged.  The cost of the path to C (which was 5 at the end of the initialization) through node D is found to have a cost of 4.  Hence 
this lower cost path is selected and C's predecessor along the shortest path from A is set to D. Similarly,  the cost to E (through D) is 
computed to be 2, and the table is updated accordingly.

●     In the second iteration, nodes B and E are found to have the shortest path costs (2), and we break the tie arbitrarily and add E to the 
set N so that N now contains A, D, and E.  The cost to the remaining nodes not yet in N, i.e., nodes B, C and F, are updated via line 12 
of the LS algorithm , yielding the results shown in the third row in the above table.

●     and so on ...

When the LS algorithm terminates, we have for each node, its predecessor along the least cost path from the source node. For each 
predecessor, we also have its predecessor and so in this manner we can construct the entire path from the source to all destinations. 

What is the computation complexity of this algorithm?  That is, given n nodes (not counting the source), how much computation must be 
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done in the worst case to find the least cost paths from the source to all destinations?   In the first iteration, we need to search through all n 
nodes to determine the node, w, not in N that has the minimum cost.  In the second iteration, we need to check n-1 nodes to determine the 
minimum cost; in the third iteration n-2 nodes and so on.  Overall, the total number of nodes we need to search through over all the iterations  
is n*(n+1)/2, and thus we say that the above implementation of the link state algorithm has worst case complexity of order n squared: O(n2). 
(A more sophisticated implementation of this algorithm, using a data structure known as a heap, can find the minimum in line 9 in 
logarithmic rather than linear time, thus reducing the complexity). 

Before completing our discussion of the LS algorithm, let us consider a pathology that can arise with the use of link state routing. Figure 4.2-
2 shows a simple network topology where link costs are equal to the load carried on the link, e.g., reflecting the delay that would be 
experienced .  In this example, link costs are not symmetric, i.e., c(A,B) equals c(B,A) only if the load carried on both directions on the AB 
link is the same.  In this example, node D originates a unit of traffic destined for A, node B also originates a unit of traffic destined for A, and 
node C injects an amount of traffic equal to e, also destined for A.  The initial routing is shown in Figure 4.2-2a, with the link costs 
corresponding to the amount of traffic carried. 

 

Figure 4.2-2: Oscillations with Link State routing

When the LS algorithm is next run, node C determines (based on the link costs shown in Figure 4.2-2a) that the clockwise path to A has a 
cost of 1, while the counterclockwise path to A (which it had been using) has a cost of  1+e.  Hence C's least cost path to A is now clockwise.  
Similarly, B determines that its new least cost path to A is also clockwise, resulting in the routing  and resulting path costs shown in Figure 
4.2-2b.  When the LS algorithm is run next, nodes B, C and D all detect that a zero cost path to A in the counterclockwise direction and all 
route their traffic to the counterclockwise routes.  The next time the LS algorithm is run, B, C, and D all then route their traffic to the 
clockwise routes. 

What can be done to prevent such oscillations in the LS algorithm?  One solution would be to mandate that link costs not depend on the 
amount of traffic carried -- an unacceptable solution since one goal of routing is to avoid highly congested (e.g., high delay) links.  Another 
solution is to insure that all routers do not run the LS algorithm at the same time.  This seems a more reasonable solution, since we would 
hope that even if routers run the LS algorithm with the same periodicity, the execution instants of the algorithm would not be the same at each 
node.  Interestingly, researchers have recently noted that routers in the Internet can self-synchronize among themselves [Floyd 1994], i.e., 
even though they initially execute the algorithm with the same period but at different instants of time, the algorithm execution instants can 
eventually become, and remain, synchronized at the routers.  One way to avoid such self-synchronization is to purposefully introduce 
randomization into the period between execution instants of the algorithm at each node. 

Having now studied the link state algorithm, let's next consider the other major routing algorithm that is used in practice today - the distance 
vector routing algorithm. 

4.2.2 A Distance Vector Routing Algorithm

While the LS algorithm is an algorithm using global information,  the distance vector (DV) algorithm is iterative, asynchronous, and  
distributed.   It is distributed in that each node receives some information from one or more of its directly attached neighbors, performs a 

file:///D|/Downloads/Livros/computação/Computer%20Net...own%20Approach%20Featuring%20the%20Internet/algor.htm (4 of 13)20/11/2004 15:52:19



Point-to-Point Routing Algorithms

calculation, and may then distribute the results of its calculation back to its neighbors. It is iterative in that this process continues on until no 
more information is exchanged between neighbors. (Interestingly, we will see that the algorithm is self terminating -- there is no "signal" that 
the computation should stop; it just stops).  The algorithm  is asynchronous in that it does not require all of the nodes to operate in lock step 
with each other.  We'll see that an asynchronous, iterative, self terminating, distributed algorithm is much more "interesting"  and "fun" than a 
centralized algorithm. 

The principal data structure in the DV algorithm is the distance table maintained at each node.  Each node's distance table has a row for each 
destination in the network and a column for each of its directly attached neighbors.  Consider a node X that is interested in routing to 
destination Y via its directly attached neighbor Z.  Node X's distance table entry, Dx(Y,Z) is the sum of the cost of the direct one hop link 
between X and Z, c(X,Z), plus neighbor Z's currently known minimum cost path from itself (Z) to Y. That is: 

Dx(Y,Z) = c(X,Z) + minw{Dz(Y,w)}                                      (4-1)

The minw  term  in equation 4-1 is taken over all of Z's directly attached neighbors (including X, as we shall soon see). 

Equation 4-1 suggests the form of the neighbor-to-neighbor communication that will take place in the DV algorithm -- each node must know 
the cost of each of its neighbors minimum cost path to each destination  Thus, whenever a node computes a new minimum cost to some 
destination, it must inform its neighbors of this new minimum cost. 

Before presenting the DV algorithm, let's consider an example that will help clarify the meaning of entries in the distance table.  Consider the 
network topology and the distance table shown for node E in Figure 4.2-3. This is the distance table in node E once the Dv algorithm has 
converged.  Let's first look at the row for destination A. 

●     Clearly the cost to get to A from E via the direct connection to A has a cost of 1.  Hence DE(A,A) = 1.
●     Let's now consider the value of DE(A,D) - the cost to get from E to A,  given that the first step along the path is D.  In this case, the 

distance table entry is the cost to get from E to D (a cost of 2)  plus whatever the minimum cost it is to get from D to A .  Note that the 
minimum cost from D to A is 3 -- a path that passes right back through E!  Nonetheless, we record the fact that the minimum cost from 
E to A given that the first step is via D has a cost of 5.   We're left, though, with an uneasy feeling that the fact the path from E via D 
loops back through E may be the source of problems down the road (it will!).

●     Similarly, we find that the distance table entry via neighbor B is DE(A,B) = 14.  Note that the cost is not 15. (why?)

 
Figure 4.2-3: A distance table example

A circled entry in the distance table gives the cost of the least cost path to the corresponding destination (row).  The column with the circled 
entry identifies the next node along the least cost path to the destination.  Thus, a node's routing table (which indicates which outgoing link 
should be used to forward packets to a given destination) is easily constructed from the node's distance table. 

In discussing the distance table entries for node E above, we informally took a global view, knowing the costs of all links in the network.  The 
distance vector algorithm we will now present is decentralized and does not use such global information.  Indeed, the only information a node 
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will have are the costs of  the links to its directly attached neighbors, and information  it receives from these directly attached neighbors.  The 
distance vector algorithm we will study is also known as the Bellman-Ford algorithm, after its inventors.  It is used in many routing 
algorithms in practice, including: Internet BGP, ISO IDRP, Novell IPX, and the original ARPAnet. 

Distance Vector (DV) Algorithm.  At each node, X: 

1  Initialization: 
2   for all adjacent nodes v: 
3      DX(*,v) = infty        /* the * operator means "for all rows" */ 
4      DX(v,v) = c(X,v) 
5   for all destinations, y 
6      send minwD(y,w) to each neighbor  /* w over all X's neighbors */ 

7 
8  loop 
9    wait (until I see a link cost change to neighbor V 
10         or until I receive update from neighbor V) 
11 
12   if (c(X,V) changes by d) 
13     /* change cost to all dest's via neighbor v by d */ 
14     /* note: d could be positive or negative */ 
15     for all destinations y:  DX(y,V) =  DX(y,V) + d 
16 
17   else if (update received from V wrt destination Y) 
18     /* shortest path from V to some Y has changed  */ 
19     /* V has sent a new value for its  minw DV(Y,w) */ 

20     /* call this received new value is "newval"     */ 
21     for the single destination y: DX(Y,V) = c(X,V) + newval 
22 
23   if we have a new minw DX(Y,w)for any destination Y 

24      send new value of minw DX(Y,w) to all neighbors 

25 
26  forever 

The key steps are lines 15 and 21, where a node updates its distance table entries in response to either a change of cost of an attached link or 
the receipt of an update message from a neighbor.  The other key step is line 24, where a node sends an update to  its neighbors if its 
minimum cost path to a destination has changed. 

Figure 4.2-4 illustrates the operation of the DV algorithm for the simple three node network shown at the top of the figure.  The operation of 
the algorithm is illustrated in a synchronous manner, where all nodes simultaneously receive messages from their neighbors, compute new 
distance table entries, and inform their neighbors of any changes in their new least path costs.  After studying this example, you should 
convince yourself that the algorithm operates correctly in an asynchronous manner as well, with node computations and update generation/
reception occurring at any times. 

The  circled distance table entries in Figure 4.2-4 show the current least path cost to a destination.  An entry circled in red indicates that a new 
minimum cost has been computed (in either line 4 of the DV algorithm (initialization) or line 21). In such cases an update message will be 
sent (line 24 of the DV algorithm) to the node's neighbors as represented by the red arrows between columns in Figure 4.2-4. 
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Figure 4.2-4: Distance Vector Algorithm: example

The leftmost column in Figure 4.2-4 shows the distance table entries for nodes X, Y, and Z after the initialization step. 

Let us now consider how node X computes the distance table shown in the middle column of Figure 4.2-4 after receiving updates from nodes 
Y and Z.   As a result of receiving the updates from Y and Z,  X computes in line 21 of the DV algorithm: 

DX(Y,Z) = c(X,Z) + minw DZ(Y,w)

        =  7     +   1
        =  8
DX(Z,Y) = c(X,Y) + minw DY(Z,w)

        =  2     +   1
        =  3

It is important to note that the only reason that X knows about the terms  minw DZ(Y,w) and minw DY(Z,w) is because nodes Z and 
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Y have sent those values to X (and are received by X in line 10 of the DV algorithm). As an exercise, verify the distance tables computed by 
Y and Z in the middle column of Figure 4.2-4. 

The value DX(Z,Y) = 3 means that X's minimum cost to Z  has changed from 7 to 3.  Hence, X sends updates to Y and Z informing them 
of this new least cost to Z.  Note that X need not update Y and Z about its cost to Y since this has not changed.  Note also that Y's 
recomputation of its distance table in the middle column of Figure 4.2-4 does result in new distance entries, but does not result in a change of 
Y's least cost path to nodes X and Z.  Hence Y does not send  updates to X and Z. 

The process of receiving updated costs from neighbors, recomputation of distance table entries, and updating neighbors of changed costs of 
the least cost path to a destination continues until no update messages are sent.  At this point, since no update messages are sent, no further 
distance table calculations will occur and the algorithm enters a quiescent state, i.e., all nodes are performing the wait in line 9 of the DV 
algorithm. The algorithm  would remain in the quiescent state until a link cost changes, as discussed below. 
  

The Distance Vector Algorithm: Link Cost Changes and Link Failure

When a node running the DV algorithm detects a change in the link cost from itself to a neighbor (line 12) it updates its distance table (line 
15) and, if there is a change in the cost of the least cost  path, updates its neighbors (lines 23 and 24).   Figure 4.2-5 illustrates this behavior 
for a scenario where the link cost from Y to X changes from 4 to 1.  We focus here only on  Y and Z's distance table entries to destination 
(row) X. 

●     At time t0, Y detects the link cost change (the cost has changed from 4 to 1) and informs its neighbors of this change since the cost of a 

minimum cost path has changed.
●     At time t1, Z receives the update from Y and then updates its table. Since it computes a new least cost to X (it has decreased from a cos 

of 5 to a cost of 2), it informs its neighbors.
●     At time t2, Y has receives Z's update and has updates  its distance table.  Y's least costs have not changed (although its cost to X via Z 

has changed) and hence Y does not send any message to Z. The algorithm comes to a quiescent state.
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Figure 4.2-5: Link cost change: good news travels fast

In Figure 4.2-5, only two iterations are required for the DV algorithm to reach a quiescent state.  The "good news" about the decreased cost 
between X and Y has propagated fast through the network. 

Let's now consider what can happen when a link cost increases.  Suppose that the link cost between X and Y increases from 4 to 60. 

 
Figure 4.2-6: Link cost changes: bad news travels slow and causes loops

●      At time t0 Y detects the link cost change (the cost has changed from 4 to 60).  Y computes its new minimum cost path to X to have a 

cost of 6 via node Z.  Of course, with our global view of the network, we can see that this new cost via Z is wrong.  But the only 
information node Y has  is that its direct cost to X is 60 and that Z has last told Y that Z could get to X with a  cost of 5.  So in order to 
get to X, Y would now route through Z, fully expecting that Z will be able to get to X with a cost of 5.  As of t1 we have a routing 
loop -- in order to get to X, Y routes through Z, and Z routes through Y.  A routing loop is like a black hole -- a packet arriving at Y or 
Z as of t1 will bounce back and forth between these two nodes forever ..... or until the routing tables are changed.

●     Since node Y has computed a new minimum cost to X, it informs Z of this new cost at time t1
●     Sometime after t1, Z receives the new least cost to X via Y (Y  has told Z that Y's new minimum cost is 6).  Z knows it can get to Y 

with a cost of 1 and hence computes a new least cost to X (still via Y) of 7.  Since Y's least cost to X has increased, it then informs Y 
of its new cost at t2.

●     In a similar manner, Y then updates its table and informs Z of a new cost of 9.  Z then updates its table and informs Y of a new cost of 
10, etc..

How long will the process continue?  You should convince yourself that the loop will persist for 44 iterations (message exchanges between Y 
and Z)  --  until Z eventually computes its path via Y to be larger than 50.  At this point, Z will (finally!) determine that its least cost path to 
X  is via its direct connection to X.  Y will then route to X via Z.  The result of the "bad news" about the increase in link cost has indeed 
traveled slowly!  What would have happened if the link cost change  of c(Y,X)  had been  from 4 to 10,000 and the cost c(Z,X) had been 
9,999?  Because of such scenarios, the problem we have seen is sometimes referred to as the "count-to-infinity" problem. 
  

Distance Vector Algorithm: Adding Poisoned Reverse.

file:///D|/Downloads/Livros/computação/Computer%20Net...own%20Approach%20Featuring%20the%20Internet/algor.htm (9 of 13)20/11/2004 15:52:19



Point-to-Point Routing Algorithms

The specific looping scenario illustrated in Figure 4.2-6 can be avoided using a  technique known as poisoned reverse.  The idea is simple -- if 
Z routes through Y to get to destination X, then Z will advertise to Y that its (Z's) distance to X is infinity.  Z will continue telling  this little 
"white lie" to Y as long as it routes to X via Y.  Since Y believes that Z has no path to X, Y will never   attempt to route to X via Z, as long as 
Z  continues to route to X via Y (and lie about doing so). 

 
Figure 4.2-7: Poisoned reverse

Figure 4.2-7 illustrates how poisoned reverse solves the particular looping problem we encountered before in Figure 4.2-6. As a result of the 
poisoned reverse, Y's distance table indicates an infinite cost when routing to X via Z (the result of Z having informed Y that Z's cost to X 
was infinity).  When the cost of the XY link changes from 4 to 60 at time t0, Y updates its table and continues to route directly to X, albeit at a 

higher cost of 60, and informs Z of this change in cost.  After receiving the update at t1, Z immediately shifts it route to X to be via the direct 

ZX link at a cost of 50.  Since this is a new least cost to X, and since the path no longer passes through Y, Z informs Y of this new least cost 
path to X at t2.  After receiving the update from Z, Y updates its distance table to route to X via Z at a least cost of 51.  Also, since Z is now 

on Y's least path to X, Y poisons the reverse path from Z to X by informing Z at time t3 that it (Y) has an infinite cost to get to X.  The 

algorithm becomes quiescent after t4, with distance table entries for destination X shown in the rightmost column in Figure 4.2-7. 

Does poison reverse solve the general count-to-infinity problem?  It does not.  You should convince yourself that loops involving three or 
more nodes (rather than simply two immediately neighboring nodes, as we saw in Figure 4.2-7) will not be detected by the poison reverse 
technique. 
  

A Comparison of Link State and Distance Vector Routing Algorithms

Let us conclude our study of link state and distance vector algorithms with a quick comparison of some of their attributes. 

●     Message Complexity.  We have seen that LS requires each node to know the cost of each link in the network. This requires O(nE) 
messages to be sent, where n is the number of nodes in the network and E is the number of links.  Also, whenever a link cost changes, 
the new link cost  must be sent to all nodes.  The DV algorithm requires message exchanges between directly connected neighbors at 
each iteration.  We have seen that the time needed for the algorithm to converge can depend on many factors. When link costs change, 
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the DV algorithm will propagate the results of the changed link cost only if the new link cost results in a changed least cost path for 
one of the nodes attached to that link.

●     Speed of Convergence.  We have seen that our implementation of the LS is an O(n2) algorithm requiring O(nE) messages, and 
potentially suffer from oscillations.  The DV algorithm can converge slowly (depending on the relative path costs, as we saw in Figure 
4.2-7) and can have routing loops while the algorithm is converging.  DV also suffers from the count to infinity problem.

●     Robustness.  What can happen is a router fails, misbehaves, or is sabotaged? Under LS, a router could broadcast an incorrect cost for 
one of its attached links (but no others). A node could also corrupt or drop any LS broadcast packets it receives as part of link state 
broadcast.  But an LS node is only computing its own routing tables; other nodes are performing the similar calculations for 
themselves.  This means route calculations are somewhat separated under LS, providing a degree of robustness. Under DV, a node can 
advertise incorrect least path costs to any/all destinations. (Indeed, in 1997 a malfunctioning router in a small ISP provided national 
backbone routers with erroneous routing tables. This caused other routers to flood the malfunctioning router with traffic, and caused 
large portions of the Internet to become disconnected for up to several hours [Neumann 1997].)  More generally, we note that at each 
iteration, a node's calculation in DV is passed on to its neighbor and then indirectly to its neighbor's neighbor on the next iteration.  In 
this sense, an incorrect node calculation calculation can be diffused through the entire network under DV.

In the end, neither algorithm is a "winner" over the other; as we will see in Section 4.4, both algorithms are  used in  the Internet. 

4.2.3 Other Routing Algorithms

The LS and DV algorithms we have studied are not only widely used in practice, they are essentially the only routing algorithms used in 
practice today. 

Nonetheless, many routing algorithms have been proposed by researchers over the past 30 years, ranging from the extremely simple to the 
very sophisticated and complex.  One of the simplest routing algorithms proposed is hot potato routing.  The algorithm derives its name 
from its behavior -- a router tries to get rid of (forward) an outgoing packet as soon as it can.  It does so by forwarding it on any outgoing link 
that is not congested, regardless of destination.  Although initially proposed quite some time ago, interest in hot-potato-like routing has 
recently been revived for routing in highly structured networks, such as the so-called Manhattan street network [Brassil 1994]. 

Another broad class of routing algorithms are based on viewing packet traffic as  flows between sources and destinations in a network.  In this 
approach, the routing problem can be formulated mathematically as a constrained optimization problem known as a network flow problem 
[Bertsekas 1991].  Let us define λ ij as the amount of traffic (e.g., in packets/sec) entering the network for the first time at node i and destined 

for node j.  The set of flows, {λ ij} for all i,j,  is sometimes referred to as the network traffic matrix.  In a network flow problem,  traffic 

flows must be assigned to a set of network links subject to constraints such as: 

●     the sum of the flows between all source destination pairs passing though link m must be less than the capacity of  link m;
●     the amount of λ ij traffic entering any router r (either from other routers, or directly entering that router from an attached host) must  

equal the amount of λ ij traffic leaving router either via one of r's outgoing links or to an attached host at that router.  This is a flow 
conservation constraint.

Let us define  λ ij
m as the amount of source i, destination j traffic passing through link m.  The optimization problem then is to find the set of 

link flows, {λ ij
m} for all links m and all sources, i  , and designations, j,  that satisfies the constraints above and optimizes a performance 

measure that is a function of  {λ ij
m }.  The solution to this optimization problem then defines the routing used in the network.  For example, if 

the solution to the optimization problem is such that λ ij
m  = λ ij for some link m, then all  i-to-j  traffic will be routed over link m.  In 

particular, if link m is attached to node i, then m is the first hop on the optimal path from source i to destination j. 

But what performance function should be optimized?  There are many possible choices.  If we make certain assumptions about the size of 
packets and the manner in which packets arrive at the various routers, we can use the so-called M/M/1 queueing theory formula [Kleinrock 
1976] to express the average delay at link as: 

Dm  = 1 / (Rm - ΣiΣj λ ij
m),

where Rm is  link m's capacity (measured in terms of the average number of packets/sec it can transmit) and ΣiΣj λ ij
m is the total arrival rate 

of packets (in packets/sec) that arrive to link m. The overall network wide performance measure to be optimized might then be the sum of all 
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link delays in the network, or some other suitable performance metric.  A number of elegant distributed algorithms exist  for computing the 
optimum link flows (and hence routing determine the routing paths, as discussed above).  The reader is referred to [Bertsekas 1991] for a 
detailed study of these algorithms. 

The final set of routing algorithms we mention here are those derived from the telephony world.  These circuit-switched routing algorithms 
are of interest to packet-switched data networking in cases where per-link resources (e.g., buffers, or a fraction of the link bandwidth) are to  
reserved (i.e., set aside) for each connection that is routed over the link.  While the formulation of the routing problem might appear quite 
different from the least cost routing formulation we have seen in this chapter, we will see that there are a number of similarities, at least as far 
as the path finding algorithm (routing algorithm) is concerned. Our goal here is to provide a brief introduction for this class of routing 
algorithms.  The reader is referred to [Ash 1998],[Ross 1995], [Girard 1990] for a detailed discussion of this active research area. 

The circuit-switched routing problem formulation is illustrated in Figure 4.2-8. Each link has a certain amount of resources (e.g., bandwidth).  
The easiest (and a quite accurate) way to visualize this is to consider the link to be a bundle of circuits, with each call that is routed over the 
link requiring the dedicated use of one of the link's circuits.  A link is thus characterized both by its total number of circuits, as well as the 
number of these circuits currently in use.  In Figure 4.2-8, all links except AB and BD have 20 circuits; the number to the left of the number 
of circuits indicates the number of circuits currently in use. 

 
Figure 4.2-8: Circuit-switched routing

Suppose now that a call arrives at node A, destined to node D.  What path should be take?  In shortest path first (SPF) routing, the shortest 
path (least number of links traversed) is taken. We have already seen how the Dijkstra LS algorithm can be used to find shortest path routes.  
In Figure 4.2-8, either that ABD or ACD path would thus be taken.  In least loaded path (LLP) routing, the load at a link is defined as the 
ratio of the number of used circuits at the link and  the total number of circuits at that link.  The path load  is the maximum of the loads of all 
links in the path.  In LLP routing, the path taken is that with the smallest path load.  In example 4.2-8, the LLP path is ABCD. In maximum 
free circuit (MFC) routing, the number of free circuits associated with a path is the minimum of the number of free circuits at each of the 
links on a path.   In MFC routing, the path the maximum number of free circuits is taken.  In Figure 4.2-8 the path ABD would be taken with 
MFC routing. 

Given these examples from the circuit switching world, we see that the path selection algorithms have much the same flavor as LS routing.  
All nodes have complete information about the network's link states.   Note however, that the potential consequences of old or inaccurate sate 
information are more severe with circuit-oriented routing -- a call may be routed along a path only to find that the circuits it had been 
expecting to be allocated are no longer available.  In such a case, the call setup is blocked and another path must be attempted. Nonetheless, 
the main differences between connection-oriented, circuit-switched routing and connectionless packet-switched routing come not in the path 
selection mechanism, but rather in the actions that must be taken when a connection is set up, or torn down, from source to destination. 
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4.3 Hierarchical Routing

In the previous section, we viewed "the network" simply as a collection of interconnected routers.  One 
router was indistinguishable from another  in the sense that all routers executed the same routing 
algorithm to compute routing paths through the entire network.  In practice, this model and its view of a 
homogenous set of routers all executing the same routing algorithm is a bit simplistic for at least two 
important reasons: 

●     Scale.  As the number of routers becomes large,  the overhead involved in computing, storing, 
and communicating the routing table information (e.g., link state updates or least cost path 
changes) becomes prohibitive.   Today's public Internet consists of millions of interconnected 
routers and more than 50 million hosts.  Storing routing table entries to each of these hosts and 
routers would clearly require enormous amounts of memory.  The overhead required to broadcast 
link state updates among millions of routers would leave no bandwidth left for sending the data 
packets!  A distance vector algorithm that iterated among millions of routers would surely never 
converge!  Clearly, something must be done to reduce the complexity of route computation in 
networks as large as the public Internet.

●     Administrative autonomy.  Although engineers tend to ignore issues such as a company's desire 
to run its routers as it pleases (e.g., to run whatever routing algorithm it chooses),  or to "hide" 
aspects of the networks' internal organization from the outside,  these are important 
considerations. Ideally, an organization should be able to run and administer its network as it 
wishes, while still being able to connect its network to other "outside" networks.

Both of these problems can be solved by aggregating routers into "regions" or "autonomous 
systems" (ASs).  Routers within the same AS all run the same routing algorithm (e.g., a LS or DV 
algorithm) and have full information about each other -- exactly as was the case in our idealized model 
in the previous section.  The routing algorithm running within an autonomous system is called an intra-
autonomous system routing protocol. It will be necessary, of course, to connect ASs to each other, and 
thus one or more of the routers in an AS will have the added task for being responsible for routing 
packets to destinations outside the AS.  Routers in an AS that have the responsibility of routing packets 
to destinations outside the AS are called gateway routers. In order for gateway routers to route packets 
from one AS to another (possibly passing through multiple other ASs before reaching the destination 
AS), the gateways must know how to route (i.e., determine routing paths) among themselves.    The 
routing algorithm that gateways use to route among the various ASs is known as an inter-autonomous 
system routing protocol. 

In summary, the problems of scale and administrative authority are solved by defining autonomous 
systems. Within an AS, all routers run the same intra-autonomous system routing protocol.  Special 
gateway routers in the various ASs run an inter-autonomous system routing protocol that determines 
routing paths among the ASs.  The problem of scale is solved since an intra-AS router need only know 
about routers within its AS and the gateway router(s) in its AS.  The problem of administrative authority 
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is solved since an organization can run whatever intra-AS routing protocol it chooses, as long as the 
AS's gateway(s) is able to run an inter-AS routing protocol that can connect the As to other ASs.. 

 
Figure 4.3-1: Intra-AS and Inter-AS routing.

Figure 4.3-1 illustrates this scenario.  Here, there are three routing ASs, A, B and C.  Autonomous 
system A has four routers, A.a, A.b, A.c and A.d, which run the intra-AS routing protocol used within 
autonomous system A.  These four routers have complete information about routing paths within 
autonomous system A.  Similarly, autonomous systems B and C have three and two routers, 
respectively.  Note that the intra-AS routing protocols running in  A, B and C need not be the same.  The 
gateway routers are A.a, A.c, B.a and C.b. In addition to running theintra-AS routing protocol in 
conjunction with other routers in their ASs, these four routers run an inter-AS routing protocol among 
themselves.  The topological view they use for their inter-AS routing protocol is shown at the higher 
level, with "links" shown in light gray.  Note that a "link" at the higher layer may be an actual physical 
link, e.g., the link connection A.c and B.a, or a logical link, such as the link connecting A.c and A.a.  
Figure 4.3-2 illustrates that the gateway router A.c must run an intra-AS routing protocol with its 
neighbors A.b and A.d, as well as an inter-AS protocol with gateway router B.a. 
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Figure 4.3-2: Internal architecture of gateway router A.c

Suppose now that a host h1 attached to router  A.d needs to route a packet to destination h2 in 
autonomous system B, as shown in Figure 4.3-3.  Assuming that A.d's routing table indicates that  router 
A.c is responsible for routing its (A.d's) packets outside the AS, the packet is first routed from A.d to A.c 
using A's intra-AS routing protocol.  It is important to note that router A.d does not know about the 
internal structure of autonomous systems B and C and indeed need not even know about the topology 
connecting autonomous systems A, B and C. Router A.c will receive the packet and see that it is 
destined to an autonomous system outside of  A.  A's  routing table for the intra-AS protocol would  
indicate that a packet destined to autonomous system B should be routed along the A.c to B.a link.  
When the packet arrives at B.a,  B.a's  inter-AS routing sees that the packet is destined for autonomous 
system B.  The packet is then "handed over" to the intra-AS routing protocol within B, which routes the 
packet to its final destination, h2.  In Figure 4.3-3, the portion of the path routed using A's intra-AS 
protocol is shown in red, the portion using the inter-AS routing protocol is shown in blue, and the 
portion of the path routed using B's intra-AS protocol is shown in green.  We will examine specific inter-
AS and intra-AS routing protocols used in the Internet in Section 4.5. 
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Figure 4.3-3: The route from A.d to B.b: intra-AS and inter-AS path segments.

Copyright Keith W. Ross and James F. Kurose, 1996-2000.  All Rights Reserved. 
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4.4 Internet Protocol

So far in this chapter we have examined the underlying principles of the network layer. We have discussed the network layer 
service models, including virtual circuit service and datagram service, the routing algorithms commonly used to determine 
paths between origin and destination hosts, and how problems of scale are addressed with hierarchical routing.  We are now 
going to turn our attention to the Internet's network layer. 

As we mentioned in Section 4.1, the Internet's network layer does not provide a virtual-circuit service, but instead a 
connectionless datagram service. When the network layer at the sending host receives a segment from the transport layer, it 
encapsulates the segment within an IP datagram, writes the destination address of the host (as well as other fields) on the 
datagram, and drops the datagram into the network. As we mentioned in Chapter 1, this process is similar to a person writing a 
letter, inserting the letter in an envelope, writing the destination address on the envelope, and dropping the envelope into a 
mailbox. Neither the Internet's network layer nor the postal service make any kind of preliminary contact with the destination 
before moving its "parcel" to the destination. Furthermore, as discussed in Section 4.1, the network layer service is a best effort 
service. It does not guarantee that the datagram will arrive within a certain time, it does not guarantee that a series of datagrams 
will arrive in the same order sent; in fact, it does not even guarantee that the datagram will ever arrive at its destination. 

As we discussed in Section 4.1, the network layer for a datagram network, such as the Internet, has two major components. 
First, it has a network protocol component, which defines network-layer addressing, the fields in the datagram (i.e., the network 
layer PDU), and how the end systems and routers act on these fields. The network protocol in the Internet is called the Internet 
Protocol, or more commonly, the IP Protocol. There are currently two versions of the IP protocol in use today. In this section 
we examine the  more widespread version, namely, Internet Protocol version 4, which is specified in [RFC 791] and which is 
more commonly known as IPv4. In Section 4.7 we shall examine, IPv6, which is expected to slowly replace IPv4 in the 
upcoming years.The second major component of the network layer is the path determination component, which determines the 
route a datagram follows from origin to destination. We study the path determination component in the next section. 

4.4.1 IP Addressing

Before discussing IP addressing, we need to say a few words about  hosts and routers. A host (also called an end system) has 
one link into the network. When IP in the host wants to send a datagram, it passes the datagram to its link. The boundary 
between the host and the link is called the interface. A router is fundamentally different from a host in that it has two or more 
links that connect to it. When a router forwards a datagram, it forwards the datagram over one of its links. The boundary 
between the router and any one of its links is also called an interface. Thus, a router has multiple interfaces, one for each of its 
links. Because every interface (for a host or router) is capable of sending and receiving IP datagrams,  IP  requires each 
interface to have an IP address. 

Each IP address is 32 bits long (equivalently, four bytes) long. IP addresses are typically written in so-called "dot-decimal 
notation", whereby each byte of the address is written in its decimal form and is separated by a period. For example, a typical 
IP address would be 193.32.216.9. The 193 is the decimal equivalent for the first 8 bits of the address; the 32 is the decimal 
equivalent for the second 8 bits of the address, etc. Thus, the address 193.32.216.9 in binary notation is: 

11000001 00100000 11011000 00001001

(A space as been added between the bytes for visual purposes.) Because each IP address is 32 bits long, there are 232 possible 
IP addresses. 

file:///D|/Downloads/Livros/computação/Computer%20Net...p-Down%20Approach%20Featuring%20the%20Internet/IP.htm (1 of 12)20/11/2004 15:52:21



Point-toPoint Routing in the Internet

 
Figure 4.4-1: LANs are networks in IP jargon.

Figure 4.4-1 provides an example of IP addressing and interfaces. In this figure there is one router which interconnects three 
LANs. (LANs, also known as local area networks, were briefly discussed in Chatper 1 and will be studied in detail in the next 
chapter.) In the jargon of IP, each of these LANs is called an IP network or more simply a "network". There are several 
things to observe from this diagram. First, the router has threes interfaces, labeled 1, 2 and 3. Each of the router interfaces has 
its own IP address, which are provided in Figure 4.4-2; each host also has its own interface and IP address. Second, all of the 
interfaces attached to LAN 1, including a router interface, have an IP address of the form 223.1.1.xxx . Similarly, all the 
interfaces attached to LAN 2 and LAN 3 have IP addresses of the form 223.1.2.xxx and 233.1.3.xxx, respectively. In other 
words, each address has two parts: the first part (the first three bytes in this example) that specifies the network; and the second 
part (the last byte in this example) that addresses a specific host on the network. 
  

Router Interface IP Address

1 223.1.1.4

2 223.1.2.9

3 223.1.3.27

Figure 4.4-2: IP addresses for router interfaces.

The IP definition of a "network" is not restricted to a LAN. To get some insight here, let us now take a look at another example. 
Figure 4.4-3 shows several LANs interconnected with three routers. All of the interfaces attached to LAN 1, including the 
router R1 interface that is attached to LAN 1, have an IP address of the form 223.1.1.xxx. Similarly, all the interfaces attached 
to LAN 2 and to LAN 3 have the form 223.1.2.xxx and 223.1.3.xxx, respectively. Each of the three LANs again constitute their 
own network (i.e., IP network). But note that there are three additional "networks" in this example: one network for the 
interfaces that connect Router 1 to Router 2; another network for the interfaces that connect Router 2 to Router 3; and a third 
network for the interfaces that connect Router 3 to Router 1. 
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Figure 4.4-3: An interconnected system consisting of six networks.

For a general interconnected system of routers and hosts (such as the Internet), we use the following recipe to define the 
"networks" in the system. We first detach each router interface from its router and each host interface from its host. This creates 
"islands" of isolated networks, with "interfaces" terminating all the leaves of the isolated networks . We then call each of these 
isolated networks a network. Indeed, if we apply this procedure to the internconnected system in Figure 4.4-3, we get six 
islands or "networks". The current Internet consists of millions of networks. (In the next chapter we will consider bridges. We 
mention here that when applying this recipe, we do not detach interfaces from bridges. Thus each bridge lies within the interior 
of some network.) 

Now that we have defined a network, we are ready to discuss IP addressing in more detail. IP addresses are globally unique, 
that is, no two interfaces in the world have the same IP address. Figure 4.4-3 shows the four possible formats of an IP address. 
(A fifth address, beginning with 11110, is reserved for future use.)  In general, each interface (for a host or router) belongs to a 
network;  the network part of the address identifies the network to which the interface belongs. The host part  identifies the 
specific interface within the network. (We would prefer to use the terminology "interface part of the address" rather than "host 
part of the address" because IP address is really for an interface and not for a host; but  the terminology "host part" is 
commonly used in practice.) For a class A address, the first 8 bits identify the network, and the last 24 bits identify the interface 
within that network.  Thus with a class A we can have up to 27  networks (the first of the eight bits is fixed as 0) and and 224 
interfaces. Note that the interfaces in Figures 4-4.1 and 4-4.3 use class A addresses. The class B address space allows for 214 

networks, with up to 216 interfaces within each network.  A class C address uses 21 bits to identify the network and leaves only 
8 bits for the interface identifier.  Class D addresses are reserved for so-called multicast addresses.  As we will see in Section 
4.7, these addresses do not identify a specific interface but rather provide a mechanism through which multiple hosts can 
receive a copy of  each single packet sent by a sender. 
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Figure 4.4-4: IPv4 address formats.

Assigning Addresses

Having introduced IP addressing,  one question that immediately comes to mind is how does a host get  its own IP address? We 
have just learned that an IP address has two parts, a network part and a host part. The host part of the address can be assigned in 
several different ways, including: 

●     Manual configuration:  The IP address is configured into the host (typically in a file) by  the system administrator.
●     Dynamic Host Configuration Protocol (DHCP): [RFC 2131].  DHCP is an extension of the BOOTP [RFC 1542] 

protocol, and is sometimes referred to as Plug and Play. With DHCP, a DHCP server in a network (e.g., in a LAN) 
receives DHCP requests from a client and in the case of dynamic address allocation, allocates an IP address back to the 
requesting client. DHCP is used extensively in LANs and in residential Internet access.

The network part of the address is the same for all the hosts in the network. To obtain the network part of the address for a 
network,  the network administrator might first contact the network's  ISP, which would provide addresses from a larger block 
of addressees that have already been allocated to the ISP.  But how does an ISP get a block of addresses?  IP addresses are 
managed under the authority of the Internet Assigned Numbers Authority (IANA), under the guidelines set forth in [RFC 
2050].  The actual assignment of addresses is now managed by regional Internet registries.  As of mid-1998, there are three 
such regional registries: the American Registry for Internet Number (ARIN, which handles registrations for North and South 
America, as well as parts of Africa. ARIN has recently taken over a number of the functions previously provided by Network 
Solutions), the  Reseaux IP Europeans (RIPE, which covers Europe and nearby countries), and the Asia Pacific Network 
Information Center (APNIC). 

Before leaving our discussion of addressing,  we want to mention that mobile hosts may change the network to which they are 
attached, either dynamically while in motion or on a longer time scale.  Because routing is to a network first, and then to a host 
within the network, this means that the mobile host's IP address must change when the host changes networks.  Techniques for 
handling such issues are now under development within the IETF and the research community [RFC2002] [RFC2131]. 

4.4.2 The Big Picture: Transporting a Datagram from Source to Destination

Now that we have defined interfaces and networks, and that we have a basic understanding of IP addressing, we take a step 
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back and discuss how IP transports a datagram from source to destination. To this end, a high level view of an IP datagram is 
shown in Figure 4.4-5. Note that every IP datagram has a destination address field and a source address field. The source host 
fills the source address field with its own 32-bit IP address and fills the destination address field with the 32-bit IP address of 
the host to which it wants to send the datagram. Note that these actions are analogous to what you do when you send a letter: on 
the envelope of the letter, you provide a destination address and a return (source) address. The data field of the datagram is 
typically filled with a TCP or UDP segment. We will discuss the remaining IP datagram fields a little later in this section. 
  

 

Figure 4.4-5: The key fields in an IP datagram.

Once the source host creates the IP datagram, how does the network layer transport the datagram from the source host to the 
destination host? Let us answer this question in the context of network Figure 4.4-1. First suppose host A wants to send an IP 
datagram to host B.  The datagram is transported from host A to host B as follows.  IP in host A first extracts the network 
portion of the address, 223.1.1. , and scans its routing table, which is shown in Figure 4.4-6. In this table, the "number of hops 
to destination" is defined to be the number of networks that need to be traversed, including the destination network. Scanning 
the table, host A finds a match in the first row, and observes that the number of hops to the destination is 1. This indicates to 
host A that the destination host is on the same network. Host A then passes the IP datagram to the link layer protocol and 
indicates to the link layer protocol that the destination is on the same LAN. The link layer protocol then has the responsibility 
of transporting the datagram to host B. (We will study how the link layer transports a datagram between to interfaces on the 
same network in the next chapter.) 

destination 
network

next  
router

number 
of hops to  
destination

223.1.1. - 1

223.1.2. 223.1.1.4 2

223.1.3. 223.1.1.4 2

Figure 4.4-6: Routing table in host A.

Now consider the more interesting case of host A sending an IP datagram to host E, which has IP address 223.1.2.2 and is on a 
different LAN. Host A again scans its routing table, but now finds a match in the second row. Because the number of hops to 
the destination is 2, host A knows that the destination is on another network. The routing table also tells host A that in order to 
get the datagram to host E, host A should first send the datagram to router address 223.1.1.4. IP in host A then passes the 
datagram down to the link layer, and indicates to the link layer that it should first send the datagram to IP address 223.1.1.4 .
The link layer then transports the datagram to the router interface 1. The datagram is now in the router, and it is the job the 
router to move the datagram towards the datagram's ultimate destination. The router extracts the network portion of the 
destination address of the IP datagram, namely 223.1.2. , and scans its routing table, which is shown in Figure 4.4-7. The router 
finds a match in the second row of the table. The table tells the router that the datagram should be forwarded on router interface 
2; also the number of hops to the destination is 1, which indicates to the router that the destination host is on the LAN directly 
attached to interface 2. The router moves the datagram to interface 2. (The moving of a datagram from in input interface to an 
output interface within a router will be covered in Section 4.6.) Once the datagram is at interface 2, the router passes the 
datagram to link layer protocol and indicates to the link layer protocol that the destination host is on the same LAN. The link 
layer protocol has the job of transporting the datagram from the router interface 2 to host E, both of which are attached to the 
same LAN. 
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destination 
network

next 
router

number  
of hops to  
destination

interface

223.1.1. - 1 1

223.1.2. - 1 2

223.1.3. - 1 3

Figure 4.4-7: Routing table in router.

In Figure 4.4-7, note that the entries in the "next router" column are all empty. This is because all of the networks (223.1.1. , 
223.1.2. , and 223.1.3. ) are each directly attached to the router, that is, there is no need to go through an intermediate router to 
get to the destination host. However, if host A and host E were separated by two routers, then within the routing table of the 
first router along the path from A to B, the appropriate row would indicate 2 hops to the destination and would specify the IP 
address of the second router along the path. The first router would then forward the datagram to the second router, using the 
link layer protocol that connects the two routers. The second router then forwards the datagram to the destination host, using 
the link layer protocol that connects the second router to the destination host. 

You may recall from Chapter 1 that we said that routing a datagram in the Internet is similar to a person driving a car and 
asking gas station attendants at each intersection along the way how to get to the ultimate destination. It should now be clear 
why this an appropriate analogy for routing in the Internet. As a datagram travels from source to destination, it visits a series of 
routers. At each router in the series, it stops and asks the router how to get to its ultimate destination. Unless the router is on the 
same LAN as the ultimate destination, the routing table essentially says to the datagram: "I don't know exactly how to get to the 
ultimate destination, put I do know that the ultimate destination is in the direction of the link (analogous to a road) connected to 
interface 3." The datagram then sets out on the link connected to interface 3, arrives at a new router, and again asks for new 
directions. 

From this discussion we see that the routing tables in the routers play a central role in routing datagrams through the Internet. 
But how are these routing tables configured and maintained for large networks with mulitple paths between sources and 
destinations (such as in the Internet)? Clearly, these routing tables should be configured so that the datagrams follow good (if 
not optimal) routes from source to destination. As you probably guessed, routing algorithms - like those studied in Section 4.2 - 
have the job of configuring and maintaining the routing tables. Furthermore, as discussed in Section 4.3, the Internet is 
partitioned into autonomous systems (ASs):  intra-AS routing algorithms independently configure the routing tables within the 
autonomous systems; inter-AS routing algorithms have the job configuring routing tables so that datagrams can pass through 
multiple autonomous systems. We will discuss the Internet's intra-AS and inter-AS routing algorithms in Section 4.5. But 
before moving on to routing algorithms, we cover three more important topics for the IP protocol, namely, the datagram 
format, datagram fragmentation, and the Internet Control Message Protocol (ICMP). 

4.4.3 Datagram Format

The IPv4 datagram format is shown in Figure 4.4-8. 
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Figure 4.4-8: IPv4 datagram format

The key fields in the IPv4 datagram are the following: 

●     Version Number:  These 4 bits specify the IP protocol version of the datagram.  By looking at the version number, the 
router can then determine how to interpret the remainder of the IP datagram.  Different versions of IP use different 
datagram formats.  The datagram format for the "current" version of IP, IPv4, is shown in Figure 4..4-8.  The datagram 
format for the "new" version of IP (IPv6) is discussed in Section 4.7.

●     Header Length:  Because an IPv4 datagram can contain a variable number of options (which are included in the IPv4 
datagram header) these 4 bits are needed to determine where in the IP datagram the data actually begins. Most IP 
datagrams do not contain options so the typical IP datagram has a 20 byte header.

●     TOS:   The type of service (TOS)  bits were included in the IPv4 header to allow different "types" of IP datagrams to be 
distinguished from each other, presumably so that they could be handled differently in times of overload.  When the 
network is overloaded, for example, it would be useful to be able to distinguish network control datagrams (e.g., see the 
ICMP discussion in Section 4.4.5) from datagrams carrying data (e.g., HTTP messages). It would also be useful to 
distinguish real-time datagrams (e.g., used by  an IP telephony application) from non-real-time traffic (e.g., FTP).  More 
recently, one major routing vendor (Cisco) interprets the first three ToS bits as defining differential levels of service that 
can be provided by the router.  The specific level of service to be provided is a policy issue determined by the router's 
administrator. We shall explore the topic of differentiated service in detail in Chapter 6.

●     Datagram Length: This is the total length of the IP datagram (header plus data) measured in bytes.  Since this field is 
16 bits long, the theoretical maximum size of the IP datagram to 65,535 bytes. However, datagrams are rarely greater 
than 1500 bytes, and are often limited in size to 576 bytes.

●     Identifier, Flags, Fragmentation Offset:   These three fields have to do with so-called IP fragmentation, a topic we 
will consider in depth shortly. Interestingly, the new version of IP, IPv6,  simply does not allow for fragmentation.

●     Time-to-live:  The time-to-live (TTL) field is included to insure that datagrams do not circulate forever (due to, for 
example, a long lived router loop) in the network.  This field is decremented by  one each time the datagram is 
processed by a router.  If the TTL field reaches 0, the datagram must be dropped.

●     Protocol:  This field is only used when an IP datagram reaches its final destination.  The value of this field indicates the 
transport-layer protocol at the destination  to which the data portion of this IP datagram will be passed.  For example, a 
value of 6 indicates that the data portion is passed to TCP, while a value of 17 indicates that the data is passed to UDP.  
For a listing of all possible numbers, see [RFC 1700]. Note that the the protocol number in the IP datagram  has a role 
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that is fully analogous to the role of the port number field in the transport-layer segment. The protocol number is the 
"glue" that holds the network and transport layers together, whereas port number is the "glue" that holds the transport 
and application layers together. We will see in Chapter 5 that the link layer frame also has a special field which glues 
the link layer to the network layer.

●     Header Checksum: The header checksum aids a router in detecting bit errors in a received IP datagram.  The header 
checksum is computed by treating each 2 bytes in the header as a number and summing these numbers using 1's 
complement arithmetic.  As discussed in Section 3.3, the 1's complement of this sum,  known as the Internet checksum,  
is stored in the checksum field.  A router computes the Internet checksum for each received IP datagram and detects an 
error condition if the checksum carried in the datagram does not equal the computed checksum. Routers typically 
discard datagrams for which an error has been detected. Note that the checksum must be recomputed and restored at 
each router, as the TTL field, and possibly options fields as well, may change.  An interesting discussion of fast 
algorithms for computing the Internet checksum is [1071]. A question often asked at this point is, why does TCP/IP 
perform error checking at both the transport and network  layers? There are many reasons for this. First, routers are not 
required to perform error checking, so the transport layer cannot count on the network layer to do the job. Second, TCP/
UDP and IP do not necessarily have to both belong to the same protocol stack.  TCP can, in principle, run over a 
different protocol (e.g., ATM) and IP can carry data without passing through TCP/UDP (e.g., RIP data).

●     Source  and Destination IP Address:   These fields carry the 32 bit IP address of the source and final destination for 
this IP datagram.  The use and importance of the destination address is clear. The source IP address (along with the 
source and destination port numbers) is used at the destination host to direct the application data in the proper socket.

●     Options:  The optional options fields allows an IP  header to be extended.  Header options were meant to be used rarely 
-- hence the decision to save overhead by not including the information in options fields in every datagram header.  
However, the mere existence of options does complicate matters -- since datagram headers can be of variable length, 
one can not determine a priori where the data field will start. Also, since some datagrams may require options 
processing and others may not, the amount of time needed to process a IP datagram can vary greatly.  These 
considerations become particularly important for IP processing in high performance routers and hosts.  For these reasons 
and others, IP options were dropped in the IPv6 header.

●     Data (payload):  Finally, we come to the last, and most important field - the raison d'être for the datagram in the first 
place! In most circumstances, the data field of the IP datagram contains the transport-layer segment (TCP or UDP) to be 
delivered to the destination. However, the data field can carry other types of data, such ICMP messages (discusssed in 
Section 4.4.5) .

Note that IP datagram has a total of 20 bytes of header (assuming it has no options). If the IP datagram carries a TCP segment, 
then each (non-fragmented) datagram carries a total of 40 bytes of header (20 IP bytes and 20 TCP bytes) along with the 
application-layer data. 

4.4.4 IP Fragmentation and Reassembly

We will see in Chapter 5 that not all  link layer protocols can carry packets of the same size. Some protocols can carry "big" 
packets whereas other protocols can only carry "little" packets. For example, Ethernet packets can carry no more than 1500 
bytes of data, whereas packets for many wide-area links can carry no more than 576 bytes. The maximum amount of data that a 
link-layer packet can carry is called the MTU (maximum transfer unit). Because each IP datagram is encapsulated within the 
link-layer packet for transport from one router to the next router, the MTU of the link-layer protocol places a hard limit on the 
length of an IP datagram. Having a hard limit on the size of an IP datagram is not much of a problem. What is a problem is that 
each of the links along the route between sender and destination can use different link-layer protocols, and each of these 
protocols can have different MTUs. 

To understand the problem better, imagine that you are a router that interconnects several links, each running different link-
layer protocols with different MTUs. Suppose you receive an IP datagram from one link,  you check your routing table to 
determine the outgoing link, and this outgoing link has an MTU that is smaller than the length of the IP datagram. Time to 
panic -- how  are you going to squeeze this oversized IP packet into the payload field of the link-layer packet? The solution to 
this problem is to "fragment" the data in the IP datagram among two or more smaller IP datagrams, and then send these smaller 
datagrams over the outgoing link. Each of these smaller datagrams is referred to as a fragment. 
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Fragments need to be reassembled before they reach the transport layer at the destination. Indeed, both TCP and UDP are 
expecting to receive from the network layer complete, un-fragmented segments. The designers of IPv4 felt that reassembling 
(and possibly re-fragmenting) datagrams in the routers would introduce significant complication into the protocol and put a 
damper on router performance. (If you were a router, would you want to be reassembling fragments on top of everything else 
you have to do?) Sticking to end-to-end principle for the Internet, the designers of IPv4 decided to put the job of datagram 
reassembly in the end systems rather than in the network interior. 

When a destination host receives a series of datagrams from the same source, it needs to determine if any of these datagrams 
are fragments of some "original" bigger datagram. If it does determine that some datagrams are fragments, it must further 
determine when it has received the last fragment and how the fragments it has received should be pieced back together to form 
the original datagram. To allow the destination host to perform these reassembly tasks, the designers of of IP (version 4) put  
identification, flag and fragmentation  fields in the IP datagram. When a datagram is created, the sending host stamps the 
datagram with an identification number as well as a source and destination address. The sending host increments the 
identification number for each datagram it sends. When a router needs to fragment a datagram, each resulting datagram (i.e., 
"fragment") is stamped with the source address, destination address and identification number of the original datagram. When 
the destination receives a series of datagrams from the same sending host, it can examine the identification numbers of the 
datagrams to determine which of the datagrams are actually fragments of the same bigger datagram.  Because IP is an 
unreliable service, one or more of the fragments may never arrive at the destination. For this reason, in order for the destination 
host to be absolutely sure it has received the last fragment of the original datagram, the last fragment has a flag bit set to 0 
whereas all the other fragments have this flag bit set to 1. Also, in order for the destination host to determine if a fragment is 
missing (and also to be able to reassemble the fragments in the proper order), the offset field is used to specify where the 
fragment fits within the original IP datagram. This bit is set to 1 in all except the last fragment. 
  
  

 
Figure 4.4-9: IP Fragmentation

Figure 4.4-9 illustrates an example. A datagram 4,000 bytes arrives to a router, and this datagram must be forwarded to a link 
with a MTU of 1500 bytes. These implies that the 3,980 data bytes in the original datagram must be allocated to three separate 
fragments (each of which are also IP datagrams). Suppose that the original datagram is stamped with an identification number 
of 777. Then the characteristics of the three fragments are as follows: 

1st fragment 
❍     1480 bytes in the data field of the IP datagram.
❍     identification = 777
❍     offset = 0 (meaning the data should be inserted beginning at byte 0)
❍     flag = 1 (meaning there is more)

2nd fragment 
❍     1480 byte information field
❍     identification = 777
❍     offset = 1,480 (meaning the data should be inserted beginning at btye 1,480
❍     flag = 1 (meaning there is more)

3rd fragment 
❍     1020 byte (=3980-1480-1480) information field
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❍     identification = 777
❍     offset = 2,960 (meaning the data should be inserted beginning at byte 2,960)
❍     flag = 0 (meaning this is the last fragment)

 

The payload of the datagram is only passed to the transport layer once the IP layer has fully reconstructed the original IP 
datagram. If one or more of the fragments does not arrive to the destination, the datagram is "lost" and not passed to the 
transport layer. But, as we learned in the previous chapter, if TCP is being used at the transport layer, then TCP will recover 
from this loss by having the source retransmit the data in the original datagram. 

Fragmentation and reassembly puts an additional burden on Internet routers (the additional effort to create fragments out of a 
datagram) and on the destination hosts (the additional effort to reassembly fragments). For this reason it is desirable to keep 
fragmentation to a minimum. This is often done by limiting the TCP and UDP segments to a relatively small size, so that the 
fragmentation of the corresponding datagrams is unlikely. Because all data link protocols supported by IP are supposed to have 
MTUs of at least 576 bytes, fragmentation can be entirely eliminated by using a MSS of 536 bytes, 20 bytes of TCP segment 
header and 20 bytes of IP datagram header. This is why most TCP segments for bulk data transfer (such as with HTTP) are 512-
536 bytes long. (You may have noticed while surfing the Web that 500 or so bytes of data often arrive at a time.) 

Following this section we provide a Java applet that generates fragments. You provide the incoming datagram size, the MTU 
and the incoming datagram identification. It automatically generates the fragments for you. 

4.4.5 ICMP: Internet Control Message Protocol

We conclude this section with a discussion of the Internet Control Message Protocol, ICMP, which is used by hosts, routers, 
and gateways to communicate network layer information  to each other. ICMP is specified in [RFC 792]. The most typical use 
of ICMP is for error reporting.  For example, when running a Telnet, FTP, or HTTP session, you may have encountered an 
error message such as "Destination network unreachable."  This message had its origins in ICMP.  At some point, an IP router 
was unable to find a path to the host specified in your Telnet, FTP or HTTP application.  That router created and sent a type-3  
ICMP message to your host indicating the error.  Your host received the ICMP message and returned the error code to the TCP 
code that was attempting to connect to the remote host. TCP in turn returned the error code to your application. 

ICMP is often considered part of IP, but architecturally lies just above IP, as ICMP messages are carried inside IP packets.  
That is, ICMP messages are carried as IP payload, just as TCP or UDP packets are carried at IP payload.  Similarly, when an 
host receives an IP packet with ICMP specified as the upper layer protocol, it demultiplexes the packet to ICMP, just as it 
would demultiplex a packet to TCP or UDP. 

ICMP messages have a type and a code field, and also contain the first 8 bytes of the IP packet that caused the IP message to be 
generated in the first place (so that the sender can determine which packet is sent that caused the error).  Selected ICMP 
messages are shown below in Figure 4.4-10.  Note that ICMP messages are used not only for signaling error conditions.  The 
well-known ping [ping man page] program uses ICMP.  ping sends an ICMP type 8 code 0 message to the specified host.  
The destination host, seeing the echo request sends back an type 0 code 0 ICMP echo reply.  Another interesting ICMP 
message is the source quench message.  This message is seldom used in practice.  Its original purpose was to perform 
congestion control -- to allow a congested router to send an ICMP source quench message to a host to force that host to reduce 
its transmission rate.  We have seen in Chapter 3 that TCP has its own congestion control mechanism that operates at the 
transport layer, without the use of network layer support such as the ICMP source quench message. 
  

ICMP type code description 

0 0 echo reply (to ping) 
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3 0 destination network unreachable 

3 1 destination host unreachable 

3 2 destination protocol unreachable 

3 3 destination port unreachable 

3 6 destination network unknown 

3 7 destination host unknown 

4 0 source quench (congestion control) 

8 0 echo request 

9 0 router advertisement 

10 0 router discovery 

11 0 TTL expired 

12 0 IP header bad 

 Table 4.4-10: Selected ICMP messages

In Chapter 1 we introduced the Traceroute program, which enabled you to trace the route from a few given hosts to any host in 
the world. Interesting enough, Traceroute also uses ICMP messages. To determine the names and addresses of the routers 
between source and destination, Traceroute in the source sends a series of ordinary IP datagrams to the destination. The first of 
these datagrams has a TTL of 1, the second of 2, the third of  3, etc. The source also starts timers for each of the datagrams. 
When the nth datagram arrives at the nth router, the nth router observers that the TTL of the datagram has just expired. 
According to the rules of the IP protocol, the router  discards the datagram (because there may be a routing loop) and sends an 
ICMP warning message to the source (type 11 code 0). This warning message includes the name of the router and its IP 
address. When the ICMP message corresponding to the nth datagram arrives at the source, the source obtains the round-trip 
time from the timer and the name and IP address from the ICMP message. Now that you understand how Traceroute works, 
you may want to go back and play with it some more. 
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Fragmentation Applet

Provide an MTU (maximum transfer unit) and an incoming datagram size, and the applet will generate 
all the fragments for you. 
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4.5 Routing in the Internet

The Internet consists of interconnected autonomous systems (ASs). An AS typically consists of many 
networks, where a network (also called an IP network) was defined in the previous section.  Recall from 
Section 4.3 that each autonomous system is administered independently. The administrator of an 
autonomous system chooses the intra-AS routing algorithm for that AS, and is responsible for 
administering that AS and no others. Datagrams must also be routed among the ASs, and this is the job 
of inter-AS routing protocols. As discussed in Section 4.3, this hierarchical organization of the Internet 
has permitted the Internet to scale. In this section we examine the intra-AS and inter-AS routing 
protocols for that are commonly used in the Internet. 

4.5.1 Intra-Autonomous System Routing in the Internet

An intra-AS routing protocol is used to configure and maintain the routing tables within an autonomous 
system (AS).  Once the routing tables are configured, datagrams are routed within the AS as described in 
the previous section. Inter-AS routing protocols are also known as interior gateway protocols. 
Historically, three routing protocols have been used extensively for routing within an autonomous 
system in the Internet: RIP (the Routing Information Protocol), and OSPF (Open Shortest Path First), 
and IGRP (Cisco's propriety Interior Gateway Routing Protocol). 

RIP: Routing Information Protocol

The Routing Information Protocol (RIP) was one of the earliest intra-AS Internet routing protocols and 
is still in widespread use today.  It traces its origins and its name to the  Xerox Network Systems (XNS) 
architecture.  The widespread deployment of RIP was due in great part to its inclusion in 1982 of the 
Berkeley Software Distribution (BSD) version of UNIX supporting TCP/IP. RIP version 1 is defined in  
[RFC 1058], with a backwards compatible version 2 defined in  [RFC 1723]. 

RIP is a distance vector protocol that operates in a manner very close  to the idealized protocol we 
examined in Section 4.2.3.  The version of RIP specified in RFC 1058 uses hop count as a cost metric, i.
e., each link has a cost of 1, and limits the maximum cost of a path to 15.  This limits the use of RIP to 
autonomous systems that are less than 15 hops in diameter.Recall that in distance vector protocols, 
neighboring routers exchange routing information with each other. In RIP, the routing tables are 
exchanged between neighbors every 30 seconds using RIP's. This is done with RIP's so-called response 
message, with each response message containing that host's routing table entries for up to 25 destination 
networks. These response messages containing routing tables are also called advertisements. 

Let us take a look at a simple example of how RIP advertisements work. Consider the portion of an AS 
shown in Figure 4.5-2. In this figure, the rectangles denote routers and the lines connecting the 
rectangles denote networks. Note that the routers are labeled A, B, etc. and the networks are labeled 1, 
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10, 20, 30, etc. For visual convenience, some of the routers and networks are not labeled. Dotted lines in 
the figure indicate that the autonomous system continues on and perhaps loops back. Thus this 
autonomous system has many more routers and links than are shown in the figure. 

 
Figure 4.5-2: A portion of an autonomous system.

Now suppose that the routing table for router D is as shown in Figure 4.5-3. Note that the routing table 
has three columns. The first column is for the destination network, the second column indicates the next 
router along the shortest path to the destination network, and the third column indicates the number of 
hops (i.e., the number of networks that have to be traversed, including the destination network,  to get to 
the destination network along the shortest path). For this example, the table indicates that to send a 
datagram from router D to destination network 1, the datagram should be first sent to neighboring router 
A; moreover, the table indicates that destination network 1 is two hops away along the shortest path. 
Also note that the table indicates that network 30 is seven hops away via router B. In principle, the 
routing table should have one row for each network in the AS. (Although aggregation, a topic beyond 
the scope of this book, can be used to aggregate entries.) It should also have at least one row for 
networks that are outside of the AS. The table in Figure 4.5-3, and the subsequent tables to come, are 
only partially complete. 
  

 destination 
network

next  
router

number 
of hops to 

destination

1 A 2
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20 B 2

30 B 7

10 -- 1

.... .... ....

Figure 4.5-3: Routing table in router D before receiving advertisement from router A.

Now suppose that 30 seconds later, router D receives from router A the advertisement shown in Figure 
4.5-4. Note that this advertisement is nothing other but the routing table in router A! This routing table 
says, in particular, that network 30 is only 4 hops away from router A. 

destination 
network

next 
router

number 
of hops to 

destination

30 C 4

1 -- 1

10 -- 1

.... .... ....

Figure 4.5-4: Advertisement from router A.

Router D, upon receiving this advertisement, merges the advertisement (Figure 4.5-4) with the "old" 
routing table (Figure 4.5-3). In particular, router D learns that there is now a path through router A to 
network 30 that is shorter than the path through router B. Thus, router D updates its routing table to 
account for the "shorter" shortest path, as shown in Figure 4.5-5. How is it, you might ask, that the 
shortest path to network 30 became shorter. This is because either this decentralized distance vector 
algorithm was still in the process of converging (see Section 4.2), or new links and/or routers were 
added to the AS, which changed the actual shortest paths in the network. 

destination 
network

next 
router

number 
of hops to 

destination

1 A 2

20 B 2

30 A 5

.... .... ....

Figure 4.5-5: Routing table in router D after receiving advertisement from router A.
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Returning now to the general properties of RIP, if a router does not hear from its neighbor at least once 
every 180 seconds, that neighbor is considered to be no longer reachable, i.e., either the neighbor has 
died or the connecting link has gone down.  When this happens, RIP modifies its local routing table and 
then propagates this information by sendind advertisements to its neighboring routers (the ones that are 
still reachable). A router can also request information about its neighbor's cost to a given destination 
using RIP's request message. Routers send RIP request and response messages to each other over UDP 
using port number 520.The UDP packet is carried between routers in a standard IP packet.  The fact that 
RIP uses a transport layer protocol (UDP)  on top of a network layer protocol (IP)  to implement 
network layer functionality (a routing algorithm) may seem rather convoluted (it is!).  Looking a little 
deeper at how RIP is implemented will clear this up. 

Figure  4.5-6 sketches how RIP is typically implemented in a UNIX system, e.g., for example, a UNIX 
workstation serving as a router.   A process called routed (pronounced "route dee") executes the RIP 
protocol, i.e., maintains the routing table and exchanges messages with  routed processes running in 
neighboring routers.  Because RIP is implemented as an application-layer process (albeit a very special 
one that is able to manipulate the routing tables within the UNIX kernel), it can send and receive 
messages over a standard socket and use a standard transport protocol.   Thus, RIP is an application-
layer protocol (see Chapter 2), running over UDP. 

 
Figure 4.5-6: Implementation of RIP as the routed daemon

Finally, let us take a quick look at a RIP routing table.  The RIP routing table below in Figure 4.5-7  is 
taken from a UNIX router giroflee.eurecom.fr. If you give a netstat -rn  command on a UNIX 
system, you can view the routing table for that host or router. Performing a netstat on  giroflee.
eurecom.fr yields the following routing table: 

  Destination           Gateway           Flags  Ref   Use   
Interface
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-------------------- -------------------- ----- ----- ------ 
---------
127.0.0.1            127.0.0.1             UH       0  26492  lo0
192.168.2.           192.168.2.5           U        2     13  fa0
193.55.114.          193.55.114.6          U        3  58503  le0
192.168.3.           192.168.3.5           U        2     25  
qaa0
224.0.0.0            193.55.114.6          U        3      0  le0
default              193.55.114.129        UG       0 143454

Table 4.5-7 RIP routing table from giroflee.eurecom.fr

The router giroflee is connected to three networks. The second, third and fourth rows in the table tell us 
that these three networks are attached to giroflee via giroflee's network  interfaces fa0, le0 and 
qaa0.  These giroflee interfaces have IP addresses 192.168.2.5, 193.55.114.6 and 192.168.3.5,  
respectively.  To transmit a packet to any host  belonging to one of these three networks, giroflee 
will simply send the outgoing IP datagram over the appropriate interface.  Of particular interest to us is 
the default route. Any IP datagram that is not destined for one of the networks explicitly listed in the 
routing table will be forwarded to the router with IP address 193.55.114.129; this router is reached 
by sending the datagram over the default network interface.  The first entry in the routing table is the so-
called loopback interface. When IP sends a datagram to the loopback interface, the packet is simply 
returned back to IP; this is useful for debugging purposes. The address 224.0.0.0 is a special multicast 
(Class D) IP address.  We will examine IP multicast in Section 4.8. 

OSPF: Open Shortest Path First

Like RIP, the Open Shortest Path First (OSPF) routing is used for intra-AS routing. The "Open" in 
OSPF indicates that the routing protocol specification is publicly available (e.g., as opposed to Cisco's 
IGRP protocol).  The most recent version of OSPF, version 2, is defined in RFC 2178 - a public 
document. 

OSPF was conceived as the successor to RIP and as such has a number of advanced features.  At its 
heart, however, OSPF is a link-state protocol that uses flooding of link state information and a Dijkstra 
least cost path algorithm. With OSPF, a router constructs a complete topological map (i.e., a directed 
graph) of the entire autonomous system. The router then locally runs Dijkstra's shortest path algorithm to 
determine a shortest path tree to all networks with itself as the root node. The router's routing table is 
then obtained from this shortest path tree. Individual link costs are configured by the network 
administrator. 

Let us now contrast and compare the advertisements sent by RIP and OSPF. With OSPF, a router 
periodically sends routing information to all other routers in the autonomous system, not just to its 
neighboring routers. This routing information sent by a router has one entry for each of the router's 
neighbors; the entry gives the distance (i.e., link state) from the router to the neighbor. On the otherhand, 
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a  RIP advertisement sent by a router contains information about all the networks in the autonomous 
system, although this information is only sent to its neighboring routers. In a sense, the advertising 
techniques of RIP and OSPF are duals of each other. 

Some of the advances embodied in OSPF include the following: 

●     Security.  All exchanges between OSPF routers (e.g., link state updates) are authenticated. This 
means that only trusted routers can participate in the OSPF protocol within a domain, thus 
preventing malicious intruders (or networking students taking their newfound knowledge out for 
a joyride) from injecting incorrect information into router tables.

●     Multiple same-cost paths.  When multiple paths to a destination have the same cost, OSPF 
allows multiple paths to be used (i.e., a single path need not be not chosen for carrying all traffic 
when multiple equal cost paths exist).

●     Different cost metrics for different TOS traffic.  OSPF allows each link to have different costs 
for different TOS (type of service) IP packets.  For example, a high bandwidth satellite link might 
be configured to have a low cost (and hence be attractive) for non-time critical traffic, but a very 
high cost metric for delay-sensitive traffic. In essence, OSPF sees different network topologies 
for different classes of traffic, and hence can compute different routes for each type of traffic.

●     Integrated support for unicast and multicast routing.   Multicast OSPF (RFC 1584)  provides 
simple extensions to OSPF to provide for multicast routing (a topic we cover in more depth in 
Section 4.8).  MOSPF uses the existing OSPF link database and adds a new type of  link state 
advertisement to the existing OSPF link state broadcast mechanism.

●     Support for hierarchy within a single routing domain. Perhaps the most significant advance in 
OSPF is the ability to hierarchically structure an autonomous system.  Section 4.3 has already 
looked at the many advantages of hierarchical routing structures.  We cover the implementation 
of OSPF hierarchical routing in the remainder of this section.

As OSPF autonomous system can be configured into "areas."  Each area runs its own OSPF link state 
routing algorithm, with each router in an area broadcasting its link state to all other routers in that area.  
The internal details of an area thus remain invisible to all routers outside the area.  Intra-area routing 
involves only those routers within the same area. 

Within each area, one of more area border routers are responsible for routing packets outside the area.  
Exactly one OSPF area in the AS is configured to be the backbone area.  The primary role of the 
backbone area is to route traffic between the other areas in the AS.  The backbone always contains all 
area border routers in the AS and may contain non border routers as well.  Inter-area routing within the 
AS requires that the packet be first routed to an area border router (ntradomain routing), then routed 
though the backbone to the area border router that is in the destination area, and then routed to the final 
destination. 
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Figure 4.5-7: Hierarchically structured OSPF AS with four areas.

A diagram of a hierarchically structured OSPF network is shown in Figure 4.4-5 . We can identify four 
types of OSPF routers in Figure 4.5-7: 

●     internal routers.  These routers, shown in black, are in a non-backbone areas and only perform 
intra-AS routing.

●     area border routers.  These routers, shown in blue, belong to both an area and the backbone.
●     backbone routers (non border routers).  These routers, shown in gray, perform routing within the 

backbone but themselves are not area border routers.  Within a non-backbone area, internal 
routers learn of the existence of routes to other areas from information (essentially a link state 
advertisement, but advertising the cost of a route to another area, rather than a link cost) 
broadcast within the area by its backbone routers.

●     boundary routers.  A boundary router, shown in blue, exchanges routing information with routers 
belonging to other autonomous systems. This router might, for example, use BGP to perform 
inter-AS routing.  It is through such a boundary router that other routers learn about paths to 
external networks.

IGRP: Internal Gateway Routing Protocol

The Interior Gateway Routing Protocol (IGRP) [Cisco97] is a proprietary routing algorithm developed 
by Cisco Systems, Inc. in the mid-1980's as a successor for RIP.  IGRP is a distance vector protocol.  
Several cost metrics (including delay, bandwidth, reliability, and load) can be used in making routing 
decisions, with the weight given to each of the metrics being determined by the network administrator.  
This ability to use administrator-defined costs in making route selections is an important difference from 
RIP; we will see shortly that so-called policy-based interdomain Internet routing protocols such as BGP 
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also allow administratively defined routing decisions to be made.  Other important differences from RIP 
include the use of a reliable transport protocol to communicate routing information, the use of  update 
messages that are sent only when routing table costs change (rather than periodically) , and the use of a 
distributed  diffusing update routing algorithm [Garcia-Luna-Aceves 1991] to quickly compute loop free 
routing paths. 

4.5.2 Inter-Autonomous System Routing

The Border Gateway Protocol version 4, specified in RFC 1771 (see also RFC 1772, RFC 1773), is the 
de facto standard interdomain routing protocol in today's Internet.  It is commonly referred to as BGP4 
or simply as BGP. As an inter-autonomous system routing protocol, it provides for routing between 
autonomous systems (that is, administrative domains). 

While BGP has the same general flavor as the distance vector protocol that we studied in Section 4.2, it 
is more appropriately characterized as a path vector protocol.  This is because BGP in a router does not 
propagate cost information (e.g., number of hops to a destination), but instead propagates path 
information, such as the sequence of ASs on a route to a destination AS.  We will examine the path 
information  in detail shortly. We note though that while this information includes the names of the ASs 
on a route to the destination, they do not contain cost information.   Nor does BGP specify how a 
specific route to a particular destination should be chosen among the routes that have been advertised.  
That decision is a policy decision that is left up to the domain's administrator.  Each domain can thus 
choose its routes according to whatever criteria  it chooses (and need not even inform its neighbors of 
its  policy!) -- allowing a significant degree of autonomy in route selection.  In essence, BGP provides 
the mechanisms to distribute path information among the interconnected autonomous systems, but leaves 
the policy for making the actual route selections up to the network administrator. 

Let's begin with a grossly simplified description of how BGP works. This will help us see the forest 
through the trees. As discussed in Section 4.3, as far as BGP is concerned, the whole Internet is a graph 
of ASs, and each AS is identified by an AS number.  At any instant of time, a given AS X may, or may 
not, know of a path of ASs that lead to a given destination AS Z. As an example, suppose X has listed in 
its BGP table such a path XY1Y2Y3Z  from itself to Z. This means that X knows that it can send 

datagrams to Z through the ASs X, Y1, Y2 and Y3, Z. When X sends updates to its BGP neighbors (i.e., 

the neighbors in the graph), X actually sends the enitre path information, XY1Y2Y3Z, to its neighbors 

(as well as other paths to other ASs). If, for example, W is a neighbor of X, and W receives an 
advertisement that includes the path XY1Y2Y3Z, then W can list a new entry WXY1Y2Y3Z in its BGP 

table .However, we should keep in mind that W may decide to not create this new entry for one of 
several reasons. For example, W would not create this entry if W is equal to (say) Y2, thereby creating 

an undesirable loop in the routing; or if W already has a path to Z in its tables, and this existing path is 
preferable (with respect to the metric used by BGP at W) to WXY1Y2Y3Z ; or, finally, if W has a policy 

decision to not forward datagrams through (say) Y2 . 
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In BGP jargon, the immediate neighbors in the graph of ASs are called peers. BGP information is 
proprogated through the network by exchanges of BGP messages between peers. The BGP protocol 
defines the four types of messages: OPEN, UPDATE, NOTIFICATION and KEEPALIVE. 

●     OPEN: BGP peers communicate using the TCP protocol and port number 179.  TCP thus 
provides for reliable and congestion controlled message exchange between peers.  In contrast, 
recall that we earlier saw that two RIP peers, e.g., the routed's in Figure 4.5-6 communicate via 
unreliable UDP.  When a BGP gateway wants to first establish contact with a BGP peer (e.g., 
after the gateway itself or a connecting link has just be booted), an OPEN message is sent to the 
peer.  The OPEN message allows a BGP gateway to identify and authenticate itself, and provide 
timer information. If the OPEN is acceptable to the peer, it will send back a KEEPALIVE 
message.

●     UPDATE:  A BGP gateway uses the UPDATE message to advertise a path to a given destination 
(e.g.,  XY1Y2Y3Z) to the BGP peer.  The UPDATE message can also be used to withdraw routes 

that had previously been advertised (that is, to tell a peer that a route that it had previously 
advertised is no longer a valid route).

●     KEEPALIVE:  This BGP message is used to let a  peer know that the sender is  alive but that 
the sender doesn't have other information to send.  It also serves as an acknowledgment to a 
received OPEN message.

●     NOTIFICATION:  This BGP message is used to inform a peer that an error has been detected (e.
g., in a previously transmitted BGP message) or that the sender is about to close the BGP session.

Recall from our discussion above that BGP provides mechanisms for distributing path information but 
does not mandate policies for selecting a route from those available.  Within this framework, it is thus 
possible for an AS such as Hatfield.net  to implement a policy such as "traffic from my AS should not 
cross the AS McCoy.net,"  since it knows the identities of all AS's on the path. (The Hatfield and the 
McCoy's are two famous feuding families in the US).  But what about  a policy that would prevent the 
McCoy's from sending traffic through the Hatfield's network?  The only means for an AS to control the 
traffic it passes though its AS (known as "transit" traffic - traffic that neither originates in, nor is 
destined for, the network, but instead is "just passing through") is by controlling the paths that it 
advertises.  For example, if the McCoy's are immediate neighbors of the Hatfields, the Hatfields could 
simply not advertise any routes to the McCoy's that contain the Hatfield network. But restricting transit 
traffic by controlling an AS's route advertisement can only be partially effective.  For example, if the 
Jones are between the Hatfield's and the McCoy's, and the Hatfield's advertise routes to the Jones' that 
pass through the Hatfields, then the Hatfields can not prevent (using BGP mechanisms) the Jones from 
advertising these routes to the McCoys. 

Very often an AS will have muliple gateway routers that provide connections to other ASs. Even though 
BGP is an inter-AS protocol, it can still be used inside an AS as a pipe to exchange BGP updates among 
gateway routers belonging to the same AS. BGP connections inside an AS are called Internal BGP 
(IBGP), whereas BGP connections between ASs are called External BGP (EBGP). 
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As noted above, BGP, which is the successor to EGP, is becoming the de facto standard for inter-AS 
routing for the public Internet.  BGP is used for example at the major network access points (NAP's) 
where major Internet carries connect to each other and exchange traffic. To see the contents of today's 
(less than four hours out of date) BGP routing table (large!) at one of the major NAP's in the US (which 
include Chicago and San Francisco ),  click here. 

This completes our brief introduction of BGP. Although BGP is complex, it plays a central role in the 
Internet. We encourage readers to see the references [Halabi 97] and [Huitema  95] to learn more about 
BGP. 

4.5.3 Why are there Different Inter-AS and Intra-AS Routing 
Protocols?

Having now studied the details of specific inter-AS and intra-AS routing protocols deployed in today's 
Internet, let us conclude by considering perhaps the most fundamental question we could ask about these 
protocols in the first place (hopefully, you have been wondering this all along, and have not lost the 
forest for the trees!): 

Why are different inter-As and intra-AS routing protocols used?

The answer to this question gets at the heart of the differences between the goals of routing within an AS 
and among ASs: 

●     Policy.  Among ASs, policy issues dominate.  It may well be important that traffic originating in 
a given AS specifically not be able to pass through another specific AS.  Similarly, a given AS 
may well want to control what transit traffic it carries between other ASs.  We have seen that 
BGP specifically carries path attributes and provide for controlled distribution of routing 
information so that such policy-based routing decisions can be made.  Within an AS, everything 
is  nominally under the same administrative control, and thus policy issues play a much less 
important role in choosing routes within the AS.

●     Scale.  The ability of a routing algorithm and its data structures to scale to handle routing to/
among large numbers of  networks is a critical issue in inter-AS routing.  Within an AS, 
scalability is less of a concern. For one thing, if a single administrative domain become too large, 
it is always possible to divide it into two ASs and perform inter-AS routing between the two new 
ASs. (Recall that OSPF allows such a hierarchy to be built by splitting an AS into "areas").

●     Performance.  Because  inter-AS routing is so policy-oriented, the quality (e.g., performance) of 
the routes used is often of secondary concern (i.e., a longer or more costly route that satisfies a 
certain policy criteria may well be taken over a route that is shorter but does not meet that 
criteria).  Indeed, we saw that among ASs, there is not even the notion of preference or costs 
associated with routes. Within a single AS, however, such policy concerns can be ignored, 
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allowing routing to focus more on the level of performance realized on a route.
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4.6 What's inside a router?

Our study of the network layer so far has focussed on network layer service models, the routing 
algorithms that control the routes taken by packets through the network, and the protocols that embody 
these routing algorithms. These topics, however,  are only part (albeit  important ones) of what goes on 
in the network layer. We have yet to consider the switching function of a router - the actual transfer of 
datagrams from a router's incoming links to the appropriate outgoing links.  Studying just the control 
and service aspects of the network layer is like studying  a company and considering only its 
management (which controls the company but typically performs very little of the actual "grunt" work 
that makes a company run!) and its public relations ("Our product will provide this wonderful service to 
you!"). To fully appreciate what really goes on within a company, one needs to consider the workers.  In 
the network layer, the real work (that is, the reason the network layer exists in the first place) is the 
forwarding of datagrams.  A key component in this forwarding process is the transfer of a datagram 
from a router's incoming link to an outgoing link.  In this section we study how this is accomplished. 
Our coverage here is necessarily brief, as an entire course would be needed to cover router design in 
depth. Consequently, we'll make a special effort in this section to provide pointers to material that covers 
this topic in more depth. 

A high level view of a generic router architecture is shown in Figure 4.6-1.  Four components of a router 
can be identified: 

●     Input ports.  The input port performs several functions.  It performs the physical layer 
functionality (shown in light blue in Figure 4.6-1) of  terminating an incoming physical link to a 
router.  It performs the data link layer functionality (shown in dark blue) needed to interoperate 
with the data link layer functionality (see  Chapter  5) on the other side of the incoming link. It 
also performs a lookup and forwarding function (shown in red) so that a datagram forwarded into 
the switching fabric of the router emerges at the appropriate output port.  Control packets (e.g., 
packets carrying routing protocol information such as RIP, OSPF or IGMP) are forwarded from 
the input port to the routing processor. In practice, multiple ports are often gathered together on a 
single line card within a router.

●     Switching fabric.  The switching fabric connects the router's input ports to its output ports.  This 
switching fabric is completely contained with the router - a network inside of a network router!

●     Output ports.  An output port stores the datagrams that have been forwarded to it through the 
switching fabric, and then transmits the datagrams on the outgoing link.  The output port thus 
performs the reverse data link and physical layer functionality as the input port.

●     Routing processor.  The routing processor executes the routing protocols (e.g., the protocols we 
studied in section 4.4), maintains the routing tables, and performs network management functions 
(see chapter 8), within the router. Since we cover these topics elsewhere in this book, we defer 
discussion of these topics to elsewhere.
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Figure 4.6-1: Router architecture

In the following, we'll take a look at input ports, the switching fabric, and output ports in more detail.  
[Turner 1988, Giacopelli 1990, McKeown 1997a, Partridge 1998] provide a discussion of some specific 
router architectures. [McKeown 1997b] provides a particularly readable overview of modern router 
architectures, using the Cisco 12000 router as an example. 
  

4.6.1 Input ports

A more detailed view of input port functionality is given in Figure 4.6-2.  As discussed above, the input 
port's line termination function and data link processing implement the physical and data link layers 
associated with an individual input link to the router.  The lookup/forwarding function of the input port 
is central to the switching function of the router.  In many routers, it is here that the router determines 
the output port to which an arriving datagram will be forwarded via the switching fabric. The choice of 
the output port is made using the information contained in the routing table.  Although the routing table 
is computed by the routing processor, a "shadow copy" of the routing table is typically stored at each 
input port and updated, as needed, by the routing processor.  With local copies of the routing table, the 
switching decision can be made locally, at each input port, without invoking the centralized routing 
processor.  Such decentralized switching avoids creating a forwarding bottleneck at a single point within 
the router. 

In routers with limited processing capabilities at the input port,  the input port may simply forward the 
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packet to the centralized  routing processor, which will then perform the routing table lookup and 
forward the packet to the appropriate output port.  This is the approach taken when a workstation or 
server serves as a router (e.g., [Microsoft 1998]); here, the "routing processor" is really just the 
workstation's CPU and the "input port" is really just a network interface card (e.g., a Ethernet card). 

 
Figure 4.6-2: Input port processing

Given the existence of a routing table,  the routing table lookup is conceptually simple -- we just search 
through the routing table, looking for a destination entry that matches the destination address of the 
datagram, or a default route if the destination entry is missing.  In practice, however, life is not so 
simple.  Perhaps the most important complicating factor is that backbone routers must operate at high 
speeds, being capable of performing millions of lookups per second. Indeed, it is desirable for the input 
port processing to be able to proceed at line speed, i.e., that a lookup can be done in less than the 
amount of time needed to receive a packet at the input port.   In this case, input processing of a received 
packet can be completed before the next receive operation is complete. To get an idea of the 
performance requirements for lookup, consider that a so-called OC48 link runs at 2.5 Gbps.  With 256 
byte long packets, this implies a lookup speed of approximately a million lookups per second. 

Given the need to operate at today's high link speeds, a linear search through a large routing table is 
impossible.  A more reasonable technique  is to store the routing table entries in a tree data structure.  
Each level in the tree can be thought of as corresponding to a bit in the destination address.  To lookup 
an address, one simply starts at the root node of the tree.  If the first address bit is a zero, then the left 
subtree will contain the routing table entry for destination address; otherwise it will be in the right 
subtree.  The appropriate subtree is then traversed using the remaining address bits -- if the next address 
bit is a zero the left subtree of the initial subtree is chosen; otherwise, the right subtree of the initial 
subtree is chosen.  In this manner, one can lookup the routing table entry in N steps, where N is the 
number of bits in the address. (The reader will note that this is essentially a binary search through an 
address space  of size 2N.)   Refinements of this approach are discussed in [Doeringer 1996]. 
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But even with N=32 (e.g., a 32-bit IP address) steps, the lookup speed  is not fast enough for today's 
backbone routing requirements.  For example, assuming a memory access at each step, less than a 
million address lookups/sec could be performed with 40 ns memory access times. Several techniques 
have thus  been explored to increase lookup speeds.  Content addressable memories (CAMs) allow a 32-
bit IP address to be presented to the CAM, which then returns the content of the routing table entry for 
that address in essentially constant time.  The Cisco 8500 series router [Cisco 1998a] has a 64K CAM 
for each input port.  Another technique for speeding lookup is to keep recently accessed routing table 
entries in a cache [Feldmeier 1998].  Here, the potential concern is the size of the cache. Measurements 
in [Thompson 1997] suggest that even for an OC-3 speed link, approximately 256,000 source-
destination pairs might be seen in one minute in  a backbone router.  Most recently, even faster data 
structures, which allow routing table entry to be located in log(N) steps [Waldvogel 1997], or which 
compress routing tables in novel ways [Degemark 1997], have been proposed.  A hardware-based 
approach to lookup that is optimized for the common case that the address being looked up has 24 or 
less significant bits is discussed in [Gupta 1998]. 

Once the output port for a packet has been determined via the lookup, the packet can be forwarded into 
the switching fabric.  However, as we'll see below, a packet may be temporarily blocked from entering 
the switching fabric (due to the fact that packets from other input ports are currently using the fabric). A 
blocked packet must thus be queued at the input port and then scheduled to cross the switching fabric at 
a later point in time. We'll take a closer look at the blocking, queueing and scheduling of packets (at both 
input ports and output ports) within a router in section 4.6.4 below. 

4.6.2 Switching Fabrics

The switching fabric is at the very heart of  a router.  It is through this switching that the datagrams are 
actually moved from an input port to an output port.  Switching can be accomplished in a number of 
ways, as indicated in Figure 4.6-3: 
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Figure 4.6-3: Three switching techniques

●     Switching via memory.  The simplest, earliest routers were often traditional computers, with 
switching between input and output port being done under direct control of the CPU (routing 
processor). Input and output ports functioned as traditional  I/O devices in a traditional operating 
system.  An input port with an arriving datagram first signaled the routing processor via an 
interrupt.  The packet was then copied from the input port into processor memory.  The routing 
processor then extracted the destination address from the header,  looked up the appropriate 
output port in the routing table, and copied the packet to the output port's buffers.  Note that if the 
memory bandwidth is such that B packets/sec can be written into, or read from,   memory, then 
the overall switch  throughput (the total rate at which packets are transferred from input ports to 
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output ports) must be less than B/2.

 

  

Many modern routers also switch via memory.  A major difference from early routers, however, 
is that the lookup of the destination address and the storing (switching) of the packet into the 
appropriate memory location is performed by processors on the input line cards. In some ways, 
routers that switch via memory look very much like shared memory multiprocessors, with the 
processors on a line line card storing datagrams into the memory of the appropriate output port.  
Cisco's Catalyst 8500 series switches [Cisco 1998a] and Bay Networks Accelar 1200 Series 
routers  switch packets via a shared memory. 
  

●     Switching via a bus. In this approach, the input ports transfer a datagram directly to the output 
port over a shared bus, without intervention by the routing processor (Note that when switching 
via memory, the datagram must also cross the system bus going to/from memory).  Although the 
routing processor is not involved in the bus transfer, since the bus is shared, only one packet at a 
time can be transferred over the bus at a time.  A datagram arriving at an input port and finding 
the bus busy with the transfer of another datagram is blocked from passing through the switching 
fabric and queued at the input port.  Because every packet must cross the single bus, the 
switching bandwidth of the router is limited to the bus speed.

 

  

Given that bus bandwidths of over a gigabit per second are possible in today's technology,  
switching via a bus is often sufficient for  routers that operate in access and enterprise networks 
(e.g., local area and corporate networks).  Bus-based switching has been adopted in a number of 
current router products, including the Cisco 1900 [Cisco 1997b], which switches packets over a 
1Gbps Packet Exchange Bus. 3Com's CoreBuilder 5000 systems [Kapoor 1997]  interconnects 
ports that reside on different switch modules over its  PacketChannel data bus, with a bandwidth 
of 2 Gbps. 
  

●     Switching via an interconnection network. One way to overcome the bandwidth limitation of a 
single, shared bus is to use a more sophisticated interconnection network, such as those that have 
been used in the past to interconnect processors in a multiprocessor computer architectures.  A 
crossbar switch is an interconnection network consisting of 2N busses that connect N input ports 
to N output ports, as shown in Figure 4.6-3. A packet arriving at an input port travels along the 
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horizontal bus attached to the input port until it intersects with the vertical bus leading to the 
desired output port. If the vertical bus leading to the output port is free, the packet is transferred 
to the output port. If the vertical bus is being used to transfer a packet from another input port to 
this same output port, the arriving packet is blocked and must be queued at the input port.

Delta and Omega switching fabrics have also been proposed as an interconnection network 
between input and output ports. See [Tobagi 90]for a survey of switch architectures. Cisco 12000 
Family switches [Cisco 1998b]use an interconnection network, providing up to 60 Gbps through 
the switching fabric. One current trend in interconnection network design [Keshav 1998]is to 
fragment a variable length IP datagram into fixed length cells, and then tag and switch the fixed 
length cells through the interconnection network. The cells are then reassembled into the original 
datagram at the output port. The fixed length cell and internal tag can considerably simplify and 
speed up the switching of the packet through the interconnection network.

4.6.3 Output Ports

Output port processing, shown in Figure 4.6-4, takes the datagrams that have been stored in the output 
port's memory and transmits them over the outgoing link. The data link protocol processing and line 
termination are the send-side link- and physical layer functionality that interact with the input port on the 
other end of the outgoing link, as discussed above in section 4.6.2.  The queueing and buffer 
management functionality are needed when the switch fabric delivers packets to the output port at a rate 
that exceeds the output link rate; we'll cover output port queueing below. 

 
Figure 4.6-4: Output Port processing

4.6.4.  Where Does Queueing Occur?

Looking at the input and output port functionality and the configurations shown in Figure 4.6-3, it is 
evident that packet queues can form at both the input ports and the output ports.  It is important to 
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consider these queues in a bit more detail, since as these queues grow large, the router's buffer space will 
eventually be exhausted and packet loss will occur.  Recall that in our earlier discussions,  we said 
rather vaguely that packets were lost "within the network" or "dropped at a router."  It is here, at these 
queues within a router, where such packets are dropped and lost. The actual location of packet loss 
(either at the input port queues or the output port queues) will depend on the traffic load, the relative 
speed of the switching fabric and the line speed, as discussed below. 

Suppose that the input line speeds and output line speeds are all identical, and that there are n input ports 
and n output ports.  If the switching fabric speed is at least n times as fast as the input line speed, than no 
queuing can occur at the input ports.   This is because even in the worst case that all n input lines are 
receiving packets, the switch will be able to transfer n packets from input port to output port in the time 
it takes each of the n input ports to (simultaneously) receive a single packet. But what can happen at the 
output ports? Let us suppose still that the switching fabric is at least n times as fast as the line speeds.  In 
the worst case, the packets arriving at each of the n input ports will be  destined to the same output port.   
In this case, in the time it takes to receive (or send) a single packet, n packets will arrive at this output 
port.  Since the output port can only transmit a single packet in a unit of time (the packet transmission 
time), the n arriving packets will have to queue (wait) for transmission over the outgoing link.  n more 
packets can then possibly arrive in the time it takes to transmit just one of the n packets that had 
previously been queued.  And so on. Eventually, buffers can grow large enough to exhaust the memory 
space at the output port, in which case packets are dropped. 

 
Figure 4.6-5: output port queueing

Output port queueing is illustrated in Figure 4.6-5.  At time t, a packet has arrived at each of the 
incoming input ports, each destined for the uppermost outgoing port.  Assuming identical line speeds 
and a switch operating at three times the line speed, one time unit later (i.e., in the time needed to 
receive or send a packet), all three original packets have been transferred to the outgoing port and are 
queued awaiting transmission. In the next time unit, one of these three packets will have been 
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transmitted over the outgoing link.  In our example, two new packets have arrived at the incoming side 
of the switch; one of these packets is destined for this uppermost output port. 

A consequence of output port queueing is that a packet scheduler at the output port must choose one 
packet among those queued for transmission. This selection might be done on a simple basis such as 
first-come-first-served (FCFS) scheduling, or a more sophisticated scheduling discipline such as 
weighted fair queueing (WFQ), which shares the outgoing link "fairly" among the different end-to-end 
connections that have packets queued for transmission.  Packet scheduling plays a crucial role in 
providing quality of service guarantees.  We will cover this topic extensively in section 6.6.  A 
discussion of  output port packet scheduling disciplines used in today's routers is [Cisco 1997a] . 

If the switch fabric is not fast enough (relative to the input line speeds) to transfer all arriving packets 
through the fabric without delay, then packet queueing will also occur at the input ports, as packets must 
join input port queues to wait their turn to be transferred through the switching fabric to the output port.  
To illustrate an important consequence of this queueing, consider a crossbar switching fabric and 
suppose that (i) all  link speeds are identical (ii) that one packet can be transferred from any one input 
port to a given output port in the same amount of time it takes for packet to be received on an input link 
and (iii) packet are moved from a given input queue to their desired output queue in a FCFS manner.  
Multiple packets can be transferred in parallel, as long as their output ports are different.  However, if 
two packets at the front of two input queues are destined to the same output queue, then one of the 
packets be blocked and must wait at the input queue - the switching fabric can only transfer one packet 
to a given output port at a time. 
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Figure 4.6-6: HOL blocking at an input queued switch

Figure 4.6-6 shows an example where two packets (red) at the front of their input queues are destined for 
the same upper right output port.  Suppose that the switch fabric chooses to transfer the packet from the 
front of the upper left queue.  In this case, the red packet in the lower left queue must wait.  But not only 
must this red packet wait, but so too must the green packet that is queued behind that packet in the lower 
left queue, even though there is no contention for the middle right output port (the destination for the 
green packet).  This phenomenon is known as head-of-the-line (HOL) blocking in an input-queued 
switch - a queued packet in an input queue must wait for transfer through the fabric (even though its 
output port is free) due to the blocking of another packet at the head-of-the-line.  [Karol 1987] shows 
that due to HOL blocking,  the input queue will grow to unbounded length (informally, this is equivalent 
to saying that significant packet loss will occur) as soon as packet arrival rate on the input links reaches 
only 58% of their capacity.  A number of solutions to HOL blocking are discussed in [McKeown 
1997b]. 
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4.7 IPv6

In the early 1990's the Internet Engineering Task force began an effort to develop a successor to the IPv4 
protocol.  A prime motivation for this effort was the realization that the 32-bit IP address space was 
beginning to be used up, with new networks and IP nodes being attached to the Internet (and being 
allocated unique IP addresses) at a breathtaking rate.  To respond to this need of a large IP address 
space, a new IP protocol, IPv6, was developed. The designers of IPv6 also took this opportunity to 
tweak and augment other aspects of IPv4, based on the accumulated operational experience with IPv4. 

The point in time when IPv4 addresses would have been completely allocated (and hence no new 
networks could have attached to the Internet) was the subject of considerable debate.  Based on current 
trends in address allocation, the estimates of the two leaders of the IETF's Address Lifetime 
Expectations working group were that addresses would become exhausted in 2008 and 2018 respectively 
[Solensky 1996] .  In 1996, the American Registry for Internet Number (ARIN)  reported that all of the 
IPv4 class A addresses have been assigned, 62% of the class B addresses have been assigned, and 37% 
of the class C addresses have been assigned [ARIN 1996].  While these estimates and numbers 
suggested that a considerable amount of time might be left until the IPv4 address space became 
exhausted, it was realized that considerable time would be needed to deploy a new technology on such 
an extensive scale, and so the "Next Generation IP" (IPng) effort [Bradner 1996], [RFC1752]was begun. 
An excellent on-line source of information about IPv6 is The IP Next Generation Homepage. An 
excellent book is also available on the subject [Huitema 1997]. 

4.7.1 IPv6 Packet Format

The format of the IPv6 packet is shown in Figure 4.7-1. The most important changes introduced in IPv6 
are evident in the packet format: 

●     Expanded addressing capabilities.  IPv6 increases the size of the IP address from 32 to 128 bits.  
This insures that the world won't run out of IP addresses. Now, every grain of sand on the planet 
can be IP-addressable.   In addition, the address space contains new hierarchical structure, 
allocating portions of the enlarged address space to geographical regions [RFC 1884].  In 
addition to unicast and multicast addresses, a new type of address, called an anycast address, has 
also been introduced, which allows a packet addressed to an anycase address to be delivered to 
any one of a group of hosts.  This feature could  be used, for example, to send an HTTP GET to 
the nearest of a number of mirror sites that contain a given document).

●     A streamlined 40 byte header.  As discussed below, a number of IPv4 fields have ben dropped or 
made optional. The resulting 40-byte fixed-length header allows for faster processing of the IP 
packet.  A new encoding of options allows for more flexible options processing.

●     Flow labeling and priority.  IPv6 has an elusive definition of a "flow."  [RFC 1752] and [RFC 
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2460] state this allows "labeling of packets belonging to particular flows for which the sender 
requests special handling, such as a non-default quality of service or real-time service."  For 
example, audio and video transmission might likely be treated as a flow.  On the other hand, the  
more traditional applications, such as file transfer and email might not be treated as flows.  It is 
possible that the traffic carried by a high-priority user (e.g., someone paying for better service for 
their traffic) might also be treated as a flow.  What is clear, however, is that the designers of IPv6 
foresee the eventual need to be able to differentiate among the "flows," even if the exact meaning 
of a flow has not yet been determined.  The IPv6 header also has a 4-bit priority field. This field, 
as the TOS field in IPv4, can be used to give priority to certain packets within a flow, or it can be 
used to give priority to datagrams from certain applications (e.g., ICMP packets) over packets 
from other applications (e.g., network news).

 
Figure 4.7-1: IPv6 packet format

The IPv6 packet format is shown in Figure 4.7-1.  As noted above, a comparison of Figure 4.7-1 with 
Figure 4.4-8 reveals the simpler, more streamlined structure of the IPv6 packet.  The following packet 
fields are defined in IPv6: 

●     version. This four bit field identifies the IP version number.  Not surprisingly, IPv6 carries a 
value of "6" in this field.  Note that putting a "4" in this field does not create a valid IPv4 packet 
(if it did, life would be a lot simpler -- see the discussion below regarding the transition from 
IPv4 to IPv6.

●     priority.  This four bit field is similar in spirit to the ToS field we saw in IP version 4.  [RFC 
2460] states that values 0 through 7 are to be used for priority among traffic that is congestion-
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controlled (i.e., for which the source will back off on detection of congestion), while values 8 
through 15 are used for non-congestion controlled traffic, such as constant bit rate real-time 
traffic.

●     flow label.  As discussed above, this field is used to identify a "flow" of packets.
●     payload length. This 16-bit value is treated as an unsigned integer given the number of bytes in 

the IPv6 packet following the fixed length, 40 byte packet header.
●     next header.  This field identifies the protocol to which the contents (data field) of this packet 

will be delivered (e.g., to TCP or UDP).  The field uses the same values as the Protocol field in 
the IPv4 header.

●     hop limit.  The contents of this field are decremented by one by each router that forward the 
packet.  If the hop limit count reaches zero, the packet is discarded.

●     source and destination address.  An IP v6 address has the following structure:

●     data.  This is the payload portion of the IPv6 packet.  When the packet reaches its destination, 
the payload will be removed from the IP packet and passed on to the protocol specified in the nex 
header field.

The discussion above identified the purpose of the fields that are included in the IPv6 packet. 
Comparing  the IPv6 packet format in Figure 4.7-1 with the IPv4 packet format that we saw earlier in 
Figure 4.4-8, we notice that several fields appearing in the IPv4 packet are no longer present in the IPv6 
packet: 

●     Fragmentation/Reassembly.  IPv6 does not provide for fragmentation and reassembly.  If an 
IPv6 packet received by a router is too large to be forwarded over the outgoing link, the router 
simply drops the packet and sends a "Packet Too Big"  ICMP error message (see below)  back to 
the sender. The sender can then resend the data, using a smaller IP packet size.  Fragmentation 
and reassembly is a time-consuming operating; removing this functionality from the routers and 
placing it squarely in the end systems considerably speeds up  IP forwarding within the network.

●     Checksum. Because the transport layer (e.g, TCP and UDP) and data link (e.g., Ethernet) 
protocols in the Internet layers perform checksumming, the designers of IP probably felt that this 
functionality was sufficiently redundant in the network layer that it could be removed.  Once 
again, fast processing of IP packets was a central concern.  Recall from our discussion of IPv4 in 
section 4.4.1, that since the IPv4 header contains a TTL field (similar to the hop limit field in 
IPv6), the IPv4 header checksum needed to be recomputed at every router.  As with 
fragmentation and reassembly, this too was a costly operation in IPv4.

●     Options. An options field is no longer a part of the standard IP header.  However, it has not gone 
away. Instead, the options field is one of the possible "next headers" pointed to from within the 
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IPv6 header.  That is, just as TCP or UDP protocol headers can be the next header within an IP 
packet, so too can an options field. The removal of the options filed results in a fixed length, 40 
byte IP header.

A New ICMP for IPv6

Recall from our discussion in Section 4.3, that the ICMP protocol is used by IP nodes to report error 
conditions and provide limited information (e.g., the echo reply to a ping message)  to an end system.  A 
new version of ICMP has been defined for IPv6 in [RFC 1885].  In addition to reorganizing the existing 
ICMP type and code definitions, ICMPv6 also added new types and codes required by the new IPv6 
functionality.  These include the "Packet Too Big" type, and an "unrecognized IPv6 options" error code.  
In addition, ICMPv6 subsumes the functionality of the Internet Group Management Protocol (IGMP) 
that we will study in Section 4.8. IGMP, which is used to manage a host's joining and leaving of so-
called multicast groups, was previously a separate protocol from ICMP in IPv4. 

5.7.2 Transitioning from IPv4 to IPv6

Now that we have seen the technical details of IPv6, let us consider a very practical matter: how will the 
public Internet, which is based on IPv4, be transitioned to IPv6?  The problem is that while new IPv6-
capable systems can be made "backwards compatible", i.e., can send, route, and receive IPv4 packets, 
already deployed IPv4-capable systems are not capable of handling IPv6 packets.  Several options are 
possible. 

One option would be to declare a "flag day" - a given time and date when all Internet machines would be 
turned off, be upgraded from IPv4 to IPv6.   The last major technology transition (from using NCP to 
using TCP for reliable transport service) occurred almost 20 years ago.  Even back then [RFC 801], 
when the Internet was tiny and still being administered by a small number of "wizards," it was realized 
the such a flag day was not possible.  A flag day involving hundreds of millions of machines and 
millions of network administrators and users is even more unthinkable today.  [RFC 1993] describes two 
approaches (which can be used either alone or together) for gradually integrating IPv6 hosts and routers 
into an IPv4 world (with the long term goal, of course, of having all IPv4 nodes eventually transition to 
IPv6). 

Probably the most straightforward way to introduce IPv6-capable nodes is a dual stack approach, where 
IPv6 nodes also have a complete IPv4 implementation as well.   Such a node, referred to as IPv6/IPv4 
node in [RFC  1993], the ability to send and receive both IPv4 and IPv6 packets.  When interoperating 
with an IPv4 node, an IPv6/IPv4 node can use IPv4 packets; when interoperating with an IPv6 node, it 
can speak IPv6.  IPv6/IPv4 nodes must have both IPv6 and IPv4 addresses.  They must furthermore be 
able to determine whether another node is IPv6-capable or IPv4-only.  This problem can be solved using 
the DNS (see Chapter 2), which can return an IPv6 address if the node name being resolved is IPv6 
capable, or otherwise return an IPv4 address.  Of course, if the node issuing the DNS request in only 
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IPv4 capable, the DNS returns only an IPv4 address. 

 
Figure 4.7-3: A dual stack approach

In the dual stack approach, if either the sender of the receiver is only IPv4-capable, IPv4 packets must be 
used.  As a result, it is possible that two IPv6-capable nodes can end, in essence, sending IPv4 packets to 
each other.  This is illustrated in Figure 4.7-3.  Suppose node A is IPv6 capable and wants to send an IP  
packet to  node E,  which is also IPv6-capable. Nodes A and B can exchange an IPv6 packet.  However, 
node B must create an IPv4 packet to send to C. Certainly, the data field of the IPv6 packet can be 
copied into the data field of the IPv4 packet and appropriate address mapping can be done.   However, in 
performing the conversion from IPv6 to IPv4, there will be IPv6-specific fields in the IPv6 packet (e.g., 
the flow identifier field)  that have no counterpart in IPv4.  The information is these fields will be lost.   
Thus, even though E and F can exchange IPv6 packets, the arriving IPv4 packets at E from D do not 
contain all of the fields that were in te original IPv6 packet sent from A. . 

An alternative to the dual stack approach, also discussed in [RFC 1993], is known as tunneling.  
Tunneling can solve the problem noted above, allowing, for example, E to receive the IPv6 packet 
originated by A.  The basic idea behind tunneling is the following.  Suppose two IPv6 nodes (e.g, B and 
E in Figure 4.7-3)  want to interoperate using IPv6 packets, but are connected to each other by 
intervening IPv4 routers.  We refer to the  intervening set of IPv4 routers between two IPv6 routers as a 
tunnel, as illustrated in Figure 4.7-4.  With tunneling, the IPv6 node on the sending side of the tunnel (e.
g., B) takes the entire IPv6 packet, and puts it in  the data (payload) field of an IPv4 packet.  This IPv4 
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packet is then addressed to the IPv6 node on the receiving side of the tunnel (e.g., E) and sent to the first 
node in the tunnel (e.g., C).   The intervening IPv4 routers in the tunnel route this IPv4 packet amongst 
themselves, just as they would any other packet, blissfully unaware that the IPv4 packet itself contains a 
complete IPv6 packet.  The IPv6 node on the receiving side of the tunnel eventually receives the IPv4 
packet (it is the destination of the IPv4 packet!), determines that the IPv4 packet contains an IPv6 
packet, extracts the IPv6 packet and then routes the IPv6 packet exactly as it would if it had received the 
IPv6 packet from a directly-connected IPv6 neighbor. 
  
  

 
Figure 4.7-4: Tunneling

We end this section by mentioning that there is currently some doubt about whether IPv6 will make 
significant inroads into the Internet in the near future (2000-2002) or even ever at all [Garber 1999]. 
Indeed, at the time of this writing, a number of North American ISPs have said they don't plan to buy 
IPv6-enabled networking equipment. These ISPs say that there is little customer demand for IPv6's 
capabilities when IPv4, with some patches (such as network address translator boxes), is working well 
enough. On the other hand, there appears to be more interest in IPv6 in Europe and Asia. Thus the fate 
of IPv6 remains an open question. 

One important lesson that we can learn from the IPv6 experience is that it is enormously difficult to 
change network-layer protocols. Since the early 1990s, numerous new network-layer protocols have 
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been trumpeted as the next major revolution for the Internet, but most of these protocols have had minor 
(if any) penetration to date. These protocols include IPv6, multicast protocols (Section 4.8), and resource 
reservation protocols (Section 6.9). Indeed, introducing new protocols into the network layer is like 
replacing the foundation 
of a house - it is difficult to do without tearing the whole house down or at least temporarily relocated 
the house's residents. On the other hand, the Internet has witnessed rapid deployment of new protocols at 
the application layer. The classic example, of course, is HTTP and the Web; other examples include 
audio and video streaming and chat. Introducing new application layer protocols is like adding a new 
layer of paint to a house -- it is relatively easy to do, and if you choose an attractive color, others in the 
neighborhood will copy you. In summary, in the future  we can expect to see changes in the Internet's 
network layer, but these changes will likely occur on a time scale that is much slower than the changes 
that will occur at the application layer. 
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4.8 Multicast Routing

The transport and network layer protocols we have studied so far provide for  the delivery of packets 
from a single source to a single destination.  Protocols  involving just one sender and one receiver are 
often referred to as unicast protocols. 

A number of emerging network applications require the delivery of packets from one or more senders to 
a group of  receivers.  These applications include bulk data transfer (e.g., the transfer of a software 
upgrade from the software developer to users needing the upgrade), streaming continuous media (e.g., 
the transfer of the audio, video and text of a live lecture to a set of distributed lecture participants), 
shared data applications (e.g., a whiteboard or teleconferencing application that is shared among many 
distributed participants), data feeds (e.g., stock quotes), and interactive gaming (e.g., distributed 
interactive virtual environments or  multiplayer games such as Quake). For each of these applications, an 
extremely useful abstraction is the notion of a multicast: the sending of a packet from one sender to 
multiple receivers with a single "transmit" operation. 

In this section we consider the network layer aspects of multicast.  We continue our primary  focus on 
the Internet here, as multicast is much more mature (although it is still undergoing significant develop 
and evolution) in the Internet than in ATM networks.  We will see that as in the unicast case, routing 
algorithms again play a central role in the network layer. We will also see, however, that unlike the 
unicast case, Internet multicast is not a connectionless service --state information for a multicast 
connection must be established and maintained in routers that handle multicast packets sent among hosts 
in a so-called multicast group.  This, in turn, will require a combination of signaling and routing 
protocols in order to set up, maintain, and tear down connection state in the routers. 
  

4.8.1 Introduction: The Internet multicast abstraction and multicast groups

From a networking standpoint, the multicast abstraction --  a single send operation that results in copies 
of the sent data being delivered to many receivers - can be implemented in many ways. One possibility is 
for the sender to use a separate unicast transport connection to each of  the receivers.  An application-
level data unit that is passed to the transport layer is then  duplicated at the sender and transmitted over 
each of the individual connections.  This approach  implements a one-sender-to-many-receivers 
multicast abstraction using an underlying unicast network layer  [Talpade 1997].  It requires no explicit 
multicast support from the network layer to implement the multicast abstraction; multicast is emulated 
using multiple point-to-point unicast connections.  This is shown in the left of Figure 4.8-1, with 
network routers shaded in white to indicate that they are not actively involved in supporting the 
multicast.   Here, the multicast sender uses three separate unicast connections to reach the three 
receivers. 
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Figure 4.8-1: two approaches towards implementing the multicast abstraction

A second  alternative is to provide explicit multicast support at the network layer.  In this latter 
approach, a single datagram is transmitted from the sending host.  This datagram (or a copy of this 
datagram) is then replicated at a network router whenever it must be forwarded on multiple outgoing 
links in order to reach the receivers. The right side of Figure 4.8-1 illustrates this second approach, with 
certain routers shaded in red to indicate that they are actively involved in supporting the multicast.  Here, 
a single datagram is transmitted by the sender.  That datagram is then duplicated by the router within the 
network; one copy is forwarded to the uppermost receiver and another copy is forwarded towards the 
rightmost receivers.  At the rightmost router, the multicast datagram is broadcast over the Ethernet that 
connects the two receivers to the rightmost router.   Clearly, this second approach towards multicast 
makes more efficient use of network bandwidth in that only a single copy of a datagram will ever 
traverse a link.  Other the other hand, considerable network layer support is needed to implement a 
mutlicast-aware network layer. For the remainder of this section we will  focus on a multicast-aware 
network layer, as this approach is implemented in the Internet and  poses a number of interesting 
challenges. 

With multicast communication, we are immediately faced with two problems that are much more 
complicated than in the case of unicast - how to identify the receivers of a multicast datagram and how 
to address a datagram sent to these receivers. 
In the case of unicast communication,  the IP address of the receiver (destination) is carried in each IP 
unicast datagram and identifies the single recipient.   But in the case of multicast, we now have multiple 
receivers. Does it make sense for each multicast datagram to carry the IP addresses of all of the multiple 
recipients?  While this approach might be workable with a small number of recipients, it would not scale 
well to the case of hundreds or thousands of receivers; the amount of addressing information in the 
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datagram would swamp the amount of data actually carried in the datagram's payload field. Explicit 
identification of the receivers by the sender also requires that the sender know the identities and 
addresses of all of the receivers. We will see shortly that there are cases where this requirement might be 
undesirable. 

For these reasons, in the Internet architecture (and the ATM architecture as well),  a multicast datagram  
is addressed using address indirection. That is, a single "identifier" is used for the group of receivers, 
and a copy of the datagram that is addressed to the group using this single "identifier" is delivered  to 
all of the multicast receivers associated with that group.  In the  Internet, the single "identifier" that 
represents a group of receivers is a Class D multicast address, as we saw earlier in section 4.4.  The 
group of receivers associated with a class D address is referred to as a multicast group. The multicast 
group abstraction is illustrated in Figure 4.8-2.   Here, four hosts (shown in red) are associated with the 
multicast group address of 226.17.30.197 and will receive all datagrams addressed to that multicast 
address. The difficulty that we must still address is the fact that each host has a unique IP unicast address 
that is completely independent of the address of the multicast group in which it is participating. 

 
Figure 4.8-2: the multicast group: a datagram addressed to the group 

is delivered to all members of the multicast group

While the multicast group abstraction is simple, it raises a host (pun intended) of questions.  How does a 
group get started and how does it terminate?  How is the group address chosen? How are new hosts 
added to the group (either as senders or receivers)? Can anyone join a group (and send to, or receive 
from, that group) or is group membership restricted and if so, by whom? Do group members know the 
identities of the other group members as part of the network layer protocol?  How do the network routers 
interoperate with each other to deliver a multicast datagram to all group members?  For the Internet, the 
answers to all of these questions involve the Internet Group Management Protocol [RFC 2236].  So, let 
us next consider the IGMP protocol and then return to these broader questions. 
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4.8.2 The IGMP Protocol

The Internet Group Management protocol, IGMP version 2 [RFC 2236],  operates between a host 
and its directly attached router (informally, think of the directly-attached router as the "first-hop" router 
that a host would see on a path to any other host outside its own local network, or the "last-hop" router  
on any path to that host), as shown in Figure 4.8-3.  Figure 4.8-3 shows three first-hop multicast routers, 
each connected to its attached hosts via  one outgoing local interface.  This local interface is attached to 
a LAN  in this example, and while each LAN has multiple attached hosts, at most a few of these hosts 
will typically  belong to a given multicast group at any given time. 

IGMP  provides the means for a host to inform its attached router that an application running on the host 
wants to join a specific multicast group.  Given that the scope of IGMP interaction is limited to a host 
and its attached router, another protocol is clearly required to coordinate the multicast routers (including 
the attached routers) throughout the Internet, so that multicast datagrams are routed to their final 
destinations. This latter functionality is accomplished by the network layer multicast routing 
algorithms such as  PIM, DVMRP, MOSFP and BGP.  We will study multicast routing algorithms in 
sections 4.8.3 and  4.8.4.  Network layer multicast in the Internet thus consists of two complementary 
components: IGMP and  multicast routing protocols. 

 
Figure 4.8-3: the two components of network layer multicast: IGMP 

and multicast routing protocols

Although IGMP is referred to as a "group membership protocol," the term is a bit misleading since 
IGMP operates locally, between a host and an attached router. Despite its name, IGMP  is not a protocol 
that operates among all the hosts that have joined a multicast group, hosts that may be spread around the 
world.  Indeed, there is no network-layer multicast group membership protocols that operates among all 
the Internet hosts in a group. There is no protocol, for example, that  allows a host to determine the 
identities of all of the other hosts, network-wide, that have joined the multicast group.  (See the 
homework problems for a further exploration of the consequences of this design choice). 
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IGMP Message types Sent by Purpose

membership query: general router query multicast groups joined by attached hosts

membership query: specific router
query if specific multicast group joined by attached 
hosts

membership report host
report host wants to join or is joined to given multicast 
group

leave group host report leaving given multicast group 

Table 4.8-1: IGMP v2 Message types 

 
Figure 4.8-4: IGMP member query and membership report

IGMP version 2 [Fenner 1997] has only three message types, as shown in Table 4.8-1.  A general 
membership_query messageis sent by a router to all hosts on an attached interface (e.g., to all hosts 
on a local area network) to determine the set of all multicast groups that have been joined by the hosts 
on that interface. A router can also determine if a specific multicast group has been joined by hosts on an 
attached interface using a specific membership_query. The specific query includes the multicast 
address of the group being queried in the multicast group address field of the  IGMP 
membership_query message, as shown in Figure 4.8-5. 

Hosts respond to a membership_query message with an IGMP membership_report message, 
as illustrated in Figure 4.8-4.  Membership_report messages can also be generated by a host when 
an application first joins a multicast group without waiting for a membership_query message from 
the router . Membership_report messages are received by the router, as well as all hosts on the 
attached interface (e.g., in the case of a LAN).  Each membership_report contains the multicast 
address of a single group that the responding host has joined. Note that an attached router doesn't really 
care which hosts have joined a given multicast group or even how many hosts on the same LAN have 
joined the same group. (In either case, the router's work is the same - it must run a multicast routing 
protocol together with other routers to ensure that it receives the multicast datagrams for the appropriate 
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multicast groups.) Since a router really only cares about whether one or more of  its attached hosts 
belong to a given multicast group, it would ideally like to hear from only one of the attached hosts that 
belongs to each group (why waste the effort to receive identical responses from multiple hosts?). IGMP 
thus provides an explicit  mechanism aimed at decreasing the number of membership_report 
messages generated  when  multiple attached hosts belong to the same multicast group. 

Specifically, each membership_query message sent by a router also includes a "maximum response 
time" value field, as shown in Figure 4.8-5.  After receiving a membership_query message and 
before sending a membership_report message for a given multicast group, a host waits a random 
amount of time between zero and the maximum response time value. If the host observes a 
membership_report message from some other  attached host for that given multicast group, it 
suppresses (discards) its own pending membership_report message, since the host now knows that 
the attached router already knows that one or more hosts are joined to that multicast group. This form of 
feedback suppression is thus a performance optimization -- it avoids the transmission of unnecessary 
membership_report messages.  Similar feedback suppression mechanisms have been used in a 
number of Internet protocols, including reliable multicast transport protocols [Floyd 1997]. 

The final type of IGMP message is the leave_group message.  Interestingly, this message is 
optional!   But if it is optional, how does a router detect that there are no longer any  hosts on an attached 
interface that are joined to a given multicast group?  The answer to this question lies in the use of the 
IGMP membership_query message.  The router infers that no hosts are joined to a given multicast 
group when no host responds to a membership_query message with the given group address.  This 
is an example of what is sometimes called soft state in an Internet protocol. In a soft state protocol, the 
state (in this case of IGMP, the fact that there are hosts joined to a given multicast group) is removed via 
a timeout event (in this case, via a periodic membership_query message from the router) if it is not 
explicitly refreshed (in this case, by a membership_report message from an attached host).  It has 
been argued that soft-state protocols result in simpler control than hard-state protocols, which not only 
require state to be explicitly added and removed, but also require mechanisms to recover from situation 
where the entity responsible for removing state has terminated prematurely or failed [Sharma 1997].  An 
excellent discussion of soft state can be found in [Raman 1999]. 

The IGMP message format is summarized in Figure 4.8-5.  Like ICMP, IGMP messages are carried 
(encapsulated) within an IP datagram, with an IP protocol number of 2. 

 
Figure 4.8-5: IGMP message format
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Having examined the protocol for joining and leaving multicast groups we are now in a better position to 
reflect on the current Internet multicast service model, which is based on the work of Steve Deering 
[RFC 1112, Deering 1991].  In this multicast service model, any host can "join" a multicast group at the 
network layer.  A host simply issues a membership_report IGMP message to its attached router. 
That router, working in concert with other Internet routers, will soon begin delivering multicast 
datagrams to the host.  Joining a multicast group is thus receiver-driven.  A sender need not be 
concerned with explicitly adding receivers to the multicast group (as is the case with multicast in ATM) 
but neither can it control who joins the group and therefore receives datagrams sent to that group. 
Indeed, recall that it is not possible at the network layer to even know which hosts, network-wide, have 
joined a multicast group. Similarly, there is no control over who sends to the multicast group.  
Datagrams sent by different hosts can be arbitrarily interleaved at the various receivers (with different 
interleaving possible at different receivers).  A malicious sender can inject datagrams into the multicast 
group datagram flow.  Even with benign senders, since there is no network layer coordination of the use 
of multicast addresses, it is possible that two different  multicast groups will choose to use the same 
multicast address.  From a multicast application viewpoint, this will result in  interleaved extraneous 
multicast traffic. 

These problems may seem to be insurmountable drawbacks for developing multicast applications.  All is 
not lost, however.  Although the network layer does not provide for filtering, ordering, or privacy of 
multicast datagrams, these mechanisms can all be implemented at the application layer.  There is also on-
going work aimed at adding some of this functionality into the network layer [Cain 1999]. In many 
ways, the current Internet multicast service model reflects the same philosophy as the  Internet unicast 
service  model -- an extremely simple network layer with additional functionality being provided in the 
upper layer protocols in the hosts of the "edges" of the network. This philosophy has been 
unquestionably successful for the unicast case; whether the minimalist network layer philosophy will be 
equally successful for the multicast service model still remains an open question. An interesting 
discussion of an alternate multicast service model is [Holbrook 1999]. 
  

4.8.3 Multicast Routing: the general case

In the previous section we have seen how the IGMP protocol operates at the "edge" of the network 
between a router and its attached hosts, allowing a router to determine what multicast group traffic it 
needs to receive for forwarding to its attached hosts. We can now focus our attention on just the 
multicast routers: how should they route packets amongst themselves in order to insure that each router 
receives the multicast group traffic that it needs. 
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Figure 4.8-6: Multicast hosts, their attached routers, and other  routers

Figure 4.8-6 illustrates the setting for the multicast routing problem.  Let us consider a single multicast 
group and assume that any router that has an attached host that has joined this group may either send or 
receive traffic addressed this group [footnote 1].   In Figure 4.8-6, hosts joined to the multicast group are 
represented by shaded red squares; their immediately attached router is also shaded in red. As shown in 
Figure 4.8-6, among the population of multicast routers, only a subset of these routers (those with 
attached hosts that are joined to the multicast group) actually need to receive the multicast traffic. In 
Figure 4.8-6 only routers A, B, E and F need to receive the multicast traffic.  Since none of the attached 
hosts to router D are joined to the multicast group and since router C has no attached hosts, neither C nor 
D need to receive the multicast group traffic. 

The goal of multicast routing then is to find a tree of links that connects all of the routers that have 
attached hosts belonging to the multicast group.   Multicast packets will then be routed along this tree 
from the sender to all of the hosts belonging to the multicast tree. Of course, the tree may contain routers 
that do not have attached hosts belonging to the multicast group (e.g., in Figure 4.8-6, it is impossible to 
connect routers A, B, E, and F in a tree without involving either routers C and/or D). 

In practice, two approaches have been adopted for determining the multicast routing tree.  The two 
approaches differ  according to whether a single tree is used to distribute the traffic for all senders in the 
group, or whether a source-specific routing tree is constructed for each individual sender: 

●     Group-shared tree.  In the group-shared tree approach, only a single routing tree is constructed 
for the entire multicast group. For example, the single multicast tree shown in red in the left of 
Figure 4.8-7, connects routers A, B, C, E, and F. (Following our conventions from Figure 4.8-6, 
router C is not shaded in red.  Although it participates in the multicast tree, it has no attached 
hosts that are members of the multicast group).  Multicast packets will flow only over those links 
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shown in red. Note that the links are bi-directional, since packets can flow in either direction on a 
link.

●     Source-based trees.  In a source-based approach, an individual routing tree is constructed for 
each sender in the multicast group.  In a multicast group with N hosts, N different routing trees 
will be constructed for that single multicast group.  Packets will be routed to multicast group 
members in a source-specific manner. In the right of Figure 4.8-7,  two source-specific multicast 
trees are shown, one rooted at A and another rooted at B.  Note that not only are there different 
links than in the group-shared tree case, (e.g., the link from BC is used in the source-specific tree 
routed at B, but not in the group-shared tree in the left of Figure 4.8-7), but that some links may 
also be used only in a single direction.

 
Figure 4.8-7: A single, shared tree (left), and two source-based trees (right)

Multicast Routing using a Group-Shared Tree

Let us first consider the case where all packets sent to a multicast group are to be routed along the same 
singe multicast tree, regardless of the sender.  In this case, the multicast routing problem appears quite 
simple: find a tree within the network that connects all routers having an attached host belonging to that 
multicast group.  In Figure 4.8-7 (left), the tree composed of red links is one such tree.  Note that the tree 
contains routers that have attached hosts belonging to the multicast group (i.e., routers A, B, E and F) as 
well as routers that have no attached hosts belonging to the multicast group. Ideally, one might also want 
the tree to have minimal "cost."  If we assign a "cost" to each link (as we did for unicast routing in 
section 4.2.2) then an optimal multicast routing tree is one having the smallest sum of the tree link 
costs.  For the link costs given in Figure 4.8-8, the optimum multicast tree (with a cost of 7)  is shown in 
red. 
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Figure 4.8-8: A minimum cost multicast tree

The problem of finding a minimum cost tree is known as the Steiner Tree problem [Hakimi 1971].  
Solving this problem has been shown to be NP-complete [Garey 1978], but  the approximation 
algorithm in [Kou 1981] has been proven to be within a constant of the optimal solution.  Other studies 
have shown that, in general, approximation algorithms for the Steiner tree problem do quite well in 
practice [Wall 1982, Waxman 1988, Wei 1993]. 

Even though good heuristics exist for the Steiner tree problem, it is interesting to note that none of the 
existing Internet multicast routing algorithms have been based on this approach.  Why? One  reason is 
that information is needed about all links in the network. Another reason is that in order for a minimum 
cost tree to be maintained, the algorithm needs to be re-run whenever link costs change.  Finally, we will 
see that other considerations, such as the ability to leverage the routing tables that have already been 
computed for unicast routing, play an important role in judging the suitability of a multicast routing 
algorithm.  In the end, performance (and optimality) are but one of many concerns. 

An alternate approach towards determining the group-shared multicast tree, one that is used in practice 
by several Internet multicast routing algorithms, is based on the notion of defining a center node (also 
known as a rendezvous point or a core)  in the single shared multicast routing tree. In the center-based 
approach, a center node is first identified for the multicast group. Routers with attached hosts belonging 
to the multicast group then unicast so-called "join" messages addressed to the center node.  A join 
message is forwarded using unicast routing towards the center until it either arrives at a router that 
already belongs to the multicast tree or arrives at the center.  In either case, the path that the join 
message has followed defines the branch of the routing tree between the edge router that initiated the 
join message and the center.  One can think of this new path as being "grafted" onto the existing 
multicast tree for the group. 
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Figure 4.8-9: Constructing a center-based tree

Figure 4.8-9 illustrates the construction of a center-based multicast routing tree.  Suppose that router E is 
selected as the center of the tree.  Node F first joins the multicast group and forwards a join message to 
E.  The single link EF becomes the initial multicast tree.  Node B then joins the multicast tree by sending 
its join message to E.  Suppose that the unicast path route to E from B is via D.  In this case, the join 
message results in the path BDE being grafted onto the multicast tree.  Finally, node A joins the 
multicast group by forwarding its join message towards E.  Let us assume that  A's unicast path to E is 
through B. Since B has already joined the multicast tree, the arrival of A's join message at B will result 
in the AB link being immediately grafted on to the multicast tree. 

A critical question for center-based tree multicast routing is the process used to select the center.  Center 
selection algorithms are discussed in  [Wall 1982, Thaler97, Estrin97]. [Wall 982] shows that centers 
can be chosen so that the resulting tree is within a constant factor of optimum (the solution to the Steiner 
tree problem). 
  

Multicast Routing using a Source-Based Tree

While the multicast routing algorithms we have studied above construct a single, shared routing tree that 
is used to route packets from all senders, the second broad class of multicast routing algorithms 
construct a  multicast routing tree for each source in the multicast group. 

We have already studied an algorithm (Dijkstra's link-state routing algorithm,  in section 4.2.1) that 
computes the  unicast paths that are individually the least cost paths from the source to all destinations. 
The union of these paths might be thought of as forming a least unicast-cost path tree (or a shortest 
unicast path tree, if all link costs are identical). Figure 4.8-10 shows the construction of the least cost 
path tree rooted at A.  By comparing the tree in Figure 4.8-10 with that of Figure 4.8-8, it is evident that 
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the least cost path tree is not the same as the minimum overall cost tree computed as the solution to the 
Steiner tree problem.  The reason for this difference is that the goals of these two algortihms are 
different: least unicast-cost path tree minimizes the cost from the source to each of the destinations (that 
is, there is no other tree that has a shorter distance path from the source to any of the destinations), while 
the Steiner tree minimizes the sum of the link costs in the tree. You might also want to convince yourself 
that the least unicast-cost path tree often differs from one source to another (e.g., the source tree rooted 
at A is different from the source tree rooted at E in Figure 4.8-10). 

 
Figure 4.8-10: Construction of a least cost path routing tree

The least cost path multicast routing algorithm is a link-state algorithm. It requires that each router know 
the state of each link in the network in order to be able to compute the least cost path tree from the 
source to all destinations.  A simpler multicast routing algorithm, one which requires much less link 
state information than the least cost path routing algorithm, is the reverse path forwarding (RPF) 
algorithm. 

The idea behind reverse path forwarding is simple, yet elegant.  When a router receives a multicast 
packet with a given source address, it transmits the packet on all of its outgoing links (except the one on 
which it was received) only if the packet arrived on the link that is on its own shortest path back to the 
sender. Otherwise the router simply discards the incoming packet without forwarding it on any of its 
outgoing links. Such a packet can be dropped because the router knows it either will receive, or has 
already received, a copy of this packet on the link that is on its own shortest path back to the sender. 
(You might want to convince yourself that this will, in fact, happen). Note that reverse path forwarding 
does not require that a router know the complete shortest path from itself to the source; it need only 
know the next hop on its unicast shortest path to the sender. 

 Figure 4.8-11 illustrates RPF.  Suppose that the links in red represent the least cost paths from the 
receivers to the source (A).  Router A initially multicasts a source-S packet to routers C and B.  Router B 
will forward the source-S packet it has received from A (since A is on its least cost path to A) to both C 
and D.  B will ignore (drop, without forwarding) any source-S packets it receives from any other routers 
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(e.g., from routers C or D). 

Let us now consider router C, which will  receive a source-S packet directly from A as well as from B.  
Since B is not on C's own shortest path back to A, C will ignore (drop) any source-S packets it receives 
from B.  On the other hand, when C receives an source-S packet directly from A it will forward the 
packet to routers B, E, and F. 

 
Figure 4.8-11: Reverse Path Forwarding

RPF is a nifty idea. But considers what happens at router D in Figure 4.8-11.  It will forward packets to 
router G, even though router G has no attached hosts that are joined to the multicast group.  While this is 
not so bad for this case where D has only a single downstream receiver, G, imagine what would happen 
if there were thousands of routers downstream from D! Each of these thousands of routers would receive 
unwanted multicast packets. (This scenario is not as far-fetched as it might seem.  The initial MBone 
[Casner 1992, Macedonia 1994], the first  global multicast network suffered from precisely from this 
problem at first!) 

The solution to the problem of receiving unwanted multicast packets under RPF is known as pruning.  
A multicast router that receives multicast packets and has no attached hosts joined to that group will 
send a prune message to its upstream router.  If a router  receives prune messages from each of its 
downstream routers, then it can forward a prune message upstream.  Pruning is illustrated in Figure 4-
8.12. 

While pruning is conceptually straightforward, two subtle issues arise.  First, pruning requires that a 
router know which routers downstream are dependent on it for receiving their multicast packets..  This 
requires additional information beyond that required for RPF alone.  A second complication is more 
fundamental: if a router sends a prune message upstream, then what should happen if a router later needs 
to join that multicast group?  Recall that under RPF, multicast packets are "pushed" down the RPF tree 
to all routers.  If a prune message removes a branch from that tree, then some mechanism is needed to 
restore that branch.  One possibility is to add a graft message that allows a router to "unprune" a branch.  
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Another option is to allow pruned branches to time-out and be added again to the multicast RPF tree; a 
router can then re-prune the added brach if the multicast traffic is still not wanted. 

 
Figure 4.8-12: Pruning a RPF tree.

4.8.4 Multicast Routing in the Internet

Having now studied multicast routing algorithms in the abstract, let's now consider how these algorithms 
are put into practice in today's Internet by examining the three currently-standardized Internet multicast 
routing protocls: DVMRP, MOSPF, and PIM. 

DVMRP 

The first multicast routing protocol used in the Internet and the most widely supported  multicast routing 
algorithm  [IP Multicast Initiative 1998]  is the distance vector multicast routing protocol (DVMRP) 
[RFC1075].  DVMRP implements source-based trees with reverse path forwarding, pruning, and 
grafting.  DVMRP uses a distance vector algorithm (see section 4.2) that allows each router to compute 
the outgoing link (next hop) that is on its shortest path back to each possible source.  This information is 
then used in the RPF algorithm, as discussed above.  A public copy of DVMRP software is available at 
[mrouted 1996]. 

In addition to computing next hop information, DVMRP also computes a list of dependent downstream 
routers for pruning purposes.  When a router has received a prune message from all of its dependent 
downstream routers for a given group, it will propagate a prune message upstream to the router from 
which it receives its multicast traffic for that group. A DVMRP prune message contains a prune 
lifetime (with a default value of two hours) that indicates how long a pruned branch will remain pruned 
before being automatically restored.  DVMRP graft messages are sent by a router to its upstream 
neighbor to force a previously-pruned branch to be  added back on to the multicast tree. 

file:///D|/Downloads/Livros/computação/Computer%20Ne...wn%20Approach%20Featuring%20the%20Internet/mcast.htm (14 of 20)20/11/2004 15:52:28



Multicast Routing

Before examining other multicast routing algorithms, let us consider how multicast routing can  be 
deployed  in the Internet.  The crux of the problem is that only a small fraction of the Internet routers are 
multicast capable. If one router is multicast capable but all of its immediate neighbors are not, is this 
lone island of multicast routing lost in a sea of unicast routers?  Most decidedly not!  Tunneling, a 
technique we examined earlier in the context of IP version 6 (section 4.7), can be used to create a virtual 
network of multicast capabale routers on top of a physical network that contains a mix of unicast and 
multicast routers.  This is the approach taken in the Internet MBone. 

 
Figure 4.8-13: Multicast tunnels

Multicast tunnels are illustrated in Figure 4.8-13.  Suppose that  multicast router A wants to forward a 
multicast datagram to multicast router B. Suppose that A and B are not physical connected to each other 
and that the intervening routers between A and B are not multicast capable. To implement tunneling, 
router A takes the multicast datagram and  "encapsulates" it  [RFC 2003]t inside a standard unicast 
datagram.  That is, the entire multicast datagram (including source and multicast address fields) is 
carried as the payload of  an IP unicast datagram - a complete multicast IP dagram inside of a unicast IP 
datagram!  The unicast datagram is then addressed to the unicast address of router B and forwarded 
towards B by router A.  The unicast routers between A and B dutifully forward the unicast packet to B, 
blissfully unaware that the unicast datagram itself contains a multicast datagram.  When the unicast 
datagram arrives at B, B then extracts the multicast datagram.  B may then forward the multicast 
datagram on to one of its attached hosts, forward the packet to a directly attached neighboring router that 
is multicast capable, or forward the multicast datagram to another  logical multicast neighbor via another 
tunnel. 

MOSPF 

The Multicast Open Shortest Path First protocol (MOSPF) [RFC 1584] operates in an autonomous 
system (AS) that uses the OSPF protocol (see section 4.4) for unicast routing.  MOSPF extends OSPF by 
having routers add their multicast group membership to the link state advertisements that are broadcast 
by routers as part of the OSPF protocol.  With this extension, all routers have not only complete 
topology information, but also know which edge routers have attached hosts belonging to various 
multicast groups. With this information, the routers within the AS can build source-specific, pre-pruned, 
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shortest path trees for each multicast group. 

CBT: Core-Based Trees 

The core-based tree (CBT) multicast routing protocol [RFC 2201, RFC2189]  builds a bi-directional, 
group-shared tree with a single "core" (center).  A CBT edge router unicasts sends a JOIN_REQUEST 
message towards the tree core.  The core, or the first router that receives this JOIN_REQUEST and itself 
has already successfully joined the tree, will respond with a JOIN_ACK message to the edge router.  
Once a multicast routing tree has been built, it is maintained by having a downstream router send 
keepalive messages (ECHO_REQUEST) messages to its immediate upstream router.  The immediate 
upstream router responds with an ECHO_REPLY message.  These messages are exchanged at a time 
granularity of minutes. If a downstream router receives no reply to its ECHO_REQUEST, it will retry 
sending the ECHO_REQUEST for a small number of times.  If no ECHO_REPLY is received, the router 
will dissolve the downstream tree by sending a  FLUSH_TREE message downstream. . 

PIM: Protocol Independent Multicast 

The Protocol Independent Multicast  (PIM) routing protocol  [Deering 1996, RFC 2362, Estrin 1998b] 
explicitly envisions two different multicast distribution scenarios.  In so-called dense mode, multicast 
group members are densely located, that is,  many or most of  the routers in the area need to be involved 
in routing multicast datagrams.  In sparse mode, the number of routers with attached group members is 
small with respect to the total number of routers; group members are widely dispersed. 

The PIM designers noted several consequences of the sparse-dense dichotomy.  In dense mode, since 
most routers will be involved in multicast (e.g., have attached group members), it is reasonable to 
assume that each and every router should be involved in multicast.  Thus, an approach like RPF, which 
floods datagrams to every multicast router (unless a router explicitly prunes itself)  is well-suited to this 
scenario. On the other hand, in sparse mode, the routers that need to be involved in multicast forwarding 
are few and far between.  In this case, a data-driven multicast technique like RPF, which forces a router 
to constantly do work (prune) simply to avoid receiving multicast traffic is much less satisfactory.  In 
sparse mode, the default assumption should be that a router is not involved in a multicast distribution; 
the router should not have to do any work unless it wants to join a multicast group.  This argues for a 
center-based approach, where routers send explicit join messages, but are otherwise uninvolved in 
multicast forwarding.  One can think of the sparse mode approach as being receiver-driven (i.e., nothing 
happens until a receiver explicitly joins a group) versus the dense mode approach as being data-driven (i.
e., that datagrams are multicast everywhere, unless explicitly pruned). 

PIM accommodates this dense versus sparse dichotomy by offering two explicit modes of operation: 
dense mode and sparse mode.  PIM Dense Mode is a flood-and-prune reverse path forwarding technique 
similar in spirit to DVMRP.  Recall that PIM is "protocol independent," i.e., independent of the 
underlying unicast routing protocol.  A better description might be that it can interoperate with any 
underlying unicast routing protocol.  Because PIM makes no assumptions about the underlying routing 
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protocol, its referse path forwarding algorithm is slightly simpler, although slightly less efficient than 
DVMRP. 

PIM Sparse Mode is a center-based approach. PIM routers send JOIN messages towards a rendezvous 
point (center) to join the tree.  As with CBT, intermediate routers set up multicast state and forward the 
JOIN message towards the rendezvous point.  Unlike CBT, there is no acknowledgment generated in 
response to a JOIN message. JOIN message are periodically sent upstream to refresh/maintain the PIM 
routing tree. One novel feature of PIM is the ability to switch from a group-shared tree to a source-
specific tree after joining the rendezvous point.  A source-specific tree may be preferred due to the 
decreased traffic concentration that occurs when multiple source-specific trees are used (see homework 
problems). 

In PIM Sparse Mode the router that receives a datagram to send from one of its attached hosts will  
unicast the datagram to the rendezvous point.  The rendezvous point then multicasts the datagram via the 
group-shared tree. A sender is notified by the RP that it must stop sending to the RP whenever there are 
no routers joined to the tree (i.e., no one is listening!). 

PIM is implemented in numerous router platforms [IP Multicast Initiative 1998] and has recently been 
deployed in UUnet as part of their streaming multimedia delivery effort [LaPolla 1997]. 

Inter-Autonomous System Multicast Routing: BGMP 

In our discussion above, we have implicitly assumed that all routers are running the same multicast 
routing protocol.  As we saw with unicasting, this will typically be the case within a single autonomous 
system (AS).  However, different AS's may choose to run different multicast routing protocols.  One AS 
might choose to run PIM within autonomous system, while another may choose to run MOSPF.  
Interoperability rules have been defined for all of the major Internet multicast routing protocols. (This is 
a particularly messy issue due to the very different approaches taken to multicast routing by sparse and 
dense mode protocols.)  What is still missing, however, is an inter-AS multicast routing protocol to route 
multicast datagrams among different AS's. 

Today, DVMRP is the defacto inter-AS multicast routing protocol.  However, as a dense mode protocol, 
it is not particularly well-suited to the rather sparse set of routers participating in today's Internet 
MBone. The development of an inter-AS multicast protocol is an active area of research and 
development, being carried out by the idmr working group of the IETF [IDRM 1998]. BGMP, the 
Border Gateway Multicast Protocol is an interdomain multicast protocol being developed in idmr. It  
takes a group-shared tree approach towards routing. An interesting problem that arises in the 
interdomain case is the location of the tree's center. In the intra-AS case, all routers are within the same 
AS.  In the inter-AS case, however,  a center could conceivably be chosen in an autonomous system that 
does not even contain any hosts in the multicast group; such third party dependency would not only 
"unfairly" burden the autonomous system (which, after all, has no interest in the multicast group), but 
also may unnecessarily subject the multicast group to performance dependencies on ASs outside of 
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those participating in the group.  BGMP is described in [Kumar 1998]. 
  

Having now considered the multicast routing problem and a number of multicast protocols embodying 
the group-shared tree and source-based tree approaches, let us conclude by enumerating some of the 
factors involved in evaluating a multicast protocol: 

●     Scalability.  What is the amount of state required in the routers by a multicast routing protocol?  
How does the amount of state change as the number of groups, or number of senders in a group, 
change?

●     Reliance on underlying unicast routing.  To what extent does a multicast protocol rely on 
information maintained by an underlying unicast routing protocol.  We have seen solutions that 
range from reliance on one specific underlying unicast routing protocol (MOSPF), to a solution 
that is completely independent of the underlying unicast routing (PIM) to a solution that 
implements much of the same distance vector functionality that we saw earlier for the unicast 
case (DVMRP).

●     Excess (un-needed) traffic received.  We have seen solutions where a router receives data only 
if it has an attached host in the multicast group (MOSPF, PIM-Sparse Mode) to solutions where 
the default is for a router to receive all traffic for all multicast groups (DVMRP, PIM Dense 
Mode).

●     Traffic concentration.  The group-shared tree approach tends to concentrate traffic on a smaller 
number of links (those in the single tree), whereas source-specific trees tend to distribute 
multicast traffic more evenly.

●     Optimality of forwarding paths.  We have seen that determining the minimum cost multicast 
tree (i.e., solving the Steiner problem) is difficult and that this approach has not been adopted in 
practice.  Instead, heuristic approaches, based on either using the tree of shortest paths, or 
selecting a center router from which to "grow" the routing multicast tree, have been adopted in 
practice.
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Footnotes

[footnote 1]  For simplicity, we will assume throughout this section that the hosts sending to the 
multicast group are all members of the group (e.g., have used IGMP to join the multicast group).  We 
have seen in section 4.6.1, however, that in the Internet multicast model, any host can send to a multicast 
group (i.e., a host need not have explicitly joined the group in order to send to the group). 
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4.9 Summary

In this chapter we began our journey into the network core. We learned that the network layer  requires 
the 
coordination of each and every host and router in the network. Because of this, network layer protocols 
are 
among the most challenging in the protocol stack. 

We learned that one of the biggest challenges in the network layer is routing packets through a network 
of millions of hosts and routers. We saw that this scaling problem is solved by partitioning large 
networks into independent administrative domains, which are called autonomous systems (ASs) in the 
jargon of computer networking. Each AS independently routes its packets through the AS, just as each 
country independently routes its postal mail through the country. In the Internet, the two most popular 
protocols for intra-AS routing are currently RIP and OSPF. To route packets among ASs, an inter-AS 
routing protocol is needed. The dominant inter-AS protocol today is BGP4. 

Performing routing on two levels -- one level for within each of the ASs and another level for among the 
ASs -- is referred to as hierarchical routing. We saw that the scaling problem of routing packets through 
millions of hosts and routers is largely solved by a hierarchical organization of the network. This is a 
general principle we should keep in mind when designing protocols, particularly for network-layer 
protocols: scaling problems can often be solved by hierarchical organizations. It is interesting to note 
that this principle has been applied throughout the ages to many of other disciplines besides computer 
networking, including corporate, government, religious and military organizations. 

In this chapter we also learned about a second scaling issue: For large computer networks, a router may 
need to process millions of flows of packets between different source-destination pairs at the same time. 
To permit a router to process such a large number of flows, network designers have learned over the 
years that the router's tasks should be as simple as possible. Many measures can be taken to make the 
router's job easier, including using a datagram network layer rather than virtual-circuit network layer, 
using a streamlined and fixed-sized header (as in IPv6) , eliminating fragmentation (also done in IPv6) 
and providing the one and only best-effort service. Perhaps the most important trick here is to not keep 
track of individual flows, but instead base routing decisions solely on a hierachical-structured 
destination addresses in the packets. It is interesting to note that the postal service has been using this 
same trick for many years.  

In this chapter we also looked at the underlying principles of routing algorithms. We learned that 
designers of routing algorithms abstract the computer network to a graph with nodes and links. With this 
abstraction, we can exploit the rich theory of shortest-path routing in graphs, which has been developed 
over the past 40 years in the operations research and algorithms communities. We saw that are two 
broad approaches, a centralized approach in which each node obtains a complete map of the network and 
applies independently a shortest-path routing algorithm; and a decentralized approach, in which 
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individual nodes only have a partial picture of the entire network, yet the nodes work together to deliver 
packets along the shortest routes. Routing algorithms in computer networks had been an active research 
area for many years, and will undoubtedly remain so. 

At the end of this chapter we examined two advanced subjects, reflecting current trends in computer 
networking and the Internet. The first subject is IPv6, which provides a streamlined network layer and 
resolves the IPv4 address space problem. The second subject is multicast routing, which can potentially 
save tremendous amounts of bandwidth, router and server resources in a computer networking. It will be 
interesting to see how the deployment of IPv6 and multicast routing protocols plays out over the next 
decade of computer networking. 

Having competed our study of the network layer, our journey now takes us one further step down the 
protocol stack, namely, to the link layer. Like the network layer, the link layer is also part of the network 
core. But we will see in the next chapter that the link layer has the much more localized task of moving 
packets between nodes on the same link or LAN. Although this task may appear on the surface trivial 
compared to that of network layer's tasks, we will see that the link layer involves a lot of important and 
fascinating issues that can keep us busy for a long time. 

Copyright 1996-2000. Keith W. Ross and James F. Kurose . All Rights Reserved. 
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Homework Problems and Discussion Questions

Chapter 4

Review Questions

Sections 4.1-4.4 

1) What are the two main functions of a datagram-based network layer? What additional functions does 
a VC-based network layer have? 

2) List and describe the ATM network service models. 

3) Compare and contrast link-state and distance-vector routing algorithms. 

4) Discuss how a hierarchical organization of the Internet has helped to scale to millions of users. 

5) It is necessary that every autonomous system use the same intra-autonomous routing algorithm? Why 
or why not? 

Section 4.5 

6) What is the decimal equivalent of the IP address 223.1.3.27 ? 

7) Consider a LAN to which ten host interfaces and three router interfaces are attached.  Suppose all 
three LANs use class C addresses. The IP addresses for the 13 devices will be identical in which of the 
first 32 bits? 

8) Consider a router with three interfaces. Suppose all three interfaces use class C addresses. Will the IP 
addresses of the three interfacess necessarily have the same first 8 bits? 

9) Suppose there are three routers between source and destination hosts. Ignoring fragmentation, an IP 
segment sent from source host to destination host will travel over how many interfaces? How many 
routing tables will be indexed to move the datagram from source to destination? 

10) Suppose an application generates chunks 40 bytes of data every 20 msec, and each chunk gets 
encapsulated in a TCP segment and then an IP datagram. What percentage of each datagram will be 
overhead and what percentage will be application data? 
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11) Consider sending a 3000 byte datagram into a link that has a MTU of 500 bytes. Suppose the 
original datagram is stamped with the identification number 422. How many fragments are generated? 
What are their characteristics? 

12) Consider Figure 4.5-2. Starting with the original table in D, suppose that D receives from A the 
following advertisement: 
  

destination 
network

next 
router

number 
of hops to 
destination

30 C 10

1 -- 1

10 -- 1

.... .... ....

Will the table in A change? If so how? 

13) Contrast and compare the advertisements used by RIP and OSPF. 

14) RIP advertisements typically announce the number of hops to various destinations. BGP updates, on 
the otherhand, announce the __________ (fill in the blank) to the various destinations. 

15) Why are different inter-AS and intra-AS protocols used in the Internet? 

Section 4.6 

16) Describe three different types of switching fabrics commonly used in packet switches. 

17) Why are buffers needed at the output ports of switches? Why are buffers needed at the input port of 
switches? 

Section 4.7 

18) Compare and contrast the IPv4 and the IPv6 header fields. Do they have any fields in common? 

19) It has been said that IPv6 tunnels through IPv4 routers, IPV6 treats the IPv4 tunnels as link layer 
protocols. Do you agree with this statement? Why or why not? 
  
Section 4.8 
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20) What is an important difference between implementing the multicast abstract via multiple unicasts, 
and a single network (router) supported multicast group. 

21) True or False: when a host joins a multicst group, it must change its IP address to be that of the 
multicast group it is joining. 

22) What are the roles played by the IGMP protocol and a wide-area multicast routing protocol? 

23) What is the difference between a group-shared tree and a source-based tree in the context of 
multicast routing? 

24) True or False: In reverse path forwarding, a node will receive multiple copies of the same packet.  
True or False: In reverse path forwarding, a node may forward multiple copies of a packet over the same 
outgoing link. 

25) Classify each of the following multicast routing algorithms as either a source-baed tree approach or 
a group-shared tree approach: DVMRP, MOSPF, CBT, PIM Sparse Mode, PIM Dense Mode. 

Problems

1)  Let us consider some of the pros and cons of a connection-oriented versus connectionless 
architecture. 
  

a) Suppose that in the network layer, routers were subjected to "stressful" conditions that 
might cause them to fail fairly often.  At a high level, what  actions would need to be 
taken on such router failure.  Does this argue for a connection-oriented or a connectionless 
environment? 

b) Suppose that in order to provide a guarantee regarding the level of  performance (e.g., 
delay)  that would be seen along a source-to-destination path, the network requires a 
sender to declare its peak traffic rate.  If the declared peak traffic rate and the existing 
declared traffic rates that have been declared are such that there is no way to get traffic 
from the source to the destination that meets the required delay requirements, the source is 
not allowed access to the network.  Would such a approach be more easily accomplished 
within a connection-oriented or connectionless paradigm?

2) In Figure 4.2.1, enumerate the paths from A to F that do not contain any loops. 

3) Consider the network shown below, with the indicated link costs. Use Dijkstra's shortest path 
algorithm to compute the shortest past from F to all network nodes. Show how the algorithm works by 
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computing a table similar to Table 4.2.1. 

4) Consider the network shown below and assume that each node initially knows the costs to each of its 
neighbors. Consider the distance vector algorithm and show the distance table entries at node E. 

  

5) Consider a general topology (i.e., not the specific network shown above) and a synchronous version 
of the distance vector algorithm. Suppose that at each iteration, a node exchanges its minimum costs 
with its neighbors and receives their minimum costs. Assuming that the algorithm begins with each node 
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knowing only the costs to its immediate neighbors, what is the maximum number of iterations required 
until the distributed algorithm converges? Justify your answer. 

6) Consider the network fragment shown below.  X has only two attached neighbors, W and Y.  W has a 
minimum cost path to destination A of cost 5 and Y has a minimum cost path to A of 6.  The complete 
paths from W and Y to A (and between W and Y) are not shown. All link costs in the network have 
strictly positive integer values. 

a) Give X's distance table (row) entries for destinations X, Y and A. 
b) Give a link cost change for either c(X,W) or c(X,Y) such that X will inform its 
neighbors of a new minimum cost path to A as a result of executing lines 15 and 24 of the 
distance vector algorithm. 
c) Give a link cost change for either c(X,W) or c(X,Y) such that X will not inform its 
neighbors of a new minimum cost path to A as a result of executing lines 15 and 24 of the 
distance vector algorithm.

7)  Compute the distance tables for X, Y and Z shown in rightmost column of Figure 4.2-4.  After the 
computation of the new distance tables, which nodes will send which updated values to which 
neighbors? 

8) Consider the three node  topology shown in Figure 4.2.4.  Rather than having the link costs shown in 
Figure 4.2-4, the link costs are c(X,Y)=5, c(Y,Z)=6, c(Z,X)=2.  Compute the distance tables after the 
initialization step and after each iteration of a synchronous version of the distance vector algorithm (as 
we did in our earlier discussion of Figure 4.2-4.) 

9) Consider the 8-node network (with nodes labeled A-H) above. Show the minimal cost spanning tree 
rooted at A that includes (as end hosts) nodes C, D, E, and G. Informally argue why your spanning tree 
is a minimal cost spanning tree. 

10) We saw in Section 4.8 that there is no network layer protocol that can be used to identify the hosts 
participating in a multicast group.  Given this, how can multicast applications learn the identities of the 
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hosts that are participating in a multicast group? 

11) Consider the two basic approaches identified towards achieving multicast: unicast emulation and 
network-layer-multicast.  Consider a single sender and 32 receivers. Suppose the sender is connected to 
the receiver through a binary tree of routers. What is the cost of sending a multicast packet in the case of 
unicast emulation and network-layer multicast for this topology? Here, each time a packet (or copy of a 
packet) is sent over a single link, it incurs a unit of "cost". What topology for interconnecting the sender, 
receivers, and routers will bring the cost of unicast emulation and true network-layer-multicast as far 
apart as possible.? You can choose as many routers as you'd like. 

12) Design (give a pseudocode description of) an application-level protocol that maintains the host 
addresses of all hosts participating in a multicast group. Specifically identify the network service 
(unicast or multicast) that is used by your protocol, and indicate whether your protocol is sending 
messages in-band or out-of-band (with respect to the application-data flow among the multicast group 
participants), and why. 

13) Consider the topology from Figure 4.8-8. Suppose the link cost from B to D changes from 1 to 10. 
Find the Steiner tree that connects all of the shaded routers. (Note: you are not being asked here to 
program a solution to the Steiner tree problem.  Instead, you should be able to construct the minimum 
costs tree by inspection and informally convince yourself that it is the minimum costs tree). If you were 
asked (you are not being asked to actually do so!), how would you prove that your tree is indeed a 
minimum cost tree? 

14) Center-based routing. Consider the topology shown in Figure 4.8-8.  Suppose node C is chosen as 
the center in a center-based multicast routing algorithm. Assuming that each attached router in the 
multicast group uses its least cost path to node C to send join messages to C, draw the resulting center-
based multicast routing tree.  Is the resulting tree a minimum cost Steiner tree?  Justify your answer. 

15) Least unicast-cost path routing. Consider Figure 4.8-8.  Suppose that node E is chosen as the source.  
Compute the least unicast-cost path multicast routing tree from E to multicast routers A, B, and F. 

16) Reverse path forwarding.  Consider the topology and link costs shown in Figure 4.8-8 and suppose 
that node E is the multicast source. Using arrows like those shown in Figure 4.8-11, indicate links over 
which packets will be forwarded using RPF, and links over which packets will not be forwarded, given 
that node E is the source. 

17) Suppose that the cost of a transmitting a multicast packet on a link is completely independent of the 
cost of transmitting a unicast packet on a link.  Will reverse path forwarding still work in this case?  
Justify your answer. 

18) Traffic concentration in center-based trees.  Consider the simple topology shown in Figure 4.8-8. 
Suppose that each of the multicast routers receive one unit of traffic per unit time from an attached host.  
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This traffic must be forwarded to the other three multicast routers.  Suppose that node C is chosen as the 
center node in a center-based multicast routing protocol (see homework problem above).  Given the 
resulting routing tree, compute the rate of traffic on each link in the topology. (Compute the total amount 
of traffic on each link, regardless of the direction of the traffic flow).  Suppose next that RPF is used to 
build four source-specific  routing trees rooted at each of the routers A, B, E, F.  Recompute the rate of 
traffic on each of the links in this second scenario.  In this example, does a center-based tree or source-
specific trees tend to concentrate traffic? 

19) Suppose that a network has G multicast groups, each with S group members (hosts), each of which 
can be a sender. Under DVMRP, each router must thus maintain up to S pieces of routing information 
(the outgoing link on the shortest reverse path to the sender, for each of the S senders) for each group.  
Thus, in the worst case, each router must maintain S*G pieces of routing information, when taking all 
groups into account.  What is the worst case amount of routing information needed by MOSPF,  PIM 
Sparse Mode and PIM Dense Mode?  Justify your answers. 

20)  Birthday problem.  What is the size of the mutlicast address space.  Suppose now that two different 
multicast groups randomly choose a multicast address.  What is the probability that they choose the 
same address?  Suppose now that 1000 multicast groups are ongoing at the same time and chose their 
multicast group addresses at random.  What is the probability that they interfere with each other? 

21) Recall that in our discussion of multicast tunneling, we said that an IP multicast datagram is carried 
inside of a IP unicast datagram.  How does the IP router at the end of the multicast tunnel know that the 
unicast datagram contains an IP multicast datagram (as opposed to simply being an IP unicast datagram 
that should be forwarded along)? 

Discussion Questions

1) Suppose AS X and Z are not directly connected but instead connected by AS Y. Further suppose that 
X has a peering agreement with Y, and that Y has a peering agreement with Z. Finally, suppose that Z 
wants to transit all of Y's traffic but does not want to transit X's traffic. Does BGP allow Z to implement 
this policy? 

2) In Section 4.7 we indicated that deployment of IPv6 has been slow to date. Why has it been slow? 
What is needed to accelerate its deployment? (See article by L. Garber.) 

3) In Section 4.8.1 we saw that the multicast abstraction can be implemented by having a sender open an 
individual connection to each of the receivers.  What are the drawbacks of this approach compared to the 
approach that provides native multicast support at the network layer?  What are the advantages of this 
approach? 

4) In Section 4.8 we identified a number of multicast applications.  Which of these applications are well-
suited for the minimalist Internet multicast service model?  Why?  Which applications are not 
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particularly well-suited for this service model? 

5) Given the CBT soft state mechanism for maintaining a tree, why do you think there is a separate 
FLUSH_TREE message?  What would happen if the FLUSH_TREE message were lost? 
  
  

Programming Assignment

In this third programming assignment, you will be writing a ``distributed'' set of procedures that 
implement a distributed asynchronous 
distance vector routing for the network shown below: 

You are to write the following routines that will ``execute'' asynchronously within the emulated 
environment provided for this assignment.  For node 0, you will write the routines: 
  

●     rtinit0() This routine will be called once at the beginning of the emulation. rtinit0() has no 
arguments. It should initialize your distance table in node 0 to reflect the direct costs of 1, 3, and 
7 to nodes 1, 2, and 3, respectively. In the figure above, all links are bi-directional and the costs 
in both directions are identical. After initializing the distance table, and any other data structures 
needed by your node 0 routines, it should then send its directly-connected neighbors (in this case, 
1, 2 and 3) the cost of it  minimum cost paths to all other network nodes. This minimum cost 
information is sent to neighboring nodes in a routing update packet  by calling the routine 
tolayer2(), as described in the full assignment. The format of the routing update packet is also 
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described in the full assignment

●     rtupdate0(struct rtpkt *rcvdpkt). This routine will be called when node 0 receives a routing 
packet that was sent to it by one if its directly connected neighbors. The parameter *rcvdpkt is a 
pointer to the packet that was received.  rtupdate0() is the ``heart'' of the distance vector 
algorithm. The values it receives in a routing update packet from some other node i contain i's 
current shortest path costs to all other network nodes. rtupdate0() uses these received values to 
update its own distance table (as specified by the distance vector algorithm). If its own minimum 
cost to another node changes as a result of the update, node 0 informs its directly connected 
neighbors of this change in minimum cost by sending them a routing packet. Recall that in the 
distance vector algorithm, only directly connected nodes will exchange routing packets.  Thus 
nodes 1 and 2 will communicate with each other, but nodes 1 and 3 will not communicate with 
each other.

Similar routines are defined for nodes 1, 2 and 3. Thus, you will write 8 procedures in all: rtinit0(), 
rtinit1(), rtinit2(), rtinit3(), rtupdate0(), rtupdate1(), rtupdate2(), rtupdate3().These routines will  
together  implement a distributed, asynchronous computation of the distance tables for the topology and 
costs shown in the figure above. 

You can find the full details of the programming assignment, as well as C code that you will need to 
create the simulated hardware/software environment at http://gaia.cs.umass.edu/kurose/network/
programming_assignment.htm 
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Lab: Implemented a distributed, asynchronous distance vector 
routing algorithm

Overview

In this lab, you will be writing a ``distributed'' set of procedures that implement a distributed 
asynchronous distance vector routing for the network shown in Figure Lab.4-1. 

 
Figure Lab.4-1: Network topology and link costs for DV routing lab

The Basic Assignment

The routines you will write For the basic part of the assignment, you are to write the following routines 
which will ``execute'' asynchronously within the emulated environment that we have written for this 
assignment. 

For node 0, you will write the routines: 

●     rtinit0() This routine will be called once at the beginning of the emulation. rtinit0() 
has no arguments. It should initialize the distance table in node 0 to reflect the direct costs of 1, 3, 
and 7 to nodes 1, 2, and 3, respectively. In Figure 1, all links are bi-directional and the costs in 
both directions are identical. After initializing the distance table, and any other data structures 
needed by your node 0 routines, it should then send its directly-connected neighbors (in this case, 
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1, 2 and 3) the cost of it minimum cost paths to all other network nodes. This minimum cost 
information is sent to neighboring nodes in a routing packet by calling the routine tolayer2
(), as described below. The format of the routing packet is also described below.

●     rtupdate0(struct rtpkt *rcvdpkt). This routine will be called when node 0 receives 
a routing packet that was sent to it by one if its directly connected neighbors. The parameter 
*rcvdpkt is a pointer to the packet that was received.

 

  

rtupdate0() is the ``heart'' of the distance vector algorithm. The values it receives in a 
routing packet from some other node i contain i's current shortest path costs to all other network 
nodes. rtupdate0() uses these received values to update its own distance table (as specified 
by the distance vector algorithm). If its own minimum cost to another node changes as a result of 
the update, node 0 informs its directly connected neighbors of this change in minimum cost by 
sending them a routing packet. Recall that in the distance vector algorithm, only directly 
connected nodes will exchange routing packets. Thus nodes 1 and 2 will communicate with each 
other, but nodes 1 and 3 will node communicate with each other. 

As we saw in class, the distance table inside each node is the principal data structure used by the 
distance vector algorithm. You will find it convenient to declare the distance table as a 4-by-4 
array of int's, where entry [i,j] in the distance table in node 0 is node 0's currently 
computed cost to node i via direct neighbor j. If 0 is not directly connected to j, you can ignore 
this entry. We will use the convention that the integer value 999 is ``infinity.'' 

Figure Lab.4-2 provides a conceptual view of the relationship of the procedures inside node 0. 
  
 

Similar routines are defined for nodes 1, 2 and 3. Thus, you will write 8 procedures in all: rtinit0
(), rtinit1(), rtinit2(), rtinit3(),rtupdate0(), rtupdate1(), 
rtupdate2(), rtupdate3() 
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Figure Lab.4-2: Relationship between procedures inside node 0

Software Interfaces

The procedures described above are the ones that you will write. We have written the following routines 
that can be called by your routines: 

tolayer2(struct rtpkt pkt2send)
where rtpkt is the following structure, which is already declared for you. The procedure 
tolayer2() is defined in the file prog3.c

extern struct rtpkt {

  int sourceid;       /* id of node sending this pkt, 0, 1, 2, or 3  
*/

  int destid;         /* id of router to which pkt being sent 

                         (must be an immediate neighbor) */

  int mincost[4];    /* min cost to node 0 ... 3 */
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  };

Note that tolayer2() is passed a structure, not a pointer to a structure. 
printdt0()

will pretty print the distance table for node 0. It is passed a pointer to a structure of type 
distance_table. printdt0() and the structure declaration for the node 0 distance table 
are declared in the file node0.c. Similar pretty-print routines are defined for you in the files 
node1.c, node2.c node3.c.

 

  
  
 

The simulated network environment

Your procedures rtinit0(), rtinit1(), rtinit2(), rtinit3() and rtupdate0(), 
rtupdate1(), rtupdate2(), rtupdate3() send routing packets (whose format is described 
above) into the medium. The medium will deliver packets in-order, and without loss to the specified 
destination. Only directly-connected nodes can communicate. The delay between is sender and receiver 
is variable (and unknown). 

When you compile your procedures and my procedures together and run the resulting program, you will 
be asked to specify only one value regarding the simulated network environment: 

●     Tracing. Setting a tracing value of 1 or 2 will print out useful information about what is going on 
inside the emulation (e.g., what's happening to packets and timers). A tracing value of 0 will turn 
this off. A tracing value greater than 2 will display all sorts of odd messages that are for my own 
emulator-debugging purposes.

 

  

A tracing value of 2 may be helpful to you in debugging your code. You should keep in mind that 
real implementors do not have underlying networks that provide such nice information about 
what is going to happen to their packets! 
 

The Basic Assignment
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You are to write the procedures rtinit0(), rtinit1(), rtinit2(), rtinit3() and 
rtupdate0(), rtupdate1(), rtupdate2(), rtupdate3() which together will 
implement a distributed, asynchronous computation of the distance tables for the topology and costs 
shown in Figure 1. 

You should put your procedures for nodes 0 through 3 in files called node0.c, .... node3.c. You are NOT 
allowed to declare any global variables that are visible outside of a given C file (e.g., any global 
variables you define in node0.c. may only be accessed inside node0.c). This is to force you to 
abide by the coding conventions that you would have to adopt is you were really running the procedures 
in four distinct nodes. To compile your routines: cc prog3.c node0.c node1.c node2.c 
node3.  Prototype versions of these files are here:  node0.c,  node1.c, node2.c, node3.c. You can pick 
up a copy of the file prog3.c at http://gaia.cs.umass.edu/kurose/network/prog3.c. 

This assignment can be completed on any machine supporting C. It makes no use of UNIX 
features. 

As always, most instructors would expect you to hand in a code listing, a design document, and sample 
output. 

For your sample output, your procedures should print out a message whenever your rtinit0(), 
rtinit1(), rtinit2(), rtinit3() or rtupdate0(), rtupdate1(), rtupdate2
(), rtupdate3() procedures are called, giving the time (available via my global variable 
clocktime). For rtupdate0(), rtupdate1(), rtupdate2(), rtupdate3() you 
should print the identity of the sender of the routing packet that is being passed to your routine, whether 
or not the distance table is updated, the contents of the distance table (you can use my pretty-print 
routines), and a description of any messages sent to neighboring nodes as a result of any distance table 
updates. 

The sample output should be an output listing with a TRACE value of 2. Highlight the final distance 
table produced in each node. Your program will run until there are no more routing packets in-transit in 
the network, at which point our emulator will terminate. 
  
  

The Advanced Assignment

You are to write two procedures, rtlinkhandler0(int linkid, int newcost) and 
rtlinkhandler1(int linkid, int newcost), which will be called if (and when) the cost of 
the link between 0 and 1 changes. These routines should be defined in the files node0.c and node1.
c, respectively. The routines will be passed the name (id) of the neighboring node on the other side of 
the link whose cost has changed, and the new cost of the link. Note that when a link cost changes, these 
routines will have to update the distance table and may (or may not) have to send updated routing 
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packets to neighboring nodes. 

In order to complete the advanced part of the assignment, you will need to change the value of the 
constant LINKCHANGES (line 3 in prog3.c) to 1. FYI, the cost of the link will change from 1 to 20 
at time 10000 and then change back to 1 at time 20000. Your routines will be invoked at these times. 

We would again STRONGLY recommend that you first implement the undergraduate assignment and 
then extend your code to implement the graduate assignment. It will not be time wasted. (Believe me, I 
learned this the hard way!) 
  

Q&A

When we've taught this lab in our introductory neworking course, students have posed versious 
questions.  If you are interested 
in looking at the questions we've received (and answers), check out 
http://gaia.cs.umass.edu/kurose/network/programming_assignment_QA.htm 
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Introduction to the Data Link Layer

5.1 The Data Link Layer: Introduction, Services

In the previous chapter we learned that the network layer provides a communication service between two hosts. As 
shown in Figure 5.1-1, this communication path starts at the source host, passes through a series of routers, and ends at 
the destination host.  We'll find it convenient here to refer to the hosts and the routers simply as nodes (since, as we'll 
see shortly, we will not be particularly concerned whether a node is a router or a host), and to the communication 
channels that connect adjacent nodes along the communication path as links. In order to move a datagram from source 
host to destination host, the datagram must be moved over each of the individual links in the path. In this chapter, we 
focus on the data link layer, which is responsible for transferring a datagram across an individual link. We'll first 
identify and study the services provided by the link layer.  In sections 5.2 through 5.4, we'll then examine important 
principles behind the protocols that provide these services (including the topics of error detection and correction,  so-
called multiple access protocols that are used share a single physical link among multiple nodes, and link-level 
addressing).  We'll see that many different types of link-level technology can be used to connect two nodes. In sections 
5.5 through 5.10, we'll examine specific link-level architectures and protocols in more detail. 
  
  

 
Figure 5.1-1: TheData Link Layer

5.1.1 The Services Provided by the Link Layer

A link-layer protocol is used to move a datagram over an individual link. The link-layer protocol defines the format 
of the packets exchanged between the nodes at the ends of the link, as well as the actions taken by these nodes when 
sending and receiving packets. Recall from Chapter 1 that the packets exchanged by a link-layer protocol are called 
frames, and that each link-layer frame typically encapsulates one network-layer datagram. As we shall see shortly, the 
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actions taken by a link-layer protocol when sending and receiving frames include error detection, retransmission, flow 
control and random access. Examples of link-layer protocols include Ethernet, token ring, FDDI,  and PPP; in some 
contexts, ATM and frame relay can be considered link-layer protocols as well.  We will cover these protocols in detail 
in the latter half of this chapter. 

Whereas the network layer has the end-to-end job of moving transport-layer segments from the source host to the 
destination host, a link-layer protocol has the node-to-node job of moving a network-layer datagram over a single link 
in the path.  An important characteristic of the link layer is that a datagram may be handled by different link-layer 
protocols on the different links in the path. For example, a datagram may be handled by Ethernet on the first link, PPP 
on the last link, and frame relay on all intermediate links.  It is important to note that the services provided by the 
different link-layer protocols may be different. For example, a link-layer protocol may or may not provide reliable 
delivery. Thus, the network layer must be able to accomplish its end-to-end job in the face of a varying set of 
individual link-layer services. 

In order to gain insight to the link layer and how it relates to the network layer, let's consider a transportation analogy. 
Consider a travel agent who is planning a tr for a tourist traveling from Princeton, New Jersey to Lausanne, 
Switzerland. Suppose the travel agent decides that it is most convenient for the tourist to take a limousine from 
Princeton to JFK airport, then  a plane from JFK airport to Geneva airport,  and finally a train from Geneva to 
Lausanne's train station. (There is a train station at Geneva's airport.) Once the travel agent makes the three 
reservations, it is the responsibility of the Princeton limousine company to get the tourist from Princeton to JFK; it is 
the responsibility of the airline company to get the tourist from JFK to Geneva; and it is responsibility of the Swiss 
train service to get the tourist from the Geneva to Lausanne. Each of the three segments of the trip is "direct" between 
two "adjacent" locations.  Note that the three transportation segments are managed by different companies and use 
entirely different transportation modes (limousine, plane and train). Although the transportation modes are different, 
they each provide the basic service of moving passengers from one location to an adjacent location. This service is 
used by the travel agent to plan the tourist's trip. In this transportation analogy, the tourist is analogous to a datagram, 
each transportation segment is analogous to a communication link, the transportation mode is analogous to the link-
layer protocol, and the travel agent who plans the trip is analogous to a routing protocol. 

The basic service of the link layer is to "move" a datagram from one node to an adjacent node over a single 
communication link. But the details of the link-layer service depend on the specific link-layer protocol that is 
employed over the link. Possible services that can be offered by a link-layer protocol include: 

●     Framing and link access: Almost all link-layer protocols encapsulate each network-layer datagram within a 
link-layer frame before transmission onto the link. A frame consists of a data field, in which the network-layer 
datagram is inserted, and a number of header fields. (A frame may also include trailer fields; however, we will 
refer to both header and trailer fields as header fields.)  A data link protocol specifies the structure of the frame, 
as well as a channel access protocol that specifies the rules by which a  frame is transmitted onto the link.  For 
point-to-point links that have a single sender on one end of the link and a single receiver at the other end of the 
link, the link access protocol is simple (or non-existent) - the sender can send a frame whenever the link is 
idle.   The more interesting case is when multiple nodes share a single broadcast link - the so-called multiple 
access problem.  Here, the channel access protocol serves to coordinate the frame transmissions of the many 
nodes; we cover multiple access protocols in detail in section 5.3 .  We'll see several different frame formats 
when we examine specific link-layer protocols in the second half of this chapter. In section 5.3, we'll see that 
frame headers also often include fields for a node's so-called  physical  address,  which is completely distinct 
from the node's network layer (e.g., IP) address.

●     Reliable delivery: If a link-layer protocol provides the reliable-delivery service, then it guarantees to move 
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each network-layer datagram across the link without error. Recall that transport-layer protocols (such as TCP) 
may also provide a reliable-delivery service. Similar to a transport-layer reliable-delivery service, a link-layer 
reliable-delivery service is achieved with acknowledgments and retransmissions (see Section 3.4). A link-layer 
reliable-delivery service is often used for links that are prone to high error rates, such as a wireless link, with 
the goal of correcting an error locally, on the link at which the error occurs, rather than forcing an end-to-end 
retransmission of the data by transport- or application-layer protocol. However, link-layer reliable delivery is 
often considered to be unnecessary overhead for low bit-error links, including fiber, coax and many twisted-
pair copper links. For this reason, many of the most popular link-layer protocols do not provide a reliable-
delivery service.

●     Flow control: The nodes on each side of a link have a limited amount of packet buffering capacity. This is a 
potential problem, as a receiving node may receive frames at a rate faster than it can process the frames (over 
some time interval). Without flow control, the receiver's buffer can overflow and frames can get lost. Similar to 
the transport layer, a link-layer protocol can provide flow control in order to prevent the sending node on one 
side of a link from overwhelming the receiving node on the other side of the link.

●     Error detection: A node's receiver can incorrectly decide that a bit in a frame to be a zero when it was 
transmitted as a one (and vice versa). These errors are introduced by signal attenuation and electromagnetic 
noise. Because there is no need to forward a datagram that has an error, many link-layer protocols provide a 
mechanism for a node to detect the presence of one or more errors. This is done by having the transmitting 
node set error detection bits in the frame, and having the receiving node perform an error check. Error detection 
is a very common service among link-layer protocols. Recall from Chapters 3 and 4 that the transport layer and 
network layers in the Internet also provide a limited form of error detection. Error detection in the link layer is 
usually more sophisticated and implemented in hardware.

●     Error correction: Error correction is similar to error detection, except that a receiver can not only detect 
whether errors have been introduced in the frame but can also determine exactly where in the frame the errors 
have occurred (and hence correct these errors). Some protocols (such as ATM) provide link-layer error 
correction for the packet header rather than for the entire packet. We cover error detection and correction in 
section 5.2.

●     Half-Duplex and Full-Dulpex: With full-duplex transmission, both nodes at the ends of a link may transmit 
packets at the same time. With half-duplex transmission, a node cannot both transmit and receive at the same 
time.

As noted above, many of the services provided by the link layer have strong parallels with services provided at the 
transport layer. For example, both the link layer and the transport layer can provide reliable delivery. Although the 
mechanisms used to provide reliable delivery in the two layers are similar (see Section 3.4), the two reliable delivery 
services are not the same. A transport protocol provides reliable delivery between two processes on an end-to-end 
basis; a reliable link-layer protocol provides the reliable-delivery service between two nodes connected by a single 
link. Similarly, both link-layer and transport-layer protocols can provide flow control and error detection; again, flow 
control in a transport-layer protocol is provided on an end-to-end basis, whereas it is provided in a link-layer protocol 
on a node-to-adjacent-node basis. 

5.1.2 Adapters Communicating 

For a given communication link, the link-layer protocol is for the most part implemented in a pair of adapters. An 
adapter is a board (or a PCMCIA card) that typically contains RAM, DSP chips, a host bus interface and a link 
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interface. Adapters are also commonly known as network interface cards or NICs. As shown in Figure 5.1-2, the 
network layer in the transmitting node (i.e., a host or router) passes a network-layer datagram to the adapter that 
handles the sending side of the communication link. The adapter encapsulates the datagram in a frame and then 
transmits the frame into the communication link. At the other side, the receiving adapter receives the entire frame, 
extracts the network-layer datagram, and passes it to the network layer. If the link-layer protocol provides error 
detection, then it is the sending adapter that sets the error detection bits and it is the receiving adapter that performs the 
error checking. If the link-layer protocol provides reliable delivery, then the mechanisms for reliable delivery (e.g., 
sequence numbers, timers and acknowledgments) are entirely implemented in the adapters. If the link-layer protocol 
provides random access (see Section 5.3), then the random access protocol is entirely implemented in the adapters. 

 
Figure 5.1-2: The link-layer protocol for a communication link is implemented in the adapters at the two ends of the 

link. DG abbreviates "datagram".

A computer in itself, an adapter is a semi-autonomous unit. For example, an adapter can receive a frame, determine if 
a frame is in error and discard the frame without notifying its "parent" node. An adapter that receives a frame only 
interrupts its parent node when it wants to pass a network-layer datagram up the protocol stack. Similarly, when a 
node passes a datagram down the protocol stack to an adapter, the node fully delegates to the adapter the task of 
transmitting the datagram across that link.  On the other hand, an adapter is not an completely autonomous unit. 
Although we have shown the adapter as a separate "box" in Figure 5.3.1, the adapter is typically housed in the same 
physical box as rest of the node, shares power and busses with the rest of the node, and is ultimately under the control 
of the node. 

 
Figure 5.1-3: The adapter is a semi-autonomous unit.

As shown in Figure 5.1.3, the main components of an adapter are the bus interface and the link interface. The bus 
interface is responsible for communicating with the adapter's parent node. It sends to and receives from the parent 
node network-layer datagrams and control information. The link interface is responsible for implementing the link-
layer protocol. In addition to framing and de-framing datagrams, it may provide error detection, random access and 
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other link-layer functions. It also includes the transmit and receive circuitry. For popular link-layer technologies, such 
as Ethernet, the link interface is implemented by chip set that can be bought on the commodity market. For this reason, 
Ethernet adapters are incredibly cheap -- often less than $30 for 10 Mbps and 100 Mbps transmission rates. 

Adapter design has become very sophisticated over the years. One of the critical issues in adapter performance has 
always been whether the adapter can move data in and out of a node at the full line speed, that is, at the transmission 
rate of the link. You can learn more about adapter architecture for 10Mbps Ethernet, 100 Mbps Ethernet and 155 
Mbps ATM by visiting the 3Com adapter page [3Com]. Data Communications magazine provides a nice introduction 
to Gbps Ethernet adapters [GigaAdapter]. 
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Error Detection and Correction

5.2 Error Detection and Correction Techniques

In the previous section, we noted that bit-level error detection and correction - detecting and correcting the 
corruption of bits in a data-link-layer frame sent from one node to another physically-connected neighboring 
node - are two services often provided by the data link layer.  We saw in Chapter 3 that error detection and 
correction services are also often offered at the transport layer as well.  In this section, we'll examine a few of 
the simplest techniques that can be used to detect and, in some cases, correct such bit errors. A full treatment 
of the theory and implementation of this topic is itself the topic of many textbooks (e.g., [Schwartz 1980]), 
and our treatment here is necessarily brief. Our goal here is to develop an intuitive feel for the capabilities that 
error detection and correction techniques provide, and to see how a few simple techniques work and are used 
in practice in the data link layer. 

Figure 5.2-1  illustrates the setting for our study. At the sending node, data, D, to be "protected" against bit 
errors  is augmented with error detection and correction bits, EDC. Typically, the data to be protected includes 
not only the datagram passed down from the network layer for transmission across the link, but also link-level 
addressing information, sequence numbers, and other fields in the data link frame  header. Both D and EDC 
are sent to the receiving node in a link-level frame. At the receiving node, a sequence of bits, D' and EDC' are 
received. Note that D' and EDC'  may differ from the original D and EDC as a result of in-transit bit flips. 
  
  

 
Figure 5.2-1: Error detection and correction scenario
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The receiver's challenge is to determine whether or not D' is the same as the original D,  given that it has only 
received D' and EDC'. The exact wording of the receiver's decision in Figure 5.2-1 (we ask whether an error is 
detected, not whether an error has occurred!) is important. Error detection and correction techniques allow the 
receiver to sometimes, but not always, detect that bit errors have occurred. That is, even with the use of error 
detection bits there will still be a possibility that  undetected bit errors will occur, i.e., that the receiver will  
be unaware that the received information contains bit errors. As a consequence, the receiver might deliver a 
corrupted datagram to the network layer, or be unaware that the contents of some other field in the  frame's 
header have been corrupted. We thus want to choose an error detection scheme so that the probability of such 
occurrences is small. Generally,  more sophisticated error detection and correction techniques (i.e., those that 
have a smaller probability of allowing undetected bit errors)  incur a larger  overhead - more computation is 
need to compute and transmit a larger number of error detection and correction bits. 

Let's now examine three techniques for detecting errors in the transmitted data -- parity checks (to illustrate 
the basic ideas behind error detection and correction), checksumming methods (which are more typically 
employed in the transport layer) and cyclic redundancy checks (which are typically employed in the data link 
layer). 
  

5.2.1 Parity Checks

Perhaps the simplest form of error detection is the use of a single parity bit. Suppose that the information to 
be sent, D in Figure 5.2-1, has d bits. In an even parity scheme, the sender simply includes one additional bit 
and chooses its value such that the total number of 1's in the d+1 bits (the original information plus a parity 
bit) is even. For odd parity schemes, the parity bit value is chosen such that there are an odd number of 1's. 
Figure 5.2-2 illustrates an even parity scheme, with the single parity bit being stored in a separate field. 
  
  

 

Figure 5.2-2: One-bit even parity

Receiver operation is also simple with a single parity bit. The receiver need only count the number of 1's in 
the received d+1 bits. If an odd number of 1-valued bits are found with an even parity scheme, the receiver 
knows that at least one bit error has occurred. More precisely, it knows that some odd number of bit errors 

file:///D|/Downloads/Livros/computação/Computer%20Net...p-Down%20Approach%20Featuring%20the%20Internet/ec.htm (2 of 8)20/11/2004 15:52:32



Error Detection and Correction

have occurred. 

But what happens if an even number of bit errors occur? You should convince yourself that this would result 
in an undetected error. If the probability of bit errors is small and errors can be assumed to occur 
independently from one bit to the next, the probability of multiple bit errors in a packet would be extremely 
small. In this case, a single parity bit might suffice. However, measurements have shown that rather than 
occurring independently, errors are often clustered together in ``bursts.''  Under burst error conditions, the 
probability of undetected errors in a frame protected by single-bit-partity can approach 50 percent [Spragins 
1991]. Clearly, a more robust error detection scheme is needed (and, fortunately, is used in practice!).  But 
before examining error detection schemes that are used in practice, let's cosider a simple generalization of one-
bit parity that will provide us with insight into error correction techniques. 
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Figure 5.2-3: Two-dimensional even parity

Figure 5.2-3 shows a two-dimensional generalization of the single-bit parity scheme. Here, the d bits in D are 
divided into i rows and j columns. A parity value is computed for each row and for each column. The 
resulting i+j+1 parity bits are the data link frame's error detection bits. 

Suppose now that a single bit error occurs in the original d bits of information. With this  two-dimensional 
parity scheme, the parity of both the column and the row containing the flipped bit will be in error. The 
receiver can thus not only detect the fact that a single bit error has occurred, but can use the column and row 
indices of the column and row with parity errors to actually identify the bit that was corrupted and correct that 
error! Figure 5.2-3 shows an example in which the 0-valued bit in position (1,1) is corrupted and switched to a 
1 -- an error that is both detectable and correctable at the receiver. Although our discussion has focussed on 
the original d bits of information, a single error in the parity bits themselves is also detectable and correctable. 
Two dimensional parity can also detect (but not correct!) any combination of two errors in a packet. Other 
properties of the two-dimensional parity scheme are explored in the problems at the end of the chapter. 

The ability of the receiver to both detect and correct errors is known as forward error correction (FEC). 
These techniques are commonly used in audio storage and playback devices such as audio CD's.  In a network 
setting, FEC techniques can be used by themselves, or in conjunction with the ARQ techniques we examined 
in Chapter 3. FEC techniques are valuable because they can decrease the number of sender retransmissions 
required. Perhaps more importantly, they allow for immediate correction of errors at the receiver. This avoids 
having to wait the round-trip propagation delay needed for the sender to receive a NAK packet and for the 
retransmitted packet to propagate back to the receiver -- a potentially important advantage for real-time 
network applications [Rubenstein 1998]. Recent work examining the use of FEC in error control protocols 
include [Biersack 1992, Nonnenmacher 1998, Byers 1998, Shacham 1990]. 
  

5.2.2 Checksumming Methods

In checksumming techniques, the d bits of data in Figure 5.2-1 are treated as a sequence of k-bit integers. One 
simple checksumming method is to simply sum these k-bit integers and use the resulting sum as the error 
detection bits. The so-called Internet checksum  [RFC 1071] is based on this approach --  bytes of data are 
treated as 16-bit integers and their ones-complement sum forms the Internet checksum.  A receiver calculates 
the checksum it calculates over the received data and checks whether it matches the checksum carried in the 
received packet. RFC1071 [RFC 1071] discusses the Internet checksum algorithm and its implementation in 
detail. In the TCP/IP protocols, the Internet checksum is computed over all fields (header and data fields 
included). In other protocols, e.g., XTP [Strayer 1992], one checksum is computed over the header, with 
another checksum computed over the entire packet. 

McAuley [McAuley 1994] describe improved weighted checksum codes that are suitable for high-speed 
software implementation and Feldmeier [Feldmeier 1995]  presents fast software implementation techniques 
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for not only weighted checksum codes, but CRC (see below) and other codes as well 
  

5.2.3 Cyclic redundancy check

An error detection technique used widely in today's computer networks is based on cyclic redundancy check 
(CRC) codes. CRC codes are also known as polynomial codes, since it is possible to view the bit string to be 
sent as a polynomial whose coefficients are the 0 and 1 values in the bit string, with operations on the bit 
string interpreted as polynomial arithmetic. 
  
  

 
Figure 5.2-4: CRC codes

CRC codes operate as follows. Consider the d-bit piece of data, D,  that the sending node wants to send to the 
receiving node. The sender and receiver must first agree on a r+1 bit pattern, known as a generator, which 
we will denote as G. We will require that the most significant (leftmost) bit of G be a 1. The key idea behind 
CRC codes is shown in Figure 5.2-4. For a given piece of data, D, the sender will choose r additional bits, R, 
and append them to D such that the resulting d+r bit pattern (interpreted as a binary number) is exactly 
divisible by G using modulo 2 arithmetic. The process of error checking with CRC's is thus simple: the 
receiver divides the d+r received bits by G.  If the remainder is non-zero, the receiver knows that an error has 
occurred; otherwise the data is accepted as being correct. 

All CRC calculations are done in modulo 2 arithmetic without carries in addition or borrows in subtraction. 
This means that addition and subtraction are identical, and both are equivalent to the bitwise exclusive-or 
(XOR) of the operands. Thus, for example, 

1011 XOR 0101  =  1110 
1001 XOR 1101  =  0100

 Also, we similarly have 
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1011 - 0101 = 1110 
1001 - 1101 = 0100

Multiplication and division are the same as in base 2 arithmetic, except that any required addition or 
subtraction is done without carries or borrows. As in regular binary arithmetic, multiplication by 2k left shifts 
a bit pattern by k places. Thus, given D and R, the quantity D*2r XOR  R yields the d+r bit pattern shown in 
Figure 5.2-4. We'll use this algebraic characterization of the d+r bit pattern from Figure 5.2-4 in our 
discussion below. 

Let us now turn to the crucial question of how the sender computes R. Recall that we want to find R such that 
there is an n such that 

D*2r XOR R = nG

That is, we want to choose R such that G divides into D*2rXOR R  without remainder. If we exclusive-or (i.
e., add modulo 2, without carry) R to both sides of the above equation, we get 

D*2r  = nG XOR R
This equation  tells us that if we divide D*2r  by  G, the value of the remainder is precisely R.  In other words, 
we can calculate R as 

R = remainder ( D*2r / G ) 
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Figure 5.2-5: An example CRC calculation

Figure 5.2-5 illustrates this calculation for the case of  D = 101110, d = 6 and  G = 1001,  r=3.  The nine bits 
transmitted in this case are 101110 011. You should check these calculations for yourself and also check that 
indeed D2r =  101011 * G XOR R. 

International standards have been defined for 8-, 12-, 16- and 32-bit generators, G.  An 8-bit CRC is used to 
protect the 5-byte header in ATM cells. The CRC-32 32-bit standard, which has been adopted in a number of 
link-level IEEE protocols, uses a generator of 

GCRC-32 = 100000100110000010001110110110111

Each of the CRC standards can detect burst errors of less than r+1 bits and any odd number of bit errors. 
Furthermore, under appropriate assumptions, a burst of length greater than r+1 bits is detected with 
probability 1 - 0.5r. The theory behind CRC codes and even more powerful codes is beyond the scope of this 
text. The text  [Schwartz 1980]  provides an excellent introduction to this topic. 
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Multiple Access Protocols and LANs

5.3 Multiple Access Protocols and LANs

In the introduction to this chapter, we noted that there are two types of network links: point-to-point links, and 
broadcast links.  A point-to-point link consists of a single sender on one end of the link, and a single receiver at the 
other end of the link.  Many link-layer protocols have been designed for point-to-point links; PPP (the point-to-point 
protocol) and HDLC are two such protocols that we'll cover later in this chapter. The second type of link, a broadcast 
link, can have multiple sending and receiving nodes all connected to the same, single, shared broadcast channel. The 
term "broadcast" is used here because when any one node transmits a frame, the channel broadcasts the frame and 
each of  the other nodes receives a copy. Ethernet is probably the most widely deployed broadcast link technology; 
we'll cover Ethernet in detail in section 5.5.  In this section we'll take step back from specific link layer protocols and 
first examine a problem of central importance to the data link layer: how to coordinate the access of multiple sending 
and receiving nodes to a shared broadcast channel - the so-called multiple access problem.  Broadcast channels are 
often used in local area networks (LANs), networks that are geographically concentrated in a single building (or on a 
corporate or university campus).  Thus, we'll  also look at  how multiple access channels are used in LANs at the end 
of this section. 

 
Figure 5.3-1: Various multiple access channels

We are all familiar with the notion of broadcasting, as television has been using it since its invention. But traditional 
television is a one-way broadcast (i.e., one fixed node transmitting to many receiving nodes), while nodes on a 
computer network broadcast channel can both send and receive. Perhaps a more apt human analogy for a broadcast 
channel is a cocktail party, where many people gather together in a large room (the air providing the broadcast 
medium) to talk and listen.  A second good analogy is something many readers will be familiar with - a classroom - 
where teacher(s) and student(s) similarly share the same, single, broadcast medium. A central problem in both 
scenarios is that of determining who gets to talk (i.e., transmit into the channel), and when.  As humans, we've evolved 
an elaborate set  of  protocols for sharing the broadcast channel ("Give everyone a chance to speak." "Don't speak until 
you are spoken to." "Don't monopolize the conversation." "Raise your hand if you have question." "Don't interrupt 
when someone is speaking." "Don't fall asleep when someone else is talking."). 

Computer networks similarly have protocols - so-called multiple access protocols - by which nodes regulate their 
transmission onto the shared broadcast channel.  As shown in Figure 5.3-1, multiple access protocols are needed in a 
wide variety of network settings, including both wired and wireless local area networks, and satellite networks. Figure 
5.3-2 takes a more abstract view of the broadcast channel and of the nodes sharing that channel. Although technically 

file:///D|/Downloads/Livros/computação/Computer%20Ne...Down%20Approach%20Featuring%20the%20Internet/LAN.htm (1 of 16)20/11/2004 15:52:35



Multiple Access Protocols and LANs

each node accesses the broadcast channel through its adapter, in this section we will refer to the node as the sending 
and receiving device. In practice, hundreds or even thousands of nodes can directly communicate over a broadcast 
channel. 
  

Figure 5.3-2: A broadcast channel interconnecting four nodes.

Because all  nodes are capable of transmitting frames, more than two nodes can transmit frames at the same time. 
When this happens, all of the nodes receive multiple frames at the same time, that is, the transmitted frames collide at 
all of the receivers. Typically, when there is a collision, none of the receiving nodes can make any sense of any of the 
frames that were transmitted; in a sense, the signals of the colliding frame become inextricably tangled together. Thus, 
all the frames involved in the collision are lost, and the broadcast channel is wasted during the collision interval. 
Clearly, if many nodes want to frequently transmit frames, many transmissions will result in collisions, and much of 
the bandwidth of the broadcast channel will be wasted. 

In order to ensure that the broadcast channel performs useful work when multiple nodes are active, it is necessary to 
somehow coordinate the transmissions of the active nodes. This coordination job is the responsibility of the multiple 
access protocol. Over the past thirty years, thousands of papers and hundreds of Ph.D. dissertations have been written 
on multiple access protocols; a comprehensive survey of this body of work is [Rom 1980] Furthermore, dozens of 
different protocols have been implemented in a variety of link-layer technologies. Nevertheless, we can classify just 
about any multiple access protocol as belonging to one of three categories: channel partitioning protocols, random 
access protocols, and taking-turns protocols.  We'll cover these categories of multiple access protocols in the 
following three subsections.  Let us conclude this overview by noting that ideally, a multiple access protocol for a 
broadcast channel of rate R bits per second should have the following desirable characteristics: 

1.  When only one node has data to send, that node has a throughput of R bps.
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2.  When M nodes have data to send, each of these nodes has a throughput of  R/M bps. This need not necessarily 
imply that each of the M nodes always have an instantaneous rate of R/M , but rather that each  node should 
have an average transmission rate of R/M over some suitably-defined interval of time.

3.  The protocol is decentralized, i.e., there are no master nodes that can fail and bring down the entire system.
4.  The protocol is simple, so that it is inexpensive to implement.

5.2.1 Channel Partitioning Protocols

Recall from our early discussion back in section 1.4, that Time Division Multiplexing (TDM) and Frequency Division 
Multiplexing (FDM) are two techniques that can be used to partition a broadcast channel's bandwidth among all nodes 
sharing that channel. As an example, suppose the channel supports N nodes and that the transmission rate of the 
channel is R bps. TDM divides time into time frames (not to be confused the unit of data, the frame, at the data link 
layer) and further divides each time frame into N time slots. Each slot time is then assigned to one of the N nodes. 
Whenever a node has a frame to send, it transmits the frame's bits during its assigned time slot in the revolving TDM 
frame. Typically, frame sizes are chosen so that a single frame can be transmitting during a slot time.  Figure 5.3-3 
shows a simple four-node TDM example. Returning to our cocktail party analogy, a TDM-regulated cocktail party 
would allow one partygoer to speak for a fixed period of time, and then allow another partygoer to speak for the same 
amount of time, and so on.  Once everyone has had their chance to talk, the pattern repeats. 

 
Figure 5.3-3: A four-node TDM and FDM example

TDM is appealing as it eliminates collisions and is perfectly fair: each node gets a dedicated transmission rate of R/N 
bps during each slot time. However, it has two major drawbacks.  First, a node is limited to this rate of R/N bps over a 
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slot's time even when it is the only node with frames to send.   A second drawback is that a node must always wait for 
its turn in the transmission sequence - again, even when it is the only node with a frame to send. Imagine the partygoer 
who is the only one with anything to say (and imagine that this is the even rarer circumstance where everyone at the 
party wants to hear what that one person has to say).  Clearly, TDM would be a poor choice for a multiple access 
protocol for this particular party. 

While TDM shares the broadcast channel in time, FDM divides the R bps channel into different frequencies (each with 
a bandwidth of R/N) and assigns each frequency to one of the N nodes.  FDM thus creates N "smaller" channels of R/N 
bps out of  the single, "larger"  R bps channel.  FDM shares both the advantages and drawbacks of TDM.  It avoids 
collisions and divides the bandwidth fairly among the N nodes.  However, FDM also shares a principal disadvantage 
with TDM - a node is limited to a bandwidth of R/N, even when it is the only node with frames to send. 

A third channel partitioning protocol is Code Division Multiple Access (CDMA).  While TDM and FDM assign 
times slots and frequencies, respectively, to the nodes, CDMA assigns a different code to each node.  Each node then 
uses its unique code to encode the data bits it sends, as discussed below. We'll see that CDMA allows different nodes 
to transmit simultaneously and yet have their respective receivers correctly receive a sender's encoded data bits 
(assuming the receiver knows the sender's code) in spite of "interfering" transmissions by other nodes. CDMA has 
been used in military systems for some time (due its anti jamming properties) and is now beginning to find widespread 
civilian use, particularly for use in wireless multiple access channels. 

In a CDMA protocol, each bit being sent by the sender is encoded by multiplying the bit by a signal (the code) that 
changes at a much faster rate (known as the chipping rate) than the original sequence of data bits. Figure 5.3-4 shows 
a simple, idealized CDMA encoding/decoding scenario.  Suppose that the rate at which original data bits reach the 
CDMA encoder defines the unit of time; that is, each original data bit to be transmitted requires one bit-slot time. Let 
di be the value of the data bit for the ith bit slot. Each bit slot is  further subdivided into M mini-slots; in Figure 5.3-4, 

M=8, although in practice M is much larger.  The CDMA code used by the sender consists of a sequence of  M values, 
cm, m = 1,...,M, each taking  a +1 or -1 value. In the example in Figure 5.3-4, the M-bit CDMA code being used by the 

sender is (1, 1, 1, -1, 1, -1, -1, -1). 
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Figure 5.3-4: A simple CDMA example: sender encoding, receiver decoding

To illustrate how CDMA works, let us focus on the ith data bit, di. For the mth mini-slot of the bit-transmission time 

of di, the output of the CDMA encoder, Zi,m, is the  value of di  multiplied by the mth bit in the assigned CDMA code, 

cm: 

Zi,m =  di 
 .  cm          (Equation 5.3-1)

In a simple world, with no interfering senders, the receiver would receive the encoded bits, Zi,m,  and recover the 

original data bit, di, by computing: 

  di 
  =  (1/M) Σm=1,M Zi,m

 .  cm                    (Equation 5.3-2)

The reader might want to work through the details of the example in Figure 5.3-4 to see that the original data bits are 
indeed correctly recovered at the receiver using Equation 5.3-2 
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The world is far from ideal, however, and as noted above, CDMA must work in the presence of interfering senders 
that are encoding and transmitting their data using a different assigned code.  But how can a CDMA receiver recover a 
sender's original data bits when those data bits are being tangled with bits being transmitted by other senders?  CDMA 
works under the assumption that the interfering transmitted bit signals are additive, e.g., that if three senders send a 1 
value, and a fourth sender sends a -1 value during the same mini-slot, then the received signal at all receivers during 
hat mini-slot is a 2 (since 1+ 1 + 1 -  1 = 2). In the presence of multiple senders, sender s computes its encoded 
transmissions, Zi,m

 s , in exactly the same manner as in Equation 5.3-1.  The value received at a receiver during the mth 

minislot of the ith bit slot, however, is now the sum of the transmitted bits from all N senders during that minislot: 

Zi,m
 *   =   Σs=1,N Zi,m

 s

Amazingly, if the senders' codes are chosen carefully, each receiver can recover the data sent by a given sender out of 
the aggregate signal simply by using the sender's code in exactly the same manner as in Equation 5.3-2: 

  di 
  =  (1/M) Σm=1,M Zim

 * .  cm                     (Equation 5.3-3)

Figure 5.3-5 illustrates a two-sender CDMA example. The M-bit CDMA code being used by the upper sender is (1, 1, 
1, -1, 1, -1, -1, -1), while the CDMA code being used by the lower sender is (1, -1, 1, 1, 1, -1, 1, 1).  Figure 5.3-5 
illustrates a receiver recovering the original data bits from the upper sender.  Note that the receiver is able to extract 
the data from sender 1 in spite of the interfering transmission from sender 2.  Returning to our cocktail party analogy, 
a CDMA protocol is similar to having partygoers speaking in multiple languages; in such circumstances humans are 
actually quite good at locking into the conversation in the language they understand, while filtering out the remaining 
conversations 
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Figure 5.3-5: A two-sender CDMA example

Our discussion here of CDMA is necessarily brief and a number of difficult issues must be addressed in practice. First, 
in order for the CDMA receivers to be able to extract out a particular sender's signal, the CDMA codes must be 
carefully chosen.  Secondly, our discussion has assumed that the received signal strengths from various senders at a 
receiver are the same; this can be difficult to achieve in practice. There is a considerable body of literature addressing 
these and other issues related to CDMA; see  [Pickholtz 1982, Viterbi95] for details. 
  

5.2.2. Random Access Protocols 
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The second broad class of multiple access protocols are so-called random access protocols. In a random access 
protocol, a transmitting node always transmits at the full rate of the channel, namely, R bps. When there is a collision, 
each node involved in the collision repeatedly retransmit its frame until the frame gets through without a collision. But 
when a node experiences a collision, it doesn't necessarily retransmit the frame right away. Instead it waits a random 
delay before retransmitting the frame. Each node involved in a collision chooses independent random delays.  Because 
after a collision the random delays are independently chosen, it is possible that one of the nodes will pick a delay that 
is sufficiently less than the delays of the other colliding nodes, and will therefore be able to "sneak" its frame into the 
channel without a collision. 

There are dozens if not hundreds of random access protocols described in the literature [Rom 1990, Bertsekas 1992]. 
In this section we'll describe a few of the most commonly used random access protocols - the ALOHA protocols 
[Abramson 1970, Abramson 1985] and the Carrier Sense Multiple Access (CSMA) protocols [Kleinrock 1975]. Later, 
in section 5.5, we'll cover the details of Ethernet [Metcalfe 1976], a popular and widely deployed CSMA protocol. 

Slotted ALOHA 

Let's begin our study of random access protocols with one of the most simple random access protocols, the so-called 
slotted ALOHA protocol.  In our description of slotted ALOHA, we assume the following: 

●     All frames consist of exactly L bits.
●     Time is divided into slots of size L/R seconds (i.e., a slot equals the time to transmit one frame).
●     Nodes start to transmit frames only at the beginnings of slots.
●     The nodes are synchronized so that each node knows when the slots begin.
●     If two or more frames collide in a slot, then all the nodes detect the collision event before the slot ends.

Let p be a probability, that is, a number between 0 and 1. The operation of slotted ALOHA in each node is simple:: 

●     When the node has a fresh frame to send, it waits until the beginning of the next slot and transmits the entire 
frame in the slot.

●     If there isn't a collision, the node won't consider retransmitting the frame. (The node can prepare a new frame 
for transmission, if it has one.)

●     If there is a collision, the node detects the collision before the end of the slot. The node retransmits its frame in 
each subsequent slot with probability p until the frame is transmitted without a collision.

By retransmitting with probability p, we mean that the node effectively tosses a biased coin; the event heads 
corresponds to retransmit, which occurs with probability p. The event tails corresponds to "skip the slot and toss the 
coin again in the next slot"; this occurs with probability (1-p). Each of the nodes involved in the collision toss their 
coins independently. 

Slotted ALOHA would appear to have many advantages. Unlike channel partitioning, slotted ALOHA allows a single 
active node (i.e., a node with a frame to send) to continuously transmit frames at the full rate of the channel.  Slotted 
ALOHA is also highly decentralized, as each node detects collisions and independently decides when to retransmit. 
(Slotted ALOHA does, however, require the slots to be synchronized in the nodes; we'll shortly discuss an unslotted 
version of the ALOHA protocol, as well as CSMA protocols; noe of which require such synchronization and are 
therefore fully decentralized.) Slotted ALOHA is also an extremely simple protocol. 
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Slotted ALOHA also works great when there is only one active node, but how efficient is it when there are multiple 
active nodes? There are two possible efficiency concerns here.  First, as shown in Figure 5.3-6, when there are 
multiple active nodes, a certain fraction of the slots will have collisions and will therefore be "wasted." The second 
concern is that another fraction of the slots will be empty because all active nodes refrain from transmitting as a result 
of the probabilistic transmission policy. The only "unwasted" slots will be those in which exactly one node transmits. 
A slot in which exactly one node transmits is said to be a successful slot.  The efficiency of a slotted multiple access 
protocol is defined to be the long-run fraction of successful slots when there are a large number of active nodes, with 
each node having a large number of frames to send. Note that if no form of access control were used, and each node 
were to immediately retransmits after each collision, the efficiency would be zero. Slotted ALOHA clearly increases 
the efficiency beyond zero, but by how much? 

 
Figure 5.3-6: Nodes 1, 2 and 3 collide in the first slot. Node 2 finally succeeds in the fourth slot, node 1 in the eighth 

slot, and node 3 in the ninth slot. 
The notation C, E and S represent "collision slot", "empty slot" and "successful slot", respectively

We now proceed to outline the derivation of  the maximum efficiency of slotted ALOHA. To keep this derivation 
simple, let's modify the protocol a little and assume that each node attempts to transmit a frame in each slot with 
probability p. (That is, we assume that each node always has a frame to send and that the node transmits with 
probability p for a fresh frame as well as for a frame that has already suffered a collision.)  Suppose first there are N  
nodes. Then the the probability that a given slot is a successful slot is the probability that one of the nodes transmits 
and that the remaining N-1 nodes do not transmit. The probability that a given node transmits is p; the probability that 
the remaining nodes do not transmit is (1-p)N-1. Therefore the probability a given node has a success is p(1-p)N-1 . 
Because there are N nodes, the probability that an arbitrary node has a success is  Np(1-p)N-1 . 

Thus, when there are N active nodes,  the efficiency of slotted ALOHA is Np(1-p)N-1 . To obtain the maximum 
efficiency for N active nodes, we have to find the p* that maximizes this expression. (See the homework problems for 
a general outline of this derivation.) And to obtain the maximum efficiency for a large number of active nodes, we 
take the limit of Np*(1-p*)N-1 as N approaches infinity. (Again, see homework problems.) After performing these 
calculations,  we'll find that the maximum efficiency of the protocol is  given by 1/e = .37. That is, when a large 
number of nodes have many frames to transmit, then (at best) only 37% of the slots do useful work. Thus the effective 
transmission rate of the channel is not R bps but only .37 R bps! A similar analysis also shows that 37% of the slots go 
empty and 26% of slots have collisions. Imagine the poor network administrator who has purchased a 100 Mbps 
slotted ALOHA system, expecting to be able to use the network to transmit data among a large number of users at an 
aggregate rate of, say, 80 Mbps!  Although the channel is capable of transmitting a given frame at the full channel rate 
of 100Mbps, in the long term, the successful throughput of this channel will be less that 37 Mbps. 
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ALOHA 

The slotted ALOHA protocol required that all nodes synchronize their transmissions to start at the beginning of a slot. 
The first ALOHA protocol [Abramson 1970] was actually an unslotted, fully decentralized, protocol. In so-called pure 
ALOHA, when a frame first arrives (i.e., a network layer datagram is passed down from the network layer at the 
sending node), the node immediately transmits the frame in its entirely into the broadcast channel.  If a transmitted 
frame experiences a collision with one or more other transmissions, the node will then immediately (after completely 
transmitting its collided frame) retransmit the frame with probability p.  Otherwise, the node waits for a frame 
transmission time.  After this wait, it then transmits the frame with probability p, or waits (remaining idle) for another 
frame time with probability 1-p. 

 
Figure 5.3-7: Interfering transmissions in pure Aloha

To determine the maximum efficiency of pure ALOHA,  we focus on an individual node.  We'll make the same 
assumptions as in our slotted ALOHA analysis and take the frame transmission time to be the unit of time   At any 
given time, the probability that a node is transmitting a frame is p. Suppose this frame begins transmission at time t0. 

As shown in Figure 5.3-7, in order for this frame to be successfully transmitted, no other nodes can begin their 
transmission in the interval of time [t0-1, t0].  Such a transmission would overlap with the beginning of the 

transmission of node i's frame.  The probability that all other nodes do not begin a transmission in this interval is (1-p)
N-1.  Similarly, no other node can begin a transmission while node i is transmitting, as such a transmission would 
overlap with the latter part of node i's transmission. The probability that all other nodes do not begin a transmission in 
this interval is also (1-p)N-1.   Thus, the probability that a given node has a successful transmission is p(1-p)2(N-1).  By 
taking limits as in the slotted ALOHA case, we find that the maximum efficiency of the pure ALOHA protocol is only 
1/(2e) - exactly half that of slotted ALOHA.  This then is the price to  be paid for a fully decentralized ALOHA 
protocol. 
  

CSMA - Carrier Sense Multiple Access

In both slotted and pure ALOHA, a node's decision to transmit is made independently of the activity of the other nodes 
attached to the broadcast channel.  In particular, a node neither pays attention to whether another node happens to be 
transmitting when it begins to transmit, nor stops transmitting if another node begins to interfere with its transmission.  
In our cocktail party analogy, ALOHA protocols are quite like a boorish partygoer who continues to chatter away 
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regardless of whether other people are talking.  As humans, we have human protocols that allow allows us to not only 
behave with more civility, but also to decrease the amount of time spent "colliding" with each other in conversation 
and consequently increasing the amount of amount of data we exchange in our conversations. Specifically, there are 
two important rules for  polite human conversation: 

●     Listen before speaking.   If someone else is speaking, wait until they are done.  In the networking world, this is 
termed carrier sensing - a node listens to the channel before transmitting.  If a frame from another node is 
currently being transmitted into the channel, a node then waits ("backs off") a random amount of time and then 
again senses the channel.  If the channel is sensed to be idle, the node then begins frame transmission. 
Otherwise, the node waits another random amount of time and repeats this process.

●     If someone else begins talking at the same time, stop talking.  In the networking world, this is termed collision 
detection - a transmitting node listens to the channel while it is transmitting.  If it detects that another node is 
transmitting an interfering frame, it stops transmitting and uses some protocol to determine when it should next 
attempt to transmit.

These two rules are embodied in the family of  CSMA (Carrier Sense Multiple Access) and CSMA/CD (CSMA with 
Collision Detection) protocols [Kleinrock 1975, Metcalfe 1976, Lam 1980, Rom 1990] .  Many variations on CSMA 
and CSMA/CD have been proposed, with the differences being primarily in the manner in which nodes perform 
backoff. The reader can consult these references for the details of these protocols. We'll study the CSMA/CD scheme 
used in Ethernet in detail in Section 5.5.  Here, we'll consider a few of the most important, and fundamental, 
characteristics of CSMA and CSMA/CD. 

The first question that one might ask about CSMA is that if all nodes perform carrier sensing, why do collisions occur 
in the first place? After all, a node will refrain from transmitting whenever it senses that another node is transmitting.  
The answer to the question can best be illustrated using space-time diagrams [Molle 1987]. Figure 5.3-7 shows a 
space-time diagram of four nodes (A, B, C, D) attached to an linear broadcast bus.  The horizontal axis shows the 
position of each node in space; the y-axis represents time. 

At time t0, node B senses the channel is idle, as no other nodes are currently transmitting.  Node B thus begins 

transmitting, with its bits propagating in both directions along the broadcast medium.  The downward propagation of 
B's bits in Figure 5.3-7 with increasing time indicates that a non-zero amount of time is needed for B's bits to actually 
propagate (albeit at near the speed-of-light) along the broadcast medium.  At time t1 (t1 > t0), node D has a frame to 

send.  Although node B is currently transmitting at time t1, the bits being transmitted by B have yet to reach D, and 

thus D senses the channel idle at t1.  In accordance with the CSMA protocol, D thus begins transmitting its frame.  A 

short time later, B's transmission begins to interfere with D's transmission at D.  From Figure 5.3-7, it is evident that 
the end-to-end channel propagation delay of a broadcast channel - the time it takes for a signal to propagate from 
one of the the channel to another - will play a crucial role in determining its performance.  The longer this propagation 
delay, the larger the chance that a carrier-sensing node is not yet able to sense a transmission that has already begun at 
another node in the network. 
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Figure 5.3-7: Space-time diagram of two CSMA nodes with colliding transmissions

In Figure 5.3-7, nodes do not perform collision detection; both B and D continue to transmit their frames in their 
entirety even though a collision has occurred.  When a node performs collision detection it will cease transmission as 
soon as it detects a collision.  Figure 5.3-8 shows the same scenario as in Figure 5.3-7, except that the two nodes each 
abort their transmission a short time after detecting a collision.  Clearly, adding collision detection to a multiple access 
protocol will help protocol performance by not transmitting a useless, damaged (by interference with a frame from 
another node) frame in its entirety.  The Ethernet protocol we will study in section 5.5 is a CSMA protocol that uses 
collision detection. 
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Figure 5.3-8: CSMA with collision detection.

5.2.2 Taking-Turns Protocols 

Recall that two desirable properties of a multiple access protocol are (i) when only one node is active, the active node 
has a throughput of R bps, and (ii) when M nodes are active, then each active node has a throughput of nearly R/M 
bps. The ALOHA and CSMA protocols have this first property but not the second. This has motivated researchers to 
create another class of protocols -- the taking-turns protocols. As with random-access protocols, there are dozens of 
taking-turns protocols, and each one of these protocols has many variations. We'll discuss two of the more important 
protocols here. The first one is the polling protocol. The polling protocol requires one of the nodes to be designated as 
a "master node" (or requires the introduction of a new  node serving as the master). The master node polls each of the 
nodes in a round-robin fashion. In particular, the master node first sends a message to node 1, saying that it can 
transmit up to some maximum number of frames. After node 1 transmits some frames (from zero up to the maximum 
number), the master node tells node 2 it can transmit up to the maximum number of frames. (The master node can 
determine when a node has finished sending its frames by observing the lack of a signal on the channel.) The 
procedure continues in this manner, with the master node polling each of the nodes in a cyclic manner. 

The polling protocol eliminates the collisions and the empty slots that plague the random access protocols. This allows 
it to have a much higher efficiency. But it also has a few drawbacks. The first drawback is that the protocol introduces 
a polling delay, the amount of time required to notify a node that it can transmit. If, for example, only one node is 
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active, then the node will transmit at a rate less than R bps, as the master node must poll each of the inactive nodes in 
turn, each time the active node sends its maximum number of frames. The second drawback, which is potentially more 
serious, is that if the master node fails, the entire channel becomes inoperative. 

The second taking-turn protocol is the token-passing protocol. In this protocol there is no master node. A small, 
special-purpose frame known as a token is exchanged among the nodes in some fixed order. For example, node 1 
might always send the token to node 2, node 2 might always send the token to node 3, node N might always send the 
token to node 1. When a node receives a token, it holds onto the token only if it has some frames to transmit; 
otherwise, it immediately forwards the token to the next node. If a node does have frames to transmit when it receives 
the token, it sends up to a maximum number of frames and then forwards the token to the next node. Token passing is 
decentralized and has a high efficiency. But it has its problems as well. For example, the failure of one node can crash 
the entire channel. Or if a node accidentally neglects to release the token, then some recovery procedure must be 
invoked to get the token back in circulation? Over the years many token-passing products have been developed, and 
each one had to address these as well as other sticky issues. 
  

5.2.3 Local Area Networks 

Multiple access protocols are used in conjunction with many different types of broadcast channels. They have been 
used for satellite and wireless channels, whose nodes transmit over a common frequency spectrum. They are currently 
used in the upstream channel for cable access to the Internet (see Section 1.5).  And they are extensively used in local 
area networks (LANs). 

Recall that a LAN is a computer network that is concentrated in a geographical area, such as in a building or on a 
university campus. When a user accesses the Internet from a university or corporate campus, the access is almost 
always by way of a LAN. For this type of Internet access, the user's host is a node on the LAN, and the LAN provides 
access to the Internet through a router, as shown in Figure 5.3-9. The LAN is a single "link" between each user host 
and the router; it therefore uses a link-layer protocol, which incorporates a multiple access protocol. The transmission 
rate, R, of most LANs is  very high. Even in the early 1980s, 10 Mbps LANs were common; today, 100 Mbps LANs 
are common, and 1 Gbps LANs are available. 
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Figure 5.3-9: User hosts access an Internet Web server through a LAN. The broadcast channel between a user host 

and the router consists of one "link".

In the 1980s and the early 1990s,  two classes of LAN technologies were popular in the workplace. The first class 
consists of the Ethernet LANs (also known as 802.3 LANs [IEEE 1998b, Spurgeon 1999]), which are random-access 
based.  The second class of LAN technologies are token-passing technologies, including token ring (also known as 
IEEE 802.5 [IEEE 1998]) and FDDI (also known as Fiber Distributed Data Interface [Jain 1994]). Because we shall 
explore the Ethernet technologies in some detail in Section 5.4, we focus our discussion here on the token-passing 
LANs. Our discussion on token-passing technologies is intentionally brief, since these technologies have become 
relatively minor players in the face of relentless Ethernet competition. Nevertheless, in order to provide examples 
about token-passing technology and to give a little historical perspective, it is useful to say a few words about token 
rings. 

In a token ring LAN, the N nodes of the LAN (hosts and routers) are connected in a ring by direct links.  The topology 
of the token ring defines the token-passing order. When a node obtains the token and sends a frame, the frame 
propagates around the entire ring, thereby creating a virtual broadcast channel. The node that sends the frame has the 
responsibility of removing the frame from the ring.  FDDI was designed for geographically larger LANs (so called 
MANs, that is, metropolitan area networks). For geographically large LANs (spread out over several kilometers) it is 
inefficient to let a frame propagate back to the sending node once the frame has passed the destination node. FDDI has 
the destination node remove the frame from the ring. (Strictly speaking, FDDI is not a pure broadcast channel, as 
every node does not receive every transmitted frame.) You can learn more about token ring and FDDI by visiting the 
3Com adapter page [3Com]. 
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5.4 LAN Addresses and ARP

As we learned in the previous section, nodes in LANs send frames to each other over a broadcast 
channel. This means that when a node in a LAN transmits a frame, every other node connected to the 
LAN receives the frame. But usually, a node in the LAN doesn't want to send a frame to all of the other 
LAN nodes but instead wants to send to some particular LAN node. To provide this functionality, the 
nodes on the LAN need to be able to address each other when sending frames, i.e., the nodes need LAN 
addresses and the frame needs a field for a destination LAN address. In this manner, when a node 
receives a frame it can determine whether the frame was intended for it or for some other node in the 
LAN: 

●     If the destination address of the frame matches a receiving node's LAN address, then the node 
extracts the network-layer datagram from the data link layer frame  and passes the datagram up 
the protocol stack.

●     If the destination address does not match the address of the receiving node, the node simply 
discards the frame.

5.4.1 LAN Addresses

In truth, it is not a node that has a LAN address but instead a node's adapter that has a LAN address. 
This is illustrated in Figure 5-4.1. A LAN address is also variously called a physical address an 
Ethernet address, or a MAC (media access control) address.  For most LANs (including Ethernet and 
token-passing LANs), the LAN address is six-bytes long, giving 248 possible LAN addresses. These six-
byte addresses are typically expressed in hexadecimal notation, with each byte of the address expressed 
by a pair of hexadecimal numbers. An adapter's LAN address is permanent -- when an adapter is 
manufactured, a LAN address is burned into the adapter's ROM. 
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Figure 5.4-1: Each adapter connected to a LAN has a unique LAN address.

One interesting property of LAN addresses is that no two adapters have the same address. This might 
seem surprising given that adapters are manufactured in many different countries by many different 
companies. How does a company manufacturing adapters in Taiwan make sure that it is using different 
addresses from a company manufacturing adapters in Belgium? The answer is that IEEE manages the 
physical address space. In particular, when a company wants to manufacture adapters, it purchases a 
chunk of the address space consisting of 224 addresses for a nominal fee.   IEEE allocates the chunk of 
224 addresses by fixing the first 24 bits of  a physical address and letting the company create unique 
combinations of the last 24 bits for each adapter. 

An adapter's LAN address has a flat structure (as opposed to a hierarchical structure), and doesn't change 
no matter where the adapter goes. A portable computer with an Ethernet card always has the same LAN 
address, no matter where the portable goes. Recall that, in contrast, an IP address has a hierarchical 
structure (i.e., a network part and a host part), and a node's IP address needs to be changed when the host 
moves. An adapter's LAN address is analogous to a person's social security number, which also has a 
flat addressing structure and which also doesn't change no matter where the person goes. An IP address 
is analogous to a person's postal address, which is hierarchical and which needs to be changed whenever 
a person moves. 

One natural question at this juncture is, because all nodes also have IP addresses, why do they have to 
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have LAN addresses as well? There are several good answers to this question. First, LANs are designed 
for "arbitrary" network-layer protocols, not just for IP. If adapters were to get assigned IP addresses 
rather than "neutral" LAN addresses, then the adapters would not be able to easily support other network-
layer protocols (e.g., IPX or DECNet). Second, if adapters were to use IP addresses instead of LAN 
addresses, the IP address would have to stored in adapter RAM and configured every time the adapter 
were moved (or powered up). Another option is to not use any addresses in the adapters, and have each 
adapter pass the data (i.e., the IP datagram) of each frame it receives to its parent node. The parent node 
could then check for a matching IP address. One problem with this option is that the parent node will be 
interrupted by every frame sent on the LAN, including by the frames that are destined for other nodes on 
the LAN. 

As we described at the beginning of this section, when an adapter wants to send a frame to some 
destination adapter on the same LAN, the sending adapter inserts the destination LAN address into the 
frame. When the destination adapter receives the frame, it extracts the enclosed datagram and passes the 
datagram up the protocol stack. All the other adapters on the LAN also receive the frame; but these other 
adapters discard the frame without passing the network-layer datagram up the protocol stack. Thus, 
these other adapters do not have to interrupt their hosts when they receive datagrams destined to other 
hosts. Having said this, sometimes a sending adapter does want all the other adapters on the LAN to 
receive and process the frame it is about to send. In this case, the sending adapter  inserts a special LAN 
broadcast address into the destination address field of the frame. For LANs that use the six-byte 
addresses (such as Ethernet and token-passing LANs), the broadcast address is a string of 48 consecutive 
1s (i.e., FF-FF-FF-FF-FF-FF in hexadecimal notation). 

5.4.2 Address Resolution Protocol

Because there are both network-layer addresses (e.g.., Internet IP addresses) and link-layer addresses (i.
e., LAN addresses), there is a need to translate between them. For the Internet, this is the job of the 
Address Resolution Protocol (ARP) [RFC 826]. Every Internet host and router on a LAN has an ARP 
module. To motivate ARP, consider the network shown in Figure 5.4.2. In this figure each node has an 
IP address and each node's adapter has a LAN address. As usual, IP addresses are shown in dotted-
decimal notation and LAN addresses are shown in hexadecimal notation. Now suppose that the node 
with IP address 222.222.222.220 wants to send an IP datagram to node 222.222.222.222. To accomplish 
this task, the sending node must give its adapter not only the IP datagram but also the LAN address for 
node 222.222.222.222. When passed the IP datagram and the LAN address, the sending node's adapter 
can construct a data link layer frame and broadcast the frame into the LAN. But how does the sending 
node determine the LAN address for the node with IP address 222.222.222.222? It does this by 
providing its ARP module with the IP address 222.222.222.222. ARP then responds with the 
corresponding LAN address, namely, 49-BD-D2-C7-56-2A . 
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Figure 5.4-2: Each node on a LAN has an IP address, and each node's adapter has a LAN address.

So we see that ARP resolves an IP address to a LAN address. In many ways it is analogous to DNS 
(studied in section  2.5), which resolves hostnames to IP addresses. However, one important difference 
between the two resolvers is that DNS resolves hostnames for hosts anywhere in the Internet, whereas 
ARP only resolves IP addresses for nodes on the same LAN. If a node in California were to try to use 
ARP to resolve the IP address for a node in Mississippi, ARP would return with an error. 

Now that we have explained what ARP does, let's look at how it works. The ARP module in each node 
has a table in its RAM called an ARP table. This table contains the mappings of IP addresses to LAN 
addresses. Figure 5.4-3 shows what an ARP table in node 222.222.222.220 might look like. For each 
address mapping the table also contains a time-to-live (TTL) entry, which indicates when the entry  will 
be deleted. Note that the table does not necessarily contain an entry for every node on the LAN; some 
nodes may have had entries that expired over time, whereas other nodes may have never been entered 
into the table. We note that a typical expiration time for an entry is 20 minutes from when an entry is 
placed in an ARP table. 
  
  

IP address LAN address TTL

222.222.222.221 88-B2-2F-54-1A-0F 13:45:00

222.222.222.223 5C-66-AB-90-75-B1 13:52:00

Figure 5.4-3: A possible ARP table in node 222.222.222.220.
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Now suppose that node 222.222.222.220 wants to send a datagram that is IP-addressed to another node 
on that LAN. As we indicated above, the sending node needs to obtain the LAN address of the 
destination node,  given the IP address of that node. This task is easy if the destination node has an entry 
in the sending node's ARP table. But what if the destination node does not currently have an entry in the 
ARP table? In particular, suppose node 222.222.222.220 wants to send a datagram to node 
222.222.222.222. In this case, the sending node uses the ARP protocol to resolve the address.  First, the 
sending node constructs a special packet called an ARP packet. An ARP packet has several fields, 
including the sending and receiving IP and LAN addresses. Both ARP query and response packets have 
the same format. The purpose of the ARP query packet to is to query all the other nodes on the LAN to 
determine the LAN address corresponding to the IP address that is being resolved. 

Returning to the example, node 222.222.222.220 passes an ARP query packet to the adapter along with 
an indication that the adapter should send the packet to the LAN broadcast address, namely, FF-FF-FF-
FF-FF-FF. The adapter encapsulates the ARP packet in a data link frame, uses the broadcast address for 
the frame's destination address, and transmits the frame into the LAN. Recalling our social security 
number / postal address analogy, note that an ARP query is equivalent to a person shouting out in a 
crowded room of cubicles in some company (say, AnyCorp): "What is the social security number of the 
person whose postal address is cubicle 13, Room 112, AnyCorp, Palo Alto CA?". The frame containing 
the ARP query is received by all the other adapters on the LAN, and (because of the broadcast address) 
each adapter passes the ARP packet within the frame up to its parent node. Each node that receives the 
ARP packet checks to see if its IP address matches the destination IP address in the ARP packet. The 
one node with a match sends back to the querying node a response ARP packet with the desired 
mapping. The querying node (222.222.222.220) can then update its ARP table and send its IP datagram. 

There are a couple of interesting things to note about the ARP protocol. First, the query ARP message is 
sent within a broadcast frame whereas the response ARP message is sent within a standard frame. 
Before reading on you should think about why this is so. Second, ARP is plug-and-play, that is, a node's 
ARP table gets built automatically -- it doesn't have to be configured by a systems administrator. And if 
a node is disconnected from the LAN, its entry is eventually deleted from the table. 

Sending a Datagram to a Node Off the LAN 

It should now be clear how ARP operates when a node wants to send a datagram to another node on the 
same LAN. But now let's look at the more complicated situation when a node on a LAN wants to send a 
network-layer datagram to a node off the LAN. Let us discuss this issue in the context of Figure 5.4-4, 
which shows a simple network consisting of two LANs interconnected by a router. 
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Figure 5.4-4: Two LANs interconnected by a router.

There are several interesting things to note about Figure 5.4-4. First, there are two types of nodes: hosts 
and routers. Each host has exactly one IP address and one adapter. But, as discussed in Section 4.4, a 
router has an IP address  for each of its interfaces. Each router interface also has its own ARP module 
(in the router) and its own adapter. Because the router in Figure 5.4-4 has two interfaces, it has two IP 
addresses, two ARP modules and two adapters. Of course, each adapter in the network has its own LAN 
address. 

Also note that all of the interfaces connected to LAN 1 have addresses of the form 111.111.111.xxx and 
all of the interfaces connected to LAN 2 have the form 222.222.222.xxx . Thus, in this example, the first 
three bytes of the IP address specifies the "network" whereas the last byte specifies the specific interface 
on a network. 

Now suppose that host 111.111.111.111 wants to send an IP datagram to host 222.222.222.222. The 
sending host passes the datagram to its adapter, as usual. But the sending host must also indicate to its 
adapter an appropriate destination LAN address. What LAN address should the adapter use? One might 
venture to guess that the appropriate LAN address is the address of the adapter for host 
222.222.222.222, namely, 49-BD-D2-C7-58-2A. This guess is, however, wrong. If the sending adapter 
were to use that LAN address, then none of the adapters on LAN 1 would bother to pass the IP datagram 
up to its network layer; the datagram would just die and go to datagram heaven. 

If we look carefully at Figure 5.4-4, we see that in order for a datagram to go from 111.111.111.111 to a 
node on LAN 2, the datagram must first be sent to the router interface 111.111.111.110. Thus, the 
appropriate LAN address for the frame is the address of the adapter for router interface 111.111.111.110, 
namely, E6-E9-00-17-BB-4B. How does the sending host acquire the LAN address of 111.111.111.110? 
By using ARP, of course! Once the sending adapter has this LAN address, it creates a frame and sends 
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the frame into LAN 1. The router adapter on LAN 1 sees that the data link frame is addressed to it, and 
therefore passes the frame to the network layer of the router. Hooray, the IP datagram has successfully 
been moved from source host to the router! But we are not done. We still have to move the datagram 
from the router to the destination! The router now has to determine the correct interface on which the 
datagram is to be forwarded. As discussed in Section 4.4, this is done by consulting a routing table in the 
router. The routing table tells the router that the datagram is to be forwarded router interface 
222.222.222.220. This interface then passes the datagram to its adapter, which encapsulates the 
datagram in a new frame and sends the frame into LAN 2. This time, the destination LAN address of the 
frame is indeed the LAN address of the ultimate destination. And how does the router obtain this 
destination LAN address? From ARP, of course! 

ARP for Ethernet is defined in [RFC 826]. A nice introduction to ARP is given in the TCP/IP tutorial, 
[RFC 1180]. We shall explore ARP in more detail in the homework problems. 
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5.5 Ethernet

Ethernet has pretty much taken over the LAN market. As recently as the 1980s and the early 1990s, 
Ethernet faced many challenges from other LAN technologies, including token ring, FDDI and ATM. 
Some of  these other technologies succeeded at capturing a part of the market share for a few years. But 
since its invention in the mid-1970, Ethernet has continued to evolve and grow, and has held on to its 
dominant market share. Today, Ethernet  is by far the most prevalent LAN technology, and is likely to 
remain so for the foreseeable future. One might say that Ethernet has been to local area networking what 
the Internet has been to global networking: 

There are many reasons for Ethernet's success. First, Ethernet was the first widely-deployed high-speed 
LAN. Because it was deployed early, network administrators became intimately familiar with Ethernet -- 
its wonders and its quirks -- and were reluctant to switch over to other LAN technologies when they 
came on the scene. Second, token ring, FDDI and ATM are more complex and expensive than Ethernet, 
which further discouraged network administrators from switching over. Third, the most compelling 
reason to switch to another LAN technology (such as FDDI or ATM) was usually the higher data rate of 
the new technology; however, Ethernet always fought back, producing versions that operated at equal 
data rates or higher. Switched Ethernet was also introduced in the early 1990s, which further increased 
its effective data rates. Finally, because Ethernet has been so popular, Ethernet hardware (in particular, 
network interface cards) has become a commodity and is remarkably cheap. This low cost is also due o 
the fact that Ethernet's multiple access protocol, CSMA/CD, is totally decentralized, which has also 
contributed to the low cost and simple design. 

The original Ethernet LAN, as shown in Figure 5.5-1, was invented in the mid 1970s by Bob Metcalfe. 
An excellent source of online information about Ethernet is Spurgeon's Ethernet Web Site [Spurgeon 
1999]. 
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Figure 5.5-1: The original Metcalfe design led to the 10Base5 Ethernet standard, which included an 

interface cable that connected the Ethernet adapter (i.e., interface) to an external transceiver. Drawing 
taken from Charles Spurgeon's Ethernet Web Site.

5.5.1 Ethernet Basics

Today Ethernet comes in many shapes and forms. An Ethernet LAN can have a "bus topology" or a "star 
topology." An Ethernet LAN can run over coaxial cable, twisted-pair copper wire, or fiber optics. 
Furthermore, Ethernet can transmit data at different rates, specifically, at 10 Mbps, 100 Mbps and 1 
Gbps. But even though Ethernet comes in many flavors, all of the Ethernet technologies share a few 
important characteristics. Before examining the different technologies, let's first take a look at the 
common characteristics. 

Ethernet Frame Structure 

Given that there are many different Ethernet technologies on the market today, what do they have in 
common, what binds them together with a common name? First and foremost is the Ethernet frame 
structure. All of the Ethernet technologies -- whether they use coaxial cable or copper wire, whether they 
run at 10 Mbps, 100 Mbps or 1 Gbps -- use the same frame structure. 
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Figure 5.5-2: Ethernet frame structure

The Ethernet frame is shown in Figure 5.5-2. Once we understand the Ethernet frame, we will already 
know a lot about Ethernet. To put our discussion of the Ethernet frame in a tangible context, let us 
consider sending an IP datagram from one host to another host, with both hosts on the same Ethernet 
LAN. Let the sending adapter, adapter A, have physical address AA-AA-AA-AA-AA-AA and the 
receiving adapter, adapter B, have physical address BB-BB-BB-BB-BB-BB. The sending adapter 
encapsulates the IP datagram within an Ethernet frame and passes the frame to the physical layer. The 
receiving adapter receives the frame from the physical layer, extracts the IP datagram, and passes the IP 
datagram to the network layer. In this context, let us now examine the six fields of the Ethernet frame: 

●     Data Field (46 to 1500 bytes): This field carries the IP datagram. The Maximum Transfer Unit 
(MTU) of Ethernet is 1500 bytes. This means that if the IP datagram exceeds 1500 bytes, then the 
host has to fragment the datagram, as discussed in Section 4.4. The minimum size of the data 
field is 46 bytes. This means that if the IP datagram is less than 46 bytes,  the data field has to be 
"stuffed" to fill it out to 46 bytes. When stuffing is used, the data passed to the network layer 
contains the stuffing as well as an IP datagram. The network layer uses the length field in the IP 
datagram header to remove the stuffing.

●     Destination Address (6 bytes): This field contains the LAN address of the destination adapter, 
namely, BB-BB-BB-BB-BB-BB. When adapter B receives an Ethernet frame with destination 
address other than its own physical address, BB-BB-BB-BB-BB-BB, or the LAN broadcast 
address, it discards the frame. Otherwise, it passes the contents of the data field to the network 
layer.

●     Source Address (6 bytes): This field contains the LAN address of the adapter that transmits the 
frame onto the LAN, namely, AA-AA-AA-AA-AA-AA.

●     Type Field (two bytes): The type field permits Ethernet to "multiplex" network-layer protocols. 
To understand this idea, we need to keep in mind that hosts can use other network-layer protocols 
besides IP. In fact, a given host may support multiple network layer protocols, and use different 
protocols for different applications. For this reason, when the Ethernet frame arrives at adapter B, 
adapter B needs to know to which network-layer protocol it should pass the contents of the data 
field. IP and other data-link layer protocols (e.g., Novell IPX or AppleTalk) each have there own, 
standardized type number. Furthermore, the ARP protocol (discussed in the previous section) has 
its own type number. Note that the type field is analogous to the protocol field in the network-
layer datagram and the port number fields in the transport-layer segment; all of these fields serve 
to glue a protocol at one layer to a protocol at the layer above.

file:///D|/Downloads/Livros/computação/Computer%20Net...%20Approach%20Featuring%20the%20Internet/ethernet.htm (3 of 12)20/11/2004 15:52:37



Ethernet

●     Cyclic Redundancy Check (CRC) (4 bytes): As discussed in section 5.2, the purpose of the 
CRC field is to allow the receiving adapter, adapter B, to detect whether any errors have been 
introduced into the frame, i.e., if bits in the frame have been toggled. Causes of bit errors include 
attenuation in signal strength and ambient electromagnetic energy that leaks into the Ethernet 
cables and interface cards. Error detection is performed as follows. When host A constructs the 
Ethernet frame, it calculates a CRC field, which is obtained from a  mapping of the other bits in 
frame (except for the preamble bits). When host B receives the frame, it applies the same 
mapping to the frame and checks to see if the result of the mapping is equal to what is in the CRC 
field. This operation at the receiving host is called the CRC check. If the CRC check fails (that 
is, if the result of the mapping does not equal the contents of the CRC field), then host B knows 
that there is an error in the frame.

●     Preamble:  (8 bytes) The Ethernet frame begins with an eight-byte preamble field. Each of the 
first seven bytes of the preamble is 10101010; the last byte is 10101011. The first seven bytes of 
the preamble serve to "wake up" the receiving adapters and to synchronize their clocks to that of 
the sender's clock. Why should the clocks be out of synchronization? Keep in mind that adapter 
A aims to transmit the frame at 10 Mbps, 100 Mbps or 1 Gbps, depending on the type of Ethernet 
LAN. However, because nothing is absolutely perfect, adapter A will not  transmit the frame at 
exactly the target rate; there will always be some drift from the target rate,  a drift which is not 
known a priori by the other adapters on the LAN. A receiving adapter can lock onto adapter A's 
clock by simply locking onto the bits in the first seven bytes of the preamble. The last two bits of 
the eighth byte of the preamble (the first two consecutive 1s) alert adapter B that the "important 
stuff" is about to come.  When host B sees the two consecutive 1s, it know that the next six bytes 
is the destination address. An adapter can tell when a frame ends by simply detecting absence of 
current.

An Unreliable Connectionless Service 

All of the Ethernet technologies provide connectionless service to the network layer. That is to say, 
when adapter A wants to send a datagram to adapter B, adapter A encapsulates the datagram in an 
Ethernet frame and sends the frame into the LAN, without first "handshaking" with adapter B. This 
layer-2 connectionless service is analogous to IP's layer-3 datagram service and UDP's layer-4 
connectionless service. 

All the Ethernet technologies provide an unreliable service to the network layer. In particular when 
adapter B receives a frame from A, adapter B does not send an acknowledgment when a frame passes 
the CRC check (nor does it send a negative acknowledgment when a frame fails the CRC check). 
Adapter A hasn't the slightest idea whether a frame arrived correctly or incorrectly. When a frame fails 
the CRC check, adapter B simply discards the frame. This lack of reliable transport (at the link layer) 
helps to make Ethernet simple and cheap. But it also means that the stream of datagrams passed to the 
network layer can have gaps. 

If there are gaps due to discarded Ethernet frames, does the application-layer protocol at host B see gaps 
as well? As we learned in Chapter 3, this solely depends on whether the application is using UDP or 
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TCP. If the application is using UDP, then the application-layer protocol in host B will indeed suffer 
from gaps in the data. On the other hand, if the application is using TCP, then TCP in host B will not 
acknowledge the discarded data, causing TCP in host A to retransmit.  Note that when TCP retransmits 
data, Ethernet retransmits the data as well. But we should keep in mind that Ethernet doesn't know that it 
is retransmitting. Ethernet thinks it is receiving a brand new datagram with brand new data, even though 
this datagram contains data that has already been transmitted at least once. 

Baseband Transmission and Manchester Encoding 

Ethernet uses baseband transmission, that is, the adapter sends a digital signal directly into the broadcast 
channel. The interface card does not shift the signal into another frequency band, as do ADSL and cable 
modem systems. Ethernet also uses Manchester encoding, as shown in Figure 5.5-3. With Manchester 
encoding each bit contains a transition; a 1 has a transition from up to down, whereas a zero has a 
transition from down to up. The reason for Manchester encoding is that the clocks in the sending and 
receiving adapters are not perfectly synchronized. By including a transition in the middle of each bit, the 
receiving host can synchronize its clock to that of the sending host. Once the receiving adapter's clock is 
synchronized, the receiver can delineate each bit and determine whether it is a one or zero. Manchester 
encoding is a physical layer operation rather than a link-layer operation; however, we have briefly 
described it here as it is used extensively in Ethernet. 

 
Figure 5.5-3: Manchester encoding

5.5.2 CSMA/CD: Ethernet's Multiple Access Protocol

Nodes in an Ethernet LAN are interconnected by a broadcast channel, so that when an adapter transmits 
a frame, all the adapters on the LAN receive the frame. As we discussed in section 5.3, Ethernet uses a 
CSMA/CD multiple access algorithm. Summarizing our discussion from Section 5.3, recall that CSMA/
CD employs the following mechanisms: 
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1.  An adapter may begin to transmit at any time, i.e., no slots are used.
2.  An adapter never transmits a frame when it senses that some other adapter is transmitting, i.e., it 

uses carrier-sensing.
3.  A transmitting adapter aborts its transmission as soon as it detects that another adapter is also 

transmitting, i.e., it uses collision detection.
4.  Before attempting a retransmission, an adapter waits a random time that is typically small 

compared to a frame time.

These mechanisms give CSMA/CD much better performance than slotted ALOHA in a LAN 
environment. In fact, if the maximum propagation delay between stations is very small, the efficiency of 
CSMA/CD can approach 100%. But note that the second and third mechanisms listed above require 
each Ethernet adapter to be able to (1) sense when some other adapter is transmitting, and (2) detect a 
collision while it is transmitting. Ethernet adapters perform these two tasks by measuring voltage levels 
before and during transmission. 

Each adapter runs the CSMA/CD protocol without explicit coordination with the other adapters on the 
Ethernet. Within a specific adapter, the CSMA/CD protocol works as follows: 

1.  The adapter obtains a network-layer PDU from its parent node, prepares an Ethernet frame, and 
puts the frame in an adapter buffer.

2.  If the adapter senses that the channel is idle (i.e., there is no signal energy from the channel 
entering the adapter), it starts to transmit the frame. If the adapter senses that the channel is busy, 
it waits until it senses no signal energy (plus a few hundred microseconds) and then starts to 
transmit the frame.

3.  While transmitting, the adapter monitors for the presence of signal energy coming from other 
adapters. If the adapter transmits the entire frame without detecting signal energy from other 
adapters, the adapter is done with the frame.

4.  If the adapter detects signal energy from other adapters while transmitting, it stops transmitting 
its frame and instead transmits a 48-bit jam signal.

5.  After aborting (i.e., transmitting the jam signal), the adapter enters an exponential backoff 
phase.  Specifically, when transmitting a given frame, after experiencing  the nth collision in a 
row for this frame, the adapter chooses a value for K at random from {0,1,2,...,2m - 1} where m:= 
min(n,10). The adapter then waits K x 512 bit times and then returns to Step 2.

A few comments about the CSMA/CD protocol are certainly in order. The purpose of the jam signal is 
to make sure that all other transmitting adapters become aware of the collision. Let's look at an example. 
Suppose adapter A begins to transmit a frame, and just before A's signal reaches adapter B, adapter B 
begins to transmit. So B will have transmitted only a few bits when it aborts its transmission. These few 
bits will indeed propagate to A, but they may not constitute enough energy for A to detect the collision. 
To make sure that A detects the collision (so that it to can also abort), B transmits the 48-bit jam signal. 

Next consider the exponential backoff algorithm. The first thing to notice here is that  a bit time (i.e., the 
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time to transmit a single bit) is very short; for a 10 Mbps Ethernet, a bit time is .1 microseconds. Now 
let's look at an example. Suppose that an adapter attempts for the first time to transmit a frame, and 
while transmitting it detects a collision. The adapter then chooses K=0 with probability .5 and chooses 
K=1 with probability .5. If the adapter chooses K=0, then it immediately jumps to Step 2 after 
transmitting the jam signal. If the adapter chooses K=1, it waits 51.2 microseconds before returning to 
Step 2. After a second collision, K is chosen with equal probability from {0,1,2,3}. After three 
collisions, K is chosen with equal probability from {0,1,2,3,4,5,6,7}. After ten or more collisions, K is 
chosen with equal probability from {0,1,2,...,1023}. Thus the size of the sets from which K is chosen 
grows exponentially with the number of collisions (until n=10); it is for this reason that Ethernet's 
backoff algorithm is referred to as "exponential backoff". 

The Ethernet standard imposes limits on the distance between any two nodes. These limits ensure that if 
adapter A chooses a lower value of K than all the other adapters involved in a collision, then adapter A 
will be able to transmit its frame without experiencing a new collision. We will explore this property in 
more detail  in the homework problems. 

Why use exponential backoff? Why not, for example, select K from {0,1,2,3,4,5,6,7} after every 
collision? The reason is that when an adapter experiences its first collision, it has no idea how many 
adapters are involved in the collision. If there are only a small number of colliding adapters, it makes 
sense to choose K from a  small set of small values. On the other hand, if many adapters are involved in 
the collision, it makes sense to choose K from a larger, more dispersed set of values (why?). By 
increasing the size of the set after each collision, the adapter appropriately adapts to these different 
scenarios. 

We also note here that each time an adapter prepares a new frame for transmission, it runs the CSMA/
CD algorithm presented above. In particular, the adapter does not take into account any collisions that 
may have occurred in the recent past. So it is possible that an adapter with a new frame will be able to 
immediately sneak in a successful transmission  while several other adapters are in the exponential 
backoff state. 

Ethernet Efficiency

When only one node has a frame to send (which is typically the case), the node can transmit at the full 
rate of the Ethernet technology (either 10 Mbps, 100 Mbps, or 1 Gbps). However, if many nodes have 
frames to transmit, the effective transmission rate of the channel can be much less. We define the 
efficiency of Ethernet to be the long-run fraction of time during which frames are being transmitted on 
the channel without collisions when there is a large number of active nodes, with each node having a 
large number of frames to send. In order to present a closed-form approximation of the efficiency of 
Ethernet, let tprop denote the maximum time it takes signal energy to propagate between any two 

adapters. Let ttrans be the time to transmit a maximum size Ethernet frame (approximately 1.2 msecs for 

a 10 Mbps Ethernet). A derivation of the efficiency of Ethernet is beyond the scope of this book (see 
[Lam 1980] and [Bertsekas 1992]). Here we simply state the following approximation: 
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efficiency = 1/(1+ 5 tprop/ttrans).

We see from this formula that as  tprop approaches 0, the efficiency approaches 1. This is intuitive 

because if the propagation delay is zero, colliding nodes will abort immediately without wasting the 
channel. Also, as ttrans becomes very large, efficiency approaches 1. This is also intuitive because when 

a frame grabs the channel, it will hold on to the channel  for a very long time; thus the channel will be 
doing productive work most of the time. 

5.5.3 Ethernet Technologies

The most common Ethernet technologies today are 10Base2, which uses thin coaxial cable in a bus 
topology and has a transmission rate of 10 Mbps; 10BaseT, which uses twisted-pair cooper wire in a star 
topology and has a transmission rate of 10 Mbps; 100BaseT, which typically uses twisted-pair cooper 
wire in a star topology and has a transmission rate of 100 Mbps; and Gigabit Ethernet, which uses both 
fiber and twisted-pair cooper wire and transmits at a rate of 1 Gbps. These Ethernet technologies are 
standardized by the IEEE 802.3 working groups. For this reason, Ethernet is often referred to as an 802.3 
LAN. 

Before discussing specific Ethernet technologies, we need to discuss repeaters, which are commonly 
used in LANs as well as in wide-area transport. A repeater is a physical-layer device that acts on 
individual bits rather than on packets. It has two or more interfaces. When a bit, representing a zero or a 
one, arrives from one interface, the repeater simply recreates the bit, boosts its energy strength, and 
transmits the bit onto all the other interfaces. Repeaters are commonly used in LANs in order to extend 
their geographical range. When used with Ethernet, it is important to keep in mind that repeaters do not 
implement carrier sensing or any other part of CSMA/CD; a repeater repeats an incoming bit on all 
outgoing interfaces even if there is signal energy on some of the interfaces. 

10Base2 Ethernet 

10Base2 is a very popular Ethernet technology. If you look at how your computer (at work or at school) 
is connected to the network, it is very possible you will see a 10Base2 connection. The "10" in 10Base2 
stands for "10 Mbps"; the "2" stands for "200 meters", which is the approximate maximum distance 
between any two nodes without repeaters between them. (The actual maximum distance is 185 meters.) 
A 10Base2 Ethernet is shown in Figure 5.5-4. 
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Figure 5.5-4: A 10Base2 Ethernet

We see from Figure 5.4.3 that 10Base2 uses a bus topology; that is, nodes are connected (through their 
adapters) in a linear fashion. The physical medium used to connect the nodes is thin coaxial cable, 
which is similar to what is used in cable TV, but with a thinner and lighter cable. When an adapter 
transmits a frame, the frame passes through a "tee connector;" two copies of the frame leave the tee 
connector, one copy going in one direction and one copy in the other direction. As the frames travel 
towards the terminators, they leave a copy at every node they pass. (More precisely, as a bit passes in 
front of a node, part of the energy of the bit leaks into the adapter.) When the frame finally reaches a 
terminator, it gets absorbed by the terminator. Note when an adapter transmits a frame, the frame is 
received by every other adapter on the Ethernet. Thus, 10Base2 is indeed a broadcast technology. 

Suppose you want to connect a dozen PCs in your office using 10Base2 Ethernet. To do this, you would 
need to purchase 12 Ethernet cards with thin Ethernet ports; 12 BNC trees, which are small metalic 
objects that attach to the adapters (less than one dollar each); a dozen or so thin coax segments, 5-20 
meters each; and two "terminators," which you put at the two ends of the bus. The cost of the whole 
network, including adapters, is likely to be less than the cost of a single PC! Because 10Base2 is 
incredibly inexpensive, it is often referred to as "cheapnet". 

Without a repeater, the maximum length of a 10Base2 bus is 185 meters. If the bus becomes any longer, 
then signal attenuation can cause the system to malfunction. Also, without a repeater, the maximum 
number of nodes is 30, as each node contributes to signal attenuation. Repeaters can be used to connect 
10Base2 segments in a linear fashion, with each segment having up to 30 nodes and having a length up 
to 185 meters. Up to four repeaters can be included in a 10Base2 Ethernet, which creates up to five 
"segments". Thus a 10Base2 Ethernet bus can have a total length of 985 meters and support up to 150 
nodes. Note that the CSMA/CD access protocol is completely oblivious to the repeaters; if any two of 
150 nodes transmit at the same time, there will be a collision. The online reader can learn more 10Base2 
by visiting Spurgeon's 10Base2 page. 
  

10BaseT and 100BaseT 
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We discuss 10BaseT and100BaseT  Ethernet together, as they are similar technologies. The most 
important difference between them is that 10BaseT transmits at 10 Mbps and 100BaseT Ethernet 
transmits at 100 Mbps. 100BaseT is also commonly called "fast Ethernet" and "100 Mbps Ethernet". 
10BaseT and 100BaseT are also very popular Ethernet technologies; in fact, for new installations, 
10BaseT and Ethernet are often today the technology of choice.  Both 10BaseT and 100BaseT Ethernet 
use a star topology, as shown in Figure 5.5-5. 

 
Figure 5.5-5: Star topology for 10BaseT and 100BaseT

In the star topology there is a central device called a hub (also sometimes called a concentrator.) Each 
adapter on each node has a direct, point-to-point connection to the hub. This connection consists of two 
pairs of twisted-pair cooper wire, one for transmitting and the other for receiving. At each end of the 
connection there is a connector that resembles the RJ-45 connector used for ordinary telephones. The 
"T" in 10BaseT and 100BaseT stands for "twisted pair".  For both 10BaseT and 100BaseT, the 
maximum length of the connection between an adapter and the hub is 100 meters; the maximum length 
between any two nodes is 200 meters. As we will discuss in the next section, this maximum distance can 
be increased by using tiers of hubs, bridges, switches and fiber links. A 10BaseT 

In essence, a hub is a repeater: when it receives a bit from an adapter, it sends the bit to all the other 
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adapters. In this manner, each adapter can (1) sense the channel to determine if it is idle, and (2) detect a 
collision while it is transmitting. But hubs are popular because they also provide network management 
features. For example, if an adapter malfunctions and continually sends Ethernet frames (a so-called 
"jabbering adapter"), then in a 10Base2 Ethernet will become totally dysfunctional; none of the nodes 
will be able to communicate. But a 10BaseT network will continue to function, because the hub will 
detect the problem and internally disconnect the malfunctioning adapter. With this feature, the network 
administrator doesn't have to get out of bed and drive back to work in order to correct the problem for 
hackers who work late at night. Also, most hubs can gather information and report the information to a 
host that connects directly to the hub. This monitoring host provides a graphical interface that displays 
statistics and graphs, such as bandwidth usage, collision rates, average frame sizes, etc. Network 
administrators can use this information to not only debug and correct problems, but also to  plan how the 
LAN should evolve in the future. 

Many Ethernet adapters today are 10/100 Mbps adapters. This means that they can be used for both 
10BaseT and 100BaseT Ethernets. 100BaseT, which typically uses category-5 twisted pair (a high-
quality twisted pair with a lot of twists). Unlike the 10Base2 and 10BaseT, 100BaseT does not use 
Manchester encoding, but instead a more efficient encoding called 4B5B: every group of five clock 
periods is used to send 4 bits in order to provide enough transitions to allow clock synchronization. 

The online reader can learn more about 10BaseT and 100BaseT by visiting Spurgeon's 10BaseT page 
and Spurgeon's 100BaseTX page. The reader is also encouraged to read the following articles from Data 
Communications on 100Mbps Ethernet: 

●     Fast Track: 100 Mbps Ethernet Made Easy
●     Lab Test: 100Base-T Enterprise Switching Without the Wait
●     Lab Test: 100Base-T vs. 100VG-AnyLAN: The Real Fast Ethernet

We briefly mention at this point that both 10 Mbps and 100 Mbps Ethernet technologies can employ 
fiber links. A fiber link is often used to interconnect to hubs that are in different buildings on the same 
campus. Fiber is expensive because of cost of the cost of its connectors, but it has excellent noise 
immunity. The IEEE 802 standards permit a LAN to have a larger geographically reach when fiber is 
used to connect backbone nodes. 

Gigabit Ethernet 

Gigabit Ethernet is an extension to the highly successful 10 Mbps and 100 Mbps Ethernet standards. 
Offering a raw data rate of 1000 Mbps, Gigabit Ethernet maintains full compatibility with the huge 
installed base of Ethernet equipment. The standard for Gigabit Ethernet,  referred to as IEEE 802.3z, 
does the following: 

●     Uses the standard Ethernet frame format (Figure 5.4.1), and is backward compatible with 
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10BaseT and 100BaseT technologies. This allows for easy integration of Gigabit Ethernet with 
the existing installed base of Ethernet equipment.

●     Allows for point-to-point links as well as shared broadcast channels. Point-to-point links use 
switches (see Section 5.6) where as broadcast channels use hubs, as described above for 10BaseT 
and 100 BaseT. Un Gigabit Ethernet jargon, hubs are called "buffered distributors".

●     Uses CSMA/CD for shared broadcast channels. In order to have acceptable efficiency, the 
maximum distance between nodes must be severely restricted.

●     Allows for full-duplex operation at 1000 Mbps in both directions for point-to-point channels.

Like 10BaseT and 100BaseT, Gigabit Ethernet has a star topology with a hub or switch at its center. 
(Ethernet switches will be discussed in Section 5.6.) Gigabit Ethernet often serves as a backbone for 
interconnecting multiple 10 Mbps and 100 Mbps Ethernet LANs. Initially operating over optical fiber, 
Gigabit Ethernet will be able to use Category 5 UTP cabling. 

The Gigabit Ethernet Alliance is  an open forum whose purpose is to promote industry cooperation in 
the development of Gigabit Ethernet. Their Web site is rich source of information on Gigabit Ethernet 
[Alliance 1999]. The Interoperability Lab at the University of New Hampshire also maintains a nice 
page on Gigabit Ethernet [Inter 1999]. 
  
  

References

[Lam 1980] S. Lam, A Carrier Sense Multiple Access Protocol  for Local Networks," Computer 
Networks, Volume 4, pp. 21-32, 1980. 
[Bertsekas 1992] D. Bertsekas and R. Gallager, Data Networks, Second Edition, Prentice Hall, 
Englewood Cliffs, New Jersey, 1992. 
[Spurgeon 1999] C. Spurgeon, Charles Spurgeon's Ethernet Web Site, http://wwwhost.ots.utexas.edu/
ethernet/ 
[Alliance 1999] Gigabit Ethernet Alliance, http://www.gigabit-ethernet.org/ 
[Inter 1999] Interoperability Lab Gigabit Ethernet Page, http://www.iol.unh.edu/training/ge.html 

Copyright 1996-1999   James F. Kurose and  Keith W. Ross.  All Rights reserved. 

file:///D|/Downloads/Livros/computação/Computer%20Net...%20Approach%20Featuring%20the%20Internet/ethernet.htm (12 of 12)20/11/2004 15:52:37

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-98.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-98.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-352.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/ge.html


CSMA/CD Simulation

Ethernet Applet

This applet allows you to visualize how transmission time and propagation delay effect CSMA/CD. The 
applet uses a bus topology (such as with 10Base2) as opposed to a star topology (although similar effects 
occur with a star topology). The applet assumes a propagation speed of 2*108 meters/sec. 

1.  Set the parameters: bus length, frame size, and transmission rate.
2.  Click on Start.
3.  Click on stations to generate packets.
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Hubs, Bridges, and Switches

5.6 Bridges and Switches

Institutions -- including, companies, universities and high schools -- typically consist of many departments, with each 
department having and managing its own Ethernet LAN. Naturally, an institution will want its departments to 
interconnect their departmental LAN segments. In this section, we consider a number of different approaches in which 
LANs 
can be connected together.  We'll cover three approaches, hubs, bridges, and switches in the following subsections.  
All three of these approaches are in widespread use today. 
  

5.6.1 Hubs

The simplest way to interconnect LANs is to use a hub.  A hub is a simple device that takes an input (i.e., a frame's 
bits) an retransmits the input on the hub's outgoing ports.  Hubs are  essentially repeaters, operating on bits.  They are 
thus physical-layer devices. When a bit comes into a hub interface, the hub simply broadcasts the bit on all the other 
interfaces. In this section we investigate bridges, which are another type of interconnection device. 

Figure 5.6-1 shows how three academic departments in a university might interconnect their LANs. In this figure, each 
of the three departments has a 10BaseT Ethernet that provides network access to the faculty, staff  and students of the 
departments. Each host in a department has a point-to-point connection to the departmental hub. A fourth hub, called a 
backbone hub, has point-to-point connections to the departmental hubs, interconnecting the LANs of the three 
departments. The design shown in Figure 5.6-1 is a multi-tier hub design because the hubs are arranged in a 
hierarchy. It is also possible to create multi-tier designs with more than two tiers -- for example, one tier for the 
departments, one tier for the schools within the university (e.g., engineering school, business school, etc.) and one tier 
at the highest university level. Multiple tiers can also be created out of 10Base2 (bus topology Ethernets) with 
repeaters. 

 
Figure 5.6-1: Three departmental Ethernets interconnected with a hub.
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In a multi-tier design, we refer to the entire interconnected network as a LAN, and we refer to each of the departmental 
portions of the LAN (i.e., the departmental hub and the hosts that connect to the hub) as a LAN segment. It is 
important to note that all of the LAN segments  in Figure 5-6.1 belong to the same collision domain, that is, whenever 
two or more nodes on the LAN segments transmit at the same time, there will be a collision and all of the transmitting 
nodes will enter exponential backoff. 

Interconnecting departmental LANs with a backbone hub has many benefits. First and foremost, it provides inter-
departmental communication to the hosts in the various departments. Second, it extends the maximum distance 
between any pair of nodes on the LAN. For example, with 10BaseT the maximum distance between a node and its hub 
is 100 meters; therefore, in a single LAN segment the maximum distance between any pair of nodes is 200 meters. By 
interconnecting the hubs, this maximum distance can be extended, since the distance between directly-connected hubs 
can also be 100 meters when using twisted pair (and more when using fiber). Third, the multi-tier design provides a 
degree of graceful degradation. Specifically, if any one of the departmental hubs starts to malfunction, the backbone 
hub can detect the problem and disconnect the departmental hub from the LAN; in this manner, the remaining 
departments can continue to operate and communicate while the faulty departmental hub gets repaired. 

Although a backbone hub is a useful interconnection device, it has three serious limitations that hinder its deployment. 
First, and perhaps more important, when departmental LANs are interconnected with a hub (or a repeater), then the 
independent collision domains of the departments are transformed into one large and common collision domain. Let us 
explore this latter issue in the context of Figure 5.6-1. Before interconnecting the three departments, each departmental 
LAN had a maximum throughput of 10 Mbps, so that maximum aggregate throughput of the three LANs was 30 
Mbps. But once the three LANs are interconnected with a hub, all of the hosts in the three departments belong to the 
same collision domain, and the maximum aggregate throughput is reduced to 10 Mbps. 

A second limitation is that if the various departments use different Ethernet technologies, then it may not be possible to 
interconnect the departmental hubs with a backbone hub. For example, if some departments use 10BaseT and the 
remaining departments use 100BaseT, then it is impossible to interconnect all the departments without some frame 
buffering at the interconnection point; since hubs are essentially repeaters and do not buffer frames, they cannot 
interconnect LAN segments operating at different rates. 

A third limitation is that each of the Ethernet technologies (10Base2, 10BaseT, 100BaseT, etc.) has restrictions on the 
maximum number of nodes that can be in a collision domain, the maximum distance between two hosts in a collision 
domain, and the maximum number of tiers that can be present in a multi-tier design. These restrictions constrain both 
the total number of hosts that connect to a multi-tier LAN as well as geographical reach of the multi-tier LAN. 

5.6.2 Bridges

In contrast to hubs, which are physical-level devices, bridges operate on Ethernet frames and thus are layer-2 devices. 
In fact, bridges are full-fledged packet switches that forward and filter frames using the LAN destination addresses. 
When a frame comes into a bridge interface, the bridge does not just copy the frame onto all of the other interfaces. 
Instead, the bridge examines the destination address of the frame and attempts to forward the frame on the interface 
that leads to the destination. 

Figure 5.6-2 shows how the three academic departments of our previous example might be interconnected with a 
bridge. The three numbers next to the bridge are the interface numbers for the three bridge interfaces. When the 
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departments are interconnected by a bridge, as in Figure 5.6-2, we again refer to the entire interconnected network as a 
LAN, and we again refer to each of the departmental portions of the network as LAN segments. But in contrast to the 
multi-tier hub design in Figure 5.6-1, each LAN segment is now an isolated collision domain. 
  

 
Figure 5.6-2: Three departmental LANs interconnected with a bridge.

Bridges can overcome many of the problems that plague hubs. First, bridges permit inter-departmental communication 
while preserving isolated collision domains for each of the departments. Second, bridges can interconnect different 
LAN technologies, including 10 Mbps and 100 Mbps Ethernets. Third, there is no limit to how big a LAN can be when 
bridges are used to interconnect LAN segments: in theory, using bridges, it is possible to build a LAN that spans the 
entire globe. 

Bridge Forwarding and Filtering

Filtering is the ability to determine whether a frame should be forwarded to an interface or should just be dropped. 
When the frame should be forwarded, forwarding is the ability to determine which of the interfaces the frame should 
be directed to. Bridge filtering and forwarding are done with a bridge table. For each node on the LAN, the bridge 
table contains (1) the LAN address of the node, (2) the bridge interface that leads towards the node, (3) and the time at 
which the entry for the node was placed in the table. An example Table for the LAN in Figure 5.6.2 is shown in Figure 
5.6-3. This description of frame forwarding may sound similar to our discussion of datagram forwarding in Chapter 4. 
We note here that the addressees used by bridges are physical addresses (not network addresses).  We will also see 
shortly that a bridge table is constructed in a very different manner than routing tables. 
  

Address Interface Time

62-FE-F7-11-89-A3 1 9:32

7C-BA-B2-B4-91-10 3 9:36

... ... ...

Figure 5.6-3: Portion of a bridge table for the LAN in Figure 5.6.2.
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To understand how bridge filtering and forwarding works, suppose a frame with destination address DD-DD-DD-DD-
DD-DD arrives to the bridge on interface x. The bridge indexes its table with the LAN address DD-DD-DD-DD-DD-
DD and finds the corresponding interface y. 

●     If x equals y, then the frame is coming from a LAN segment that contains adapter DD-DD-DD-DD-DD-DD. 
There being no need to forward the frame to any of the other interfaces, the bridge performs the filtering 
function by discarding the frame.

●     If x does not equal y, then the frame needs to be routed to the LAN segment attached to interface y. The bridge  
performs its forwarding function by putting the  frame in an output buffer that precedes interface y.

These simple rules allow a bridge to preserve separate collision domains for each of the different LAN segments 
connected to its interfaces. The rules also allow the nodes on different LAN segments to communicate. 

Let's walk through these rules for the network in Figures 5.6-2 and its bridge table in Figure 5.6-3. Suppose that a 
frame with destination address 62-FE-F7-11-89-A3 arrives to the bridge from interface 1. The bridge examines its  
table and sees that the destination  is on the LAN segment connected to interface 1 (i.e., the Electrical Engineering 
LAN). This means that the frame has already been broadcast on the LAN segment that contains the destination. The 
bridge therefore filters (i.e., discards) the frame. Now suppose a frame with the same destination address arrives from 
interface 2. The bridge again examines its table and sees that the destination is the direction of interface 1; it therefore 
forwards  the frame to the output buffer preceding interface 1. It should be clear from this example that as long as the 
bridge table is complete and accurate, the bridge isolates the departmental collision domains while permitting the 
departments to communicate. 

Recall that when a hub (or a repeater) forwards a frame onto a link, it just sends the bits onto the link without 
bothering to sense whether another transmission is currently taking place on the link. In contrast, when a bridge wants 
to forward a frame onto a link, it runs the CSMA/CD algorithm discussed in Section 5.3. In particular, the bridge 
refrains from transmitting if it senses that some other node on the LAN segment is transmitting; furthermore, the 
bridge uses exponential backoff when one of its transmissions results in a collision. Thus bridge interfaces behave very 
much like node adapters. But technically speaking, they are not node adapters because neither a bridge nor its 
interfaces have LAN addresses. Recall that a node adapter always inserts its LAN address into the source address of 
every frame it transmits. This statement is true  for router adapters as well as host adapters. A bridge, on the other 
hand, does not change the source address of the frame. 

One significant feature of bridges is that they can be used to combine Ethernet segments using different Ethernet 
technologies. For example, if in Figure 5.6-2, Electrical Engineering has a 10Base2 Ethernet, Computer Science has a 
100BaseT Ethernet, and Electrical Engineering has a 10BaseT Ethernet, then a bridge can be purchased that can 
interconnect the three LANs. With Gigabit Ethernet bridges, it is possible to  have an additional 1 Gbps connection to  
a router, which in turn connects to a larger university network. As we mentioned earlier, this feature of being able to 
interconnect different link rates is not available with hubs. 

Also, when bridges are used as interconnection devices, there is no theoretical limit to the geographical reach of a 
LAN. In theory, we can build a LAN that spans the globe by interconnecting hubs in a long, linear topology, with each 
pair of neighboring hubs interconnected by a bridge. Because in this design each of the hubs has its own collision 
domain, there is no limit on how long the LAN can be. We shall see shortly, however, that it is undesirable to build 
very large networks exclusively using bridges as interconnection devices -- large networks need routers as well. 

Self-Learning
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A bridge has the very cool property of building its table automatically, dynamically and autonomously -- without any 
intervention from a network administrator or from a configuration protocol. In other words, bridges are self-learning. 
This is accomplished as follows. 

●     The bridge table is initially empty.
●     When a frame arrives on one of the interfaces and the frame's destination address is not in the table, then the 

bridge forwards copies of the frame to the output buffers of all of the other interfaces. (At each of these other 
interfaces, the frame accesses the LAN segment using CSMA/CD.)

●     For each frame received, the bridge stores in its table (1) the LAN address in the frame's source address field, 
(2) the interface from which the frame arrived, (3) the current time. In this manner the bridge records in its table 
the LAN segment on which the sending node resides. If every node in the LAN eventually sends a frame, then 
every node will eventually get recorded in the table.

●     When a frame arrives on one of the interfaces and the frame's destination address is in the table, then the bridge 
forwards the frame to the appropriate interface.

●     The bridge deletes an address in the table  if no frames are received with that address as the source address after 
a period of time (the aging time). In this manner, if a PC is replaced by another PC (with a different adapter), 
the LAN address of the original PC will eventually be purged from the bridge table.

Let's walk through the self-learning property for the network in Figures 5.6-2 and its corresponding bridge table in 
Figure 5.6-3. Suppose at time 9:39 a frame with source address  01-12-23-34-45-56 arrives from interface 2. Suppose 
that this address is not in the bridge table. Then the bridge appends a new entry in the table, as shown in Figure 5.6-4. 
  

Address Interface Time

01-12-23-34-45-56 2 9:39

62-FE-F7-11-89-A3 1 9:32

7C-BA-B2-B4-91-10 3 9:36

..... ..... .....

Figure 5.6-4: Bridge learns about the location of adapter with address 01-12-23-34-45-56.

Continuing with this same example, suppose that the aging time for this bridge is 60 minutes and no frames with 
source address 62-FE-F7-11-89-A3 arrive to the bridge between 9:32 and 10:32. Then at time 10:32 the bridge 
removes this address from its table. 

Bridges are plug and play devices because they require absolutely no intervention from a network administrator or 
user. When a network administrator wants to install a bridge, it does no more than connect the LAN segments to the 
bridge interfaces. The administrator does not have to configure the bridge tables at the time of installation or when a 
host is removed from one of the LAN segments. Because bridges are plug and play, they are also referred as 
transparent bridges. 

Spanning Tree

One of the problems with a pure hierarchical design for interconnected LAN segments is that if a hub or a bridge near 
the top of the hierarchy fails, then much (if not all) of the interconnected LAN will go down. For this reason it is 
desirable to build networks with multiple paths between LAN segments. An example of such a network is shown in 
Figure 5.6-5. 
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Figure 5.6-5: Interconnected LAN segments with redundant paths.

Multiple redundant paths between LAN segments (such as departmental LANs) can greatly improve fault tolerance. 
But, unfortunately, multiple paths have a serious side effect -- frames cycle and multiply within the interconnected 
LAN, thereby crashing the entire network [Permian 1999]. To see this, suppose that the bridge tables in Figure 5.6-5 
are empty, and a host in Electrical Engineering sends a frame to a host in Computer Science. When the frame arrives to 
the Electrical Engineering hub, the hub will generate two copies of the frame and send one copy to each of the two 
bridges. When a bridge receives the frame, it will generate two copies, send one copy to the Computer Science hub and 
the other copy to the Systems Engineering hub. Since both bridges do this, there will be four identical frames  in the 
LAN. This multiplying of copies will continue indefinitely since the bridges do not know where the destination host 
resides. (To route the frame to the destination host in Computer Science, the destination host has to first generate a 
frame so that its address can be recorded in the bridge tables.) The number of copies of the original frame grows 
exponentially fast, crashing the entire network. 

To prevent the cycling and multiplying of frames, bridges use a spanning tree protocol [Permian 1999]. In the 
spanning tree protocol, bridges communicate with each other over the LANs in order to determine a spanning tree, 
that is, a subset of the original topology that has no loops. Once the bridges determine a spanning tree, the bridges 
disconnect appropriate interfaces in order to create the spanning tree out of the original topology. For example, in 
Figure 5.6-5, a spanning tree is created by having  the top bridge disconnect its interface to Electrical Engineering and 
the bottom bridge disconnect its interface to Systems Engineering. With the interfaces disconnected and the loops 
removed, frames will no longer cycle and multiply. If, at some later time, one of links in the spanning tree fails, the 
bridges can reconnect the interfaces, run the spanning tree algorithm again, and determine a new set of interfaces that 
should be disconnected. 
  

Bridges versus Routers

As we learned in Chapter 4, routers are store-and-forward packet switches that forward packets using IP addresses. 
Although a bridge is also a store-and-forward packet switch, it is fundamentally different from a router in that it 
forwards packets using LAN addresses. Whereas a router is layer-3 packet switch, a bridge is a layer-2 packet switch. 
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Even though bridges and routers are fundamentally different, network administrators must often choose between them 
when installing an interconnection device. For example, for the network in Figure 5.6-2, the network administrator 
could have just as easily used a router instead of a bridge. Indeed, a router would have also kept the three collision 
domains separate while permitting interdepartmental communication. Given that both bridges and routers are 
candidates for interconnection devices, what are the pros and cons of the two approaches? 

 
Figure 5.6-6: Packet processing and bridges, routers and hosts.

First consider the pros and cons of bridges. As mentioned above, bridges are plug and play, a property that is cherished 
by all the over-worked network administrators of the world. Bridges can also have relatively high packet filtering and 
forwarding rates -- as shown in Figure 5.6-6, bridges only have to process packets up through layer 2, whereas routers 
have to process frames up through layer 3. On the other hand, the spanning tree protocol restricts the effective 
topology of a bridged network to a spanning tree. This means that all frames most flow along the spanning tree, even 
when there are more direct (but disconnected) paths between source and destination. The spanning tree restriction also 
concentrates the traffic on the spanning tree links when it could have otherwise been spread through all the links of the 
original topology. Furthermore, bridges do not offer any protection against broadcast storms -- if one host goes 
haywire and transmits an endless stream of Ethernet broadcast packets, the bridges will forward all of the packets and 
the entire network will collapse. 

Now consider the pros and cons of routers. Because IP addressing is hierarchical (and not flat as is LAN addressing), 
packets do not normally cycle through routers even when the network has redundant paths. (Actually, packets can 
cycle when router tables are misconfigured; but as we learned in Chapter 4, IP uses a special datagram header field to 
limit the cycling.) Thus, packets are not restricted to a spanning tree and can use the best path between source and 
destination. Because routers do not have the spanning tree restriction, routers have allowed the Internet to be built with 
a rich topology which includes, for example, multiple active links between Europe and North America. Another 
feature of routers is that they provide firewall protection against layer-2 broadcast storms. Perhaps the most significant 
drawback of routers is that they are not plug and play -- they and the hosts that connect to them need their IP addresses 
to be configured. Also, routers often have a larger prepackage processing time than bridges, because they have to 
process up through the layer-3 fields. Finally, there are two different ways to pronounce the word "router", either as 
"rootor" or as "rowter", and people waste a lot of time arguing over the proper pronunciation [Perlman 1999]. 

Given that both bridges and routers have their pros and cons, when should an institutional network (e.g.,  university 
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campus network or a corporate campus network) use bridges, and when should it use bridges? Typically, small 
networks consisting of a few hundred hosts have a few LAN segments. Bridges suffice for these small networks, as 
they localize traffic and increase aggregate throughput without requiring any configuration of IP addresses. But  larger 
networks consisting of thousands of hosts typically include routers within the network (in addition to bridges). The 
routers provide a more robust isolation of traffic, control broadcast storms, and use more "intelligent" routes among the 
hosts in the network. 
  

Connecting LAN Segments with Backbones

Consider once again the problem of interconnecting with bridges the Ethernets in the three departments in Figure 5.6-
2. An alternative design is shown in Figure 5.6-7. This alternative design uses two two-interface bridges (i.e., bridges 
with two interfaces), with one bridge connecting Electrical Engineering to Computer Science, and the other bridge 
connecting Computer Science to Systems Engineering. Although two-interface bridges are very popular due to their 
low cost and simplicity, the design in Figure 5.6-7 is not recommended for two reasons. First, if the Computer Science 
hub were to fail, then Electrical Engineering and Systems Engineering would no longer be able to communicate. 
Second, and more important, all the inter-departmental traffic between Electrical and Systems Engineering has to pass 
through Computer Science, which may overly burden the Computer Science LAN segment. 

 
Figure 5.6-7: An example of an institutional LAN without a backbone.

One important principle when designing an interconnected LAN is that the various LAN segments should be 
interconnected with a backbone. A backbone is a network that has direct connections to all the LAN segments. When 
a LAN has a backbone, then each pair of LAN segments can communicate without passing through a third-party LAN 
segment. The design shown if Figure 5.6-2 uses a three-interface bridge for a backbone. In the homework problems at 
the end of this chapter we shall explore how to design backbone networks with two-interface bridges. 

5.6.2 Switches

Up until the mid 1990s, three types of LAN interconnection devices were essentially available: hubs (and their cousins, 
repeaters), bridges and routers. More recently yet another interconnection device became widely available, namely, 
Ethernet switches. Ethernet switches, often trumpeted by network equipment manufacturers with great fanfare, are in 
essence high-performance multi-interface bridges. As do bridges, they forward and filter frames using LAN 
destination addresses, and they automatically build routing tables using the source addresses in the traversing frames. 
The most important difference between a bridge and switch is that bridges usually have a small number of interfaces (i.
e., 2-4), whereas switches may have dozens of interfaces. A large number interfaces generates a high aggregate 
forwarding rate through the switch fabric, therefore necessitating a high-performance design (especially for 100 Mbps 

file:///D|/Downloads/Livros/computação/Computer%20Netwo...ch%20Featuring%20the%20Internet/transparent_bridges.htm (8 of 12)20/11/2004 15:52:39



Hubs, Bridges, and Switches

and 1 Gbps interfaces). 

Switches can be purchased with various combinations of 10 Mbps, 100 Mbps and 1 Gbps interfaces. For example, you 
can purchase switches with four 100 Mbps interfaces and twenty 10 Mbps interfaces; or switches with four 100 Mbps 
interfaces and one 1 Gbps interface. Of course, the more the interfaces and the higher transmission rates of the various 
interfaces, the more you pay. Many switches also operate in a full-duplex mode; that is, they can send and receive 
frames at the same time over the same interface. With a full duplex switch (and corresponding full duplex Ethernet 
adapters in the hosts), host A can send a file to host B while that host B simultaneously sends to host A. 

 
Figure 5.6-8: An Ethernet switch providing dedicated Ethernet access to six hosts.

One of the advantages of having a switch with a large number of interfaces is that it creates direct connections between 
hosts and the switch. When a host has a full-duplex direct connection to a switch, it can transmit (and receive) frames 
at the full transmission rate of its adapter; in particular, the host adapter always senses an idle channel and never 
experiences a collision. When a host has a direct connection to a switch (rather than a shared LAN connection), the 
host is said to have dedicated access. In Figure 5.6-8, an Ethernet switch provides dedicated access to six hosts. This 
dedicated access allows A to send a file to A' while that B is sending a file to B' and C is sending a file to C'. If each 
host has a 10Mbps adapter card, then the aggregate throughput during the three simultaneous file transfers is 30 Mbps. 
If A and A' have 100 Mbps adapters and the remaining hosts have 10 Mbps adapters, then the aggregate throughput 
during the three simultaneous file transfers is 120 Mbps. 
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Figure 5.6-9: An institutional network using a combination of hubs, Ethernet switches and a router.

Figure 5.6-9 shows how an institution with several departments and several critical servers might deploy a 
combination of hubs, Ethernet switches and routers. In Figure 5.6-9, each of the three departments has its own 10 
Mbps Ethernet segment with its own hub. Because each departmental hub has a connection to the switch, all intra-
departmental traffic is confined to the Ethernet segment of the department (assuming the routing tables in the Ethernet 
switch are complete). The Web and mail servers each have dedicated 100 Mbps access to the switch. Finally, a router, 
leading to the Internet, has dedicated 100 Mbps access to the switch. Note that this switch has at least three 10 Mbps 
interfaces and three100 Mbps interfaces. 
  

Cut-Through Switching

In addition to large numbers of interfaces, support for multitudes of physical media types and transmission rates, and 
enticing network management features, Ethernet switch manufacturers often tout that their switches use cut-through 
switching rather than store-and-forward packet switching, used by routers and bridges. The difference between store-
and-forward and cut-through switching is subtle. To understand this difference consider a packet that is being 
forwarded through a packet switch (i.e., a router, a bridge, or an Ethernet switch). The packet arrives to the switch on a 
inbound link and leaves the switch on a outbound link. When the packet arrives, there may or may not be other packets 
in the outbound link's output buffer. When there are packets in the output buffer, there is absolutely no difference 
between store-and-forward and cut-through switching. The two switching techniques only differ when the output 
buffer is empty. 

Recall from Chapter 1, when a packet is forwarded through a  store-and-forward packet switch, the packet is first 
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gathered and stored in its entirety before the switch begins to transmit it on the outbound link. In the case when the 
output buffer becomes empty before the whole packet has arrived to the switch, this gathering generates a store-and-
forward delay at the switch, a delay which contributes to the total end-to-end delay (see Chapter 1). An upper bound 
on this delay is L/R, where L is the length of the packet and R is transmission rate of the inbound link. Note that a 
packet only incurs a store-and-forward delay if the output buffer becomes empty before the entire packet arrives to the 
switch. 

With cut-through switching, if the buffer becomes empty before the entire packet has arrived, the switch can start to 
transmit the front of the packet while the back of the packet continues to arrive. Of course, before transmitting the 
packet on the outbound link, the portion of the packet that contains the destination address must first arrive. (This 
small delay is inevitable for all types of switching, as the switch must determine the appropriate outbound link.) In 
summary, with cut-through switching a packet does not have to be fully "stored" before it is forwarded; instead the 
packet is  forwarded through the switch when the output link is free. If the output link is shared with other hosts (e.g., 
the output link connects to a hub), then the switch must also sense the link as idle before it can "cut-through" a packet. 

To shed some insight on the difference between store-and-forward and cut-through switching, let us recall the caravan 
analogy introduced in Section 1.6. In this analogy, there is a highway with occasional toll booths, with each toll booth 
having a single attendant. On the highway there is a caravan of 10 cars traveling together, each at the same constant 
speed. The cars in the caravan are the only cars on the highway. Each toll booth services the cars at a constant rate, so 
that when the cars leave the toll booth they are equally spaced apart. As before, we can think of the caravan as being a 
packet, each car in the caravan as being a bit, and the toll booth service rate as the transmission rate of a link. Consider 
now what the cars in the caravan do when they arrive to a toll booth. If each car proceeds directly to the toll booth 
upon arrival, then the toll booth is a "cut-through toll booth". If, on the other hand, each car waits at the entrance until 
all the remaining cars in the caravan arrive, then the toll booth is "store-and-forward toll booth". The store-and-forward 
toll booth clearly delays the caravan more than the cut-through toll booth. 

A cut-through switch can  reduce a packet's end-to-end delay, but by how much? As we mentioned above, the 
maximum store-and-forward delay is L/R, where L is the packet size and R is the rate of the inbound link. The 
maximum delay is approximately 1.2 msec for 10 Mbps Ethernet and .12 msec for 100 Mbps Ethernet (corresponding 
to a maximum size Ethernet packet). Thus, a cut-through switch only reduces the delay by .12 to .2 msec, and this 
reduction only occurs when the outbound link is lightly loaded. How significant is this delay? Probably not very much 
in most practical applications, so you may want to think second about selling the family house before investing in the 
cut-through feature. 
  
  

 hubs bridges routers Ethernet switches

traffic isolation no yes yes yes

plug and play yes yes no yes

optimal routing no no yes no

cut-through yes no no yes

Figure 5.6-10: Comparison of the typical features of popular interconnection devices.

We have learned in this section that hubs, bridges, routers and switches can all be used as an interconnection device for 
hosts and LAN segments. Figure 5.6-10 provides a summary of the features of each of these interconnection devices.
The Cisco Web site provides numerous comparisons of the different interconnection technologies [Cisco 1999]. 
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5.7  IEEE 802.11 LANs

In section 5.5, we examined the dominant wired LAN protocol - Ethernet. In the previous section we examined 
how LAN segments can be connected together via hubs, bridges and routers to form larger LANs.  In this section 
we examine a LAN standard (belonging to the same IEEE 802 family as Ethernet) that is being increasingly 
deployed for untether (wireless) LAN communication. The IEEE 802.11 standard  [Brenner 1997, Crow 1997,  
IEEE 1999] defines the physical layer and media access control (MAC) layer for a wireless local area network.  
The standard defines three different physical layers for the 802.11 wireless LAN, each operating in a different 
frequency range and at rates of 1 Mbps and 2 Mbps.  In this section we focus on the architecture of 802.11 LANs 
and their media access protocols.  We'll see that although it belongs to the same standard family as Ethernet, it 
has a significantly different architecture and media access protocol. 
  

5.7.1 802.11 LAN architecture

 
Figure 5.7-1: IEEE 802.11 LAN architecture

Figure  5.7-1 illustrates the principal components of the 802.11 wireless LAN architecture. The fundamental 
building block of the 802.11 architecture is the cell, known as the basic service set (BSS) in 802.11 parlance.  A 
BSS typically contains one or more wireless stations and a central base station, known as an access point (AP) 
in 802.11 terminology.  The stations, which may be either fixed or mobile, and the central base station 
communicate amongst themselves using the IEEE 802.11 wireless MAC protocol. Multiple APs may be 
connected together (e.g., using a wired Ethernet or another wireless channel) to form a so-called distribution 
system (DS).  The DS appears to upper level protocols (e.g., IP) as a single 802 network, in much the same way 
that a bridged, wired 802.3 Ethernet network appears as a single 802 network to the upper layer protocols. 
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Figure 5.7-2: An IEEE 802.11 ad hoc network

Figure 5.7-2 shows that IEEE 802.11 stations can also group themselves together to form an ad hoc network - a 
network with no central control and with no connections to the "outside world." Here, the network is formed "on 
the fly," simply because there happen to be mobile devices that have  found themselves  in proximity to each 
other, that have a need to communication, and that find no pre-existing network infrastructure (e.g., a pre-
existing 802.11 BSS with an AP) in the location.  An ad hoc network might be formed, for example, when 
people with laptops meet together (e.g., in a conference room, a train, or a car) and want to exchange data in the 
absence of a centralized AP.  There has been a tremendous recent increase in interest in ad hoc networking, as 
communicating portable devices continue to proliferate.  Within the IETF, activity in ad hoc networking is 
centered around the mobile ad hoc networks (manet) working group. 
  

5.7.2 802.11 Media Access Protocols

Just as in a wired 802.3 Ethernet network, stations in an IEEE 802.11 wireless LAN must coordinate their access 
and use of the shared communication media (in this case the radio frequency).  Once again, this is the job of the 
media access control (MAC) protocol. The IEEE 802.11 MAC protocol is a carrier sense multiple access 
protocol with collision avoidance (CSMA/CA).  Recall from our study of Ethernet in section 5.5 that a CSMA 
protocol first senses the channel to determine if the channel is "busy" with the transmission of a frame from 
some other station. In the 802.11 specification, the physical layer monitors the energy level on the radio 
frequency to determine whether or not another station is transmitting and provides this carrier sensing 
information to the MAC protocol.  If the channel is sensed idle for an amount of time equal to or greater than the 
Distributed Inter Frame Space (DIFS), a station is then allowed to transmit. As with any random access 
protocol., this frame will be successfully received at the destination station if no other station's transmission has 
interfered with the frame's transmission. 
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When a receiving station has correctly and completely received a frame for which it was the addressed recipient, 
it waits a short period of time (known as the Short Inter Frame Spacing - SIFS) and then sends an explicit 
acknowledgment frame back to the sender.  This data link layer acknowledgment lets the sender know that the 
receiver has indeed correctly received the sender's data frame. We will see shortly that this explicit 
acknowledgment is needed because, unlike the case of wired Ethernet,  a wireless sender can not itself determine 
whether or not its frame transmission was successfully received at the destination. The transmission of a frame 
by a sending station and its subsequent acknowledgment by the destination station is shown in Figure 5.7-3. 

 
Figure 5.7-3: data transmission and acknowledgment in IEEE 802.11

Figure 5.7-3 illustrates the case when the sender senses the channel to be idle.  What happens if the sender senses 
the channel busy?  In this case, the station performs a backoff procedure that is similar to that of Ethernet.  More 
specifically, a station that senses the channel busy will defer its access until the channel is later sensed idle. Once 
the channel is sensed idle for an amount of time equal to DIFS, the station then computes an additional random 
backoff time and counts down this time as the channel is sensed idle.  When the random backoff timer reaches 
zero, the station transmits its frame.  As in the case of Ethernet, the random backoff timer serves to avoid having 
multiple stations immediately begin transmission (and thus collide) after a DIFS idle period. As in the case of 
Ethernet, the interval over which the backoff timer is randomizes is doubled each time a transmitted frame 

file:///D|/Downloads/Livros/computação/Computer%20Net...own%20Approach%20Featuring%20the%20Internet/80211.htm (3 of 6)20/11/2004 15:52:41



IEEE 802.11 Wireless LANs

experiences a collision. 

We noted above that unlike the 802.3 Ethernet protocol, the wireless 802.11 MAC protocol does not implement 
collision detection. There are a couple of reasons for this: 

●     The ability to detect collisions requires the ability to both send (one's own signal) and receive (to 
determine if another station's transmissions is interfering with one's own transmission) at the same time.  
This can be costly.

●     More importantly, even if one had collision detection and sensed no collision when sending, a collision 
could still occur at the receiver.  This situation results from the particular characteristics of the wireless 
channel.   Suppose that station A is transmitting to station B. Suppose also that station C is transmitting to 
station B.  With  the so-called hidden terminal problem, physical obstructions in the environment (e.g. a 
mountain) may prevent A and C from hearing each others transmissions, even though A's and C's 
transmissions are indeed interfering at the destination, B. This is shown in Figure 5.7-4(a).  A second 
scenario that results in undetectable collisions at the receiver results from the fading of a signal's strength 
as propagates through the wireless medium. Figure 5.7-4(b) illustrates the case where A and C are placed 
such that their signal strengths are not strong enough for them to detect each others' transmissions, and yet 
their transmissions are strong enough to have interfered with each other at station B.

 
Figure 5.7-4: hidden terminal problem (a) and fading (b)

Given these difficulties with detecting collisions at a wireless receiver, the designers of IEEE 802.11 developed 
an access protocol which aimed to avoid collisions (hence the name CSMA/CA) , rather than detect and recover  
from collisions (CSMA/CD).  First,  the IEEE 802.11 frame contains a duration field in which the sending 
station explicit indicates the length of time that its frame will be transmitting on the channel.  This value allows 
other stations to determine the minimum amount of time (the so-called network allocation vector, NAV) for 
which they should defer their access, as shown in Figure 5.7.3. 

The IEEE 802.11 protocol can also use a short Request To Send (RTS) control frame and a short Clear To Send 
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(CTS) frame to reserve access to the channel.  When a sender wants to send a frame, it can first send a RTS 
frame to the receiver, indicating the duration of the data packet and the ACK packet.  A receiver that receives an 
RTS frame responds with a CTS frame, giving the sender explicit permission to send.  All other stations hearing 
the RTS or CTS then know about the pending data transmission and can avoid interfering with those 
transmissions.  The RTS, CTS, DATA and ACK frames are shown in Figure 5.7-5.   An IEEE 802.11 sender can 
operate either using the RTS/CTS control frames, as shown in Figure 5.7-5, or can simply send its data without 
first using the RTS control frame, as shown in Figure 5.7-3. 

 
Figure 5.7-5: Collision Avoidance using the RTS and CTS frames

The use of the RTS and CTS frames helps avoid collisions in three important ways: 

●     Because the receiver's transmitted CTS frame will be heard by all stations within the receiver's vicinity, 
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the CTS frame helps avoid both the hidden station problem and the fading problem.
●     Because the RTS and CTS frames are short, a collision involving a RTS or CTS frame will only last for 

the duration of the whole RTS or CTS frame.  Note that when the RTS and CTS frames are correctly 
transmitted, there should be no collisions involving the subsequent DATA and ACK frames.

In our discussion above, we have only highlighted some of the key aspects of the 802.11 protocol.  Additional 
protocol capabilities such as time synchronization, power management, joining and leaving a network (i.e., 
roaming stations) are covered in the full IEEE 802.11 standard. See [Brenner 1997, Crow 1997,  IEEE 1999] for 
details. 
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5.8 PPP: the point-to-point protocol

Most of our discussion of data link protocols thus far has focused on protocols for broadcast channels.  
In this section we cover a data link protocol for point-to-point links - PPP, the Point-to-Point protocol.  
Because PPP is typically the protocol of choice for a dialup link from residential hosts, it is undoubtedly 
one of the most widely-deployed data link protocols today.  The other important data link protocol in use 
today is the HDLC (High Level Data Link Control) protocol; see [Spragins 1991] for a discussion of 
HDLC. Our discussion here of the simpler PPP protocol will allow us to explore many of the most 
important features of point-to-point data link protocol. 

As its name implies, the Point-to-Point Protocol (PPP)  [RFC 1661, RFC 2153]  is a data link layer 
protocol that operates over a point-to-point link - a link connecting two communicating link-level 
peers, one on each end of the link   The point-to-point  link over which PPP operates might be a serial 
dialup telephone line (e.g., a 56K modem connection), a SONET/SDH link, an X.25 connection, or over 
an ISDN circuit. An noted above, PPP has become the protocol of choice for connecting home users to 
their ISP's over a dialup connection. 

Before diving into the details of PPP, it is instructive to examine the original requirements that the IETF 
placed on the design of PPP [RFC 1547]: 

●     Packet framing.  The PPP protocol data link layer sender must be able to take a network-level 
packet and frame (a.k.a  encapsulate) it within the PPP data link layer frame such that the 
receiver will be able to identify the start and end of both the data link frame, and the network 
layer packet within the  frame.

●     Transparency. The PPP protocol must not place any constraints on data appearing on the network 
layer packet (headers or data).  Thus, for example, the PPP protocol can not forbid the use of 
certain bit patterns in the network layer packet.  We'll return this issue shortly in our discussion of 
byte stuffing below.

●     Multiple network layer protocols. The PPP protocol must be able to support multiple network 
layer protocols (e.g., IP and DECnet) running over the same physical link at the same time. Just 
as the IP protocol is required to multiplex different transport level protocols (e.g., TCP and UDP) 
over a single end-to-end connection, so too must PPP be able to multiplex different network layer 
protocols over a single point-to-point connection.  This requirement means that at a minimum, 
PPP will  likely require a "protocol type" field or some similar mechanism so the receiving side 
PPP can demultiplex a received frame up to the appropriate network layer protocol.

●     Multiple types of links.  In addition to being able to carry multiple higher level protocols, PPP 
must also be able to operate over a wide variety of link types, including links that are either serial 
(transmitting a bit at a time in a given direction) or parallel (transmitting bits in parallel), 
synchronous (transmitting a clock signal along with the data bits) or asynchronous, low speed or 
high speed, electrical or optical.
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●     Error detection.  A PPP receiver must be able to detect bit errors in the received frame.
●     Connection liveness.  PPP must be able to detect a failure at the link level (e.g., the inability to 

transfer data from the sending side of the link to the receiving side of this link) and signal this 
error condition to the network layer.

●     Network Layer Address Negotiation.  PPP must provide a mechanism for the communicating 
network layers (e.g., IP) to learn or configure each other's network layer address.

●     Simplicity. PPP was required to meet a number of additional requirements beyond the seven 
listed above. On top of all of these requirements, first and foremost among all of the PPP 
requirements  is that of "simplicity."   RFC 1547 states "the watchword for a point-to-point 
protocol should be simplicity."  A tall order indeed given all of the other requirements placed on 
the design of PPP!  More than 50 RFC's now define the various aspects of this "simple" protocol.

While it may appear that many requirements were placed on the design of PPP, the situation could 
actually have been much more difficult!  The design specifications for PPP also explicitly note protocol 
functionality that was PPP was not required to implement: 

●     Error correction.  PPP is required to detect bit errors but is not required to correct them.
●     Flow control. A PPP receiver is expected to be able to receive frames at the full rate of the 

underlying physical layer.  If a higher layer can not receive packets at this full rate, it is then up to 
the higher layer to drop packets or throttle the sender at the higher layer.  That is, rather than 
having the PPP sender throttle its own transmission rate, it is the responsibility of a higher level 
protocol to throttle the rate at which packets are delivered to PPP for sending.

●     Sequencing. PPP is not required to deliver frames to the link receiver in the same order in which 
they were sent by the link sender.  It is interesting to note that while this flexibility is compatible 
with the IP service model (which allows IP packets to be delivered end-to-end in any order), 
other network layer protocols which operate over PPP do require sequenced end-to-end packet 
delivery.

●     Multipoint links.  PPP need only operate over links that have a single sender and a single 
receiver.  Other link layer protocols (e.g., HDLC) can accommodate multiple receivers (e.g., an 
Ethernet-like scenario) on a link.

Having now considered the design goals )and non-goals) for PPP, let us see how the design of  PPP met 
these goals. 
  

5.8.1 PPP Data Framing

Figure 5.8-1 shows a PPP data frame using HDLC-like framing [RFC 1662]. 
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Figure 5.8-1: PPP data frame format

The PPP frame contains the following fields: 
  

●     Flag field. Every PPP frame begins and ends with a 1 byte flag field with a value of 01111110.
●     Address field.  The only possible value for this field is 11111111.
●     Control Field. The only possible value of this field is 00000011.  Because both the address and 

control fields can currently take only a fixed value, one wonders why the fields are even defined 
in the firstplace.  The PPP specification [RFC 1622] states that other values "may be defined at a 
later time," although none have been defined to date.  Because these fields take fixed values, PPP 
allows the sender to simply not send the address and control bytes, thus saving two bytes of 
overhead in the PPP frame.

●     Protocol.  The protocol field tells the PPP receiver the upper layer protocol to which the received 
encapsulated data (i.e., the contents of the PPP frame's info field) belongs.  On receipt of a PPP 
frame, the PPP receiver will check the frame for correctness and then pass the encapsulated data 
on to the appropriate protocol.  [RFC 1700] defines the 16-bit protocol codes used by PPP.  Of 
interest to us are the IP protocol (i.e., the data encapsulated in the PPP frame is an IP datagram) 
which has a value of 21 hexadecimal, other network layer protocols such as Appletalk (29) and 
DECnet (27), the PPP link control protocol (c021 hexadecimal) that we discuss in detail in the 
following section, and the IP Control Protocol (8021) which is called by PPP when a link is first 
activated in order to configure the IP-level connection between the two  routers on each end of 
the link (see below).

●     Information.  This field contains the encapsulate packet (data)  that is being sent by an upper 
layer protocol (e.g., IP) over the PPP link.  The default maximum length of the information field 
is 1500 bytes, although this can be changed when the link is first configured, as discussed below.

●     Checksum.  The checksum field is used to detect bit errors in a transmitted frame.  It uses either a 
two or four byte HDLC-standard cyclic redundancy code.

Byte Stuffing

Before closing our discussion of PPP framing, let us consider a problem that arises when any protocol 
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uses a specific bit pattern (flag field) to delineate the beginning or end of the frame: what happens if the 
flag pattern itself occurs elsewhere in the packet?  For example, what  happens if the flag field value of 
01111110 appears in the information field? Will the receiver incorrectly detect the end of the PPP 
frame? 

One way to solve this problem would be for PPP to forbid the upper layer protocol from sending data 
containing the flag field bit pattern.  The PPP requirement of transparency  discussed above obviates this 
possibility.  An alternate solution, and the one taken in PPP and many other protocols, is to use a 
technique known as byte stuffing. 

PPP defines a special control escape byte, 01111101.  If the flag sequence, 01111110 appears anywhere 
in the frame, except in the flag field,  PPP precedes that instance of the flag pattern with the control 
escape byte.  That is, it "stuffs" (adds) a control escape byte into the transmitted data stream, before the 
01111110, to indicate that the following  011111110 is not a flag value but is, in fact, actual data. A 
receiver that sees a 01111110 preceded by a 01111101 will, of course, remove the stuffed control escape 
to reconstruct the original data. Similarly, if the control escape byte bit pattern itself appears as actual 
data, it too must be preceded by a stuffed control escape byte.  Thus, when the receiver see a single 
control escape byte by itself in the data stream, it knows that the byte was stuffed into the data stream.  
A pair of control escape bytes occurring back-to-back means that one instance of the control escape byte 
appears in the original data being sent. Figure 5.8-2 illustrates PPP byte stuffing. (Actually, PPP also 
XORs the data byte being escaped with 20 hexadecimal, a detail we omit here for simplicity). 

 
Figure 5.8-2: byte stuffing
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5.8.2 PPP Link Control Protocol (LCP) and network control protocols

Thus far, we have seen how PPP frames the data being sent over the point-to-point link.  But how does 
the link get initialized when a host or router on one end of the PPP link is first turned on?  The 
initialization, maintenance, error reporting, and shutdown of a PPP link is accomplished using PPP's 
Link Control Protocol (LCP) and family of PPP network control protocols. 

Before any data is exchanged over a PPP link, the two peers (one at each end of the PPP link) must first 
perform a considerable amount of work to configure the link, in much the same way that a TCP sender 
and receiver must perform a threeway handshake (see Section 3.4) to set the parameters of the TCP 
connection before TCP data segments are transmitted. Figure 5.8-3 illustrates the state transition 
diagram for the LCP protocol for configuring, maintaining and terminating the PPP link. 

 
Figure 5.8-3: PPP Link Control Protocol

The PPP link always begins and ends in the dead state.  When an event such as a carrier detection or 
network administrator intervention indicates that a physical layer is present and ready to be used, PPP 
enters the link establishment state. In this state, one end of the link sends its desired link configuration 
options using an LCP configure-request frame (a PPP frame with the protocol field set to LCP 
and the PPP information field containing the specific configuration request).  The other side then 
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responds with a configure-ack frame (all options acceptable), a configure-nak frame (all 
options understood but not acceptable) or a configure-reject frame (options not recognizable or 
not acceptable for negotiation). LCP configuration options include a maximum frame size for the link, 
the specification of an authentication protocol (if any) to be used, and an option to skip the use of the 
address and control fields in the PPP frames. 

Once the link has been established, link options negotiated, and the authentication (if any) performed, 
the two sides of the PPP link then exchange network-layer-specific network control packets with each 
other.  If IP is running over the PPP link, the IP Control Protocol [RFC 1332] is used to configure the IP 
protocol modules at each end of the PPP link.  IPCP packets are carried within a PPP frame (with a 
protocol field value of  8021), just as LCP packets are carried in a PPP frame.  IPCP allows the two IP 
modules to exchange or configure their IP addresses and negotiate whether or not IP packets will be set 
in compressed form.  Similar network control protocols are defined for other network layer protocols, 
such as DECnet [RFC 1762] and AppleTalk [RFC 1378].  Once the network layer has been configured, 
PPP may then begin sending network-layer datagrams - the link is in the opened state and data has 
begun to flow across the PPP link.  The LCP echo-request packet and echo-reply packet can be 
exchanged between the two PPP endpoints in order to check the status of the link. 

The PPP link remains configured for communication until an  LCP terminate-request packet is 
sent.   If a terminate-request LCP packet is sent by one end of the PPP link and replied to with a 
terminate-ack LCP packet, the link then enters the dead state. 

In summary,  PPP is a data link layer protocol by which two communicating link-level peers, one on 
each end of a point-to-point link, exchange PPP frames containing network layer datagrams.  The 
principal components of PPP are: 

●     Framing. A method for encapsulating data in a PPP frame, identifying the beginning and end of 
the frame, and detecting errors in the frame.

●     Link Control Protocol. A protocol for initializing, maintaining, and taking down the PPP link.
●     Network control protocols.  A family of protocols, one for each upper layer network protocol, 

that allows the network layer modules to configure themselves before network-level datagrams  
begin flowing across the PPP link.
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5.9 ATM

In Section 1.10 we briefly introduced ATM. In this section we cover ATM in more detail and discuss 
ATM's current role in the Internet. But before we begin, we list a few useful references. A nice tutorial 
on ATM is given in [LeBoudec 1992]. IP-over-ATM is discussed in detail in [Kercheval 1998]. 

Recall that ATM was standardized in 1990 by two standards bodies, the ATM Forum [ATM Forum 
1999] and the International Telecommunications Union [ITU 1999]. Paralleling the development of the 
ATM standards, major companies throughout the world made significant investments in ATM research 
and development. These investments lead to a myriad of high-performing ATM technologies, including 
ATM switches that have throughputs of terabits per second. Because Internet backbone networks need to 
distribute traffic at very high (and exponentially growing) rates, many backbone ISPs currently make 
extensive use of ATM. 

5.9.1 IP over ATM

Figure 5.9-1 shows such an ATM backbone  with four entry/exit points for Internet IP taffic. Note that 
each entry/exit point is a router. An ATM backbone can span an entire continent and may have tens or 
even hundreds of ATM switches. Most ATM backbones have a permanent virtual channel (VC) between 
each pair of entry/exit points. (Recall that ATM uses the jargon "virtual channel" for "virtual circuit".) 
By using permanent VCs, ATM cells are routed from entry point to exit point without having to 
dynamiccally establish and tear-down VCs. Permanent VCs, however, are only feasible when the 
number of entry/exit points is relatively small. For n entry points, n(n-1) permanent VCs are necessary. 

Each router interface that connects to the ATM network will have two addresses. The router interface 
will have an IP address, as usual. And the router will have an ATM address, which is esssentially a LAN 
address (see Section 5.4. 
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Figure 5.9-1: ATM network in the core of an Internet backbone.

Consider now an IP datagram that is to be moved across the backbone in Figure 5.9-1. Let us refer to the 
router at which the datagram enters the ATM network as the "entry router" and the router at which the 
datagram leaves the network as the "exit router". The entry router does the following: 

1.  Examines the destination address of the datagram.
2.  Indexes its routing table and determines the IP address of the exit router (i.e., the next router in its 

route).
3.  To get the datagram to the exit router, the entry router views ATM as just another link-layer 

protocol. In particular, the entry router indexes an ATM ARP table with the IP address of the exit 
router and determines the ATM address of the exit router.

4.  IP in the entry router then passes down to the link layer (i.e., ATM) the datagram along with the 
ATM address of the exit router.

After these four steps have been completed, the job of moving the datagram to the exit router is out of 
the hands of IP and in the hands of ATM. ATM must now move the datagram to the ATM destination 
address obtained in Step 3 above. This task has two sub-tasks: 

●     Determine the VCI for the VC that leads to the ATM destination address.
●     Segment the datagram into cells at the sending side of the VC (i.e., at the entry router), and 

reassemble the cells into the original datagram at the receiving side of the VC (i.e., at the exit 
router).
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The first sub-task listed above is straightforward. The interface at the sending side maintains a table that 
maps ATM addresses to VCIs. Because we are assuming that the VCs are permanent, this table is up-to-
date and static. (If the VCs were not permanent, then an ATM signalling protocol would be needed to 
dynamically establish and tear down the VCs.) The second, task, merits careful. One approach is to use 
IP fragmentation, as discussed in Section 4.4. With IP fragmentation, the sending router would first 
fragment the original datagram into fragments, with each fragment being no more than 48 bytes, so that 
the fragment could fit into the payload of the ATM cell. But this fragmentation approach has a big 
problem -- each IP fragment typically has 20 bytes of header, so that an ATM cell carrying a fragment 
would have 25 bytes of "overhead" and only 28 bytes of useful information. As we shall see in Section 
5.8.4, the ATM standard provides a more efficient way to segment and reassemble a datagram. 

Recall from Section 1.10 that ATM has three layers: the physical layer, the ATM layer, and the ATM 
adaptation layer. We now provide a brief introduction into these layers. We will then return to issue just 
raised: How does ATM efficiently segment and reassemble IP datagrams that are sent across an ATM 
backbone? 

5.9.2 ATM Physical Layer

The physical layer is concerned with sending an ATM cell over a single physical link. As shown in 
Figure 5.9-2, the physical layer has two sublayers: the Physical Medium Dependent (PMD) Sublayer 
and the Transmission Convergence (TC) Sublayer. 
  

Sublayer Responsibilites 

Transmission Convergence  
(TC) Sublayer

Idle Cell Insertion  
Cell Delineation  
Transmission Frame Adaptation

Physical Medium 
Dependent  
(PMD) Sublayer

Physical Medium  
Bit voltages and timings  
Frame structure

Figure 5.9-2: The two sublayers of the physical layer, and their responsibilities.

The Physical Medium Dependent Sublayer 

The PMD sublayer is at the very bottom of ATM protocol stack. As the name implies, the PMD sublayer 
depends on the physical medium of the link; in particularly, the sublayer is specified differently for 
different physical media (fiber, copper, etc.). As shown in the above chart, it specifies the medium itself. 
It is also responsible for generating and delineating bits. There are two classes of PMD sublayers: PMD 
sublayers which have a transmission frame structure (e.g., T1, T3, SONET, or SDH) and PMD sublayers 
which do not have a transmission frame structure. If the PMD has a frame structure, then it is 
responsible for generating and delineating frames. (The terminology "frames" in this section is not to be 
confused with link-layer frames used in the earlier sections of this Chapter. The transmission frame is a 
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physcial-layer mechanism for organizing the bits sent on a link.) The PMD sublayer does not recognize 
cells. Some possible PMD sublayers include: 

1.  SONET/SDH (Synchronous Optical Network / Synchronous Digital Hierarchy) over single-mode 
fiber. Like T1 and T3, SONET and SDH have frame structures which establish bit 
synchronization between the transmitter and receiver at the two ends of the link.  There are 
several standardized rates, including:

❍     OC-1: 51.84 Mbps
❍     OC-3: 155.52 Mbps
❍     OC-12: 622.08 Mbps

2.  T1/T3 frames over fiber, microwave, and copper.
3.  Cell based with no frames. In this case, the clock at receiver is derived from transmitted signal.

Transmission Convergence Sublayer 

The ATM layer is specified independently of the physical layer; it has no concept of SONET, T1, or 
physical media. A sublayer is therefore needed (1) at the sending side of the link to accept ATM cells 
from the ATM layer and put the cells' bits on the physical medium, and (2) at the receiving side of the 
link to group bits arriving from the physcial medium into cells and pass the cells to the ATM layer. 
These are the jobs of the TC sublayer, which sits on top of the PMD sublayer and just below the ATM 
layer. We note that the TC sublayer is also physical medium dependent -- if we change the physical 
medium or the underlying frame structure, then we must also change the TC sublayer. 

On the transmit side, the TC sublayer places ATM cells into the bit and transmission frame structure of 
the PMD sublayer. On the receive side, it extracts ATM cells from the bit and transmission frame 
structure of the PMD sublayer. It also peforms header error correction (HEC). More specifically, the TC 
sublayer has the following tasks: 

●     At the transmit side, the TC sublayer generates the HEC byte for each ATM cell that is to be 
transmitted. At the receive side, the TC sublayer uses the HEC byte to correct all one-bit errors in 
the header and some multiple-bit errors in the header, reducing the possibility of incorrect routing 
of cells. (The HEC is created by dividing the first 32 bits of the header by the polynomial x8+x2+x
+1 and then taking the 8-bit remainder.)

●     At the receive side, the TC sublayer delineates cells. If the PMD Sublayer is cell based with no 
frames, then this is typically done by running the HEC on all contiguous sets of 40 bits (i.e., 5 
bytes). When a match occurs, a cell is delineated. Upon matching four consecutive cells, cell 
synchronization is declared and subsequent cells are passed to the ATM layer.

●     If the PMD sublayer is cell based with no frames, the sublayer sends an idle cell when ATM 
layer has not provided a cell, thereby generating a continuous stream of cells. The receiving TC 
sublayer does not pass idle cells to the ATM layer. Idle cells are marked in the PT field in the 
ATM header.
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5.8.3 ATM Layer

When IP runs over ATM, the ATM cell plays the role of the link-layer frame. The ATM layer defines 
the structure of the ATM cell and the meaning of the fields within this structure. The first 5 five bytes of 
the cell constitute the ATM header; the remaining 48 bytes constitute the ATM payload. Figure 5.9-3 
shows the structure of the ATM header. 

 
Figure 5.9-3: The format of the ATM cell header.

The fields in the ATM cell are as follows: 

●     VCI (Virtual Channel Identifier): Indicates the VC to which the cell belongs. As with most 
network technologies that use virtual circuits, a cell's VCI is translated from link to link (see 
Section 1.3).

●     PT (Payload Type): Indicates the type of payload the cell contains. There are several data 
payload types, several maintenance payload types, and an idle cell payload type. (Recall that idle 
cells are sometimes needed by the physical layer for synchronization.)

●     CLP (Cell Loss Priority) bit: Can be set by the source (entry router in Figure 5.8-1) to 
differentiate between high-priority traffic and low priority traffic. If congestion occurs and an 
ATM switch must discard cells, the switch can use this bit to first discard low-priority traffic.

●     Header Error Checksum HEC byte: A checksum across the header, as described in Section 
5.8.1. Recall that  the TC sublayer (of the physical layer) calculates the HEC byte at the 
transmitter and the checks the header at the receiver.

Virtual Channels 

Before a source can begin to send cells to a destination, the ATM network must first establish a virtual 
channel (VC) from source to destination. A virtual channel is nothing more than a VC, as described in 
Section 1.4. Each VC is a path consisting of a sequence of links between source and destination. On 
each of the links the VC has a Virtual Circuit Identifier (VCI). Whenever a VC is established or torn-
down, VC translation tables must be updated (see Section 1.4). As we mentioned above, ATM 
backbones in the Internet often use permanent VCs, which obviates the need for dynamic VC 
establishment and tear-down. 

5.9.4 ATM Adaptation Layer
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The purpose of the AAL is to allow existing protocols (e.g., IP) and applications (e.g., constant-bit-rate 
video) to run on top of ATM. As shown in Figure 5.9-4, AAL is implemented in the ATM end systems 
(e.g.,., entry end exit routers in an Internet backbone), not in the intermediate ATM switches. Thus, the 
AAL layer is analogous in this respect to the transport layer in the Internet protocol stack. 

 
Figure 5.9-4: The AAL layer is present only at the edges of the ATM network.

The AAL sublayer has its own header fields. As shown in Figure 5.9-6, these fields occupy a small 
portion of the payload in the ATM cell. 

 
Figure 5.9-5: The AAL fields within the ATM payload.

The ITU and the ATM Forum have standardized several AALs. Some of the most important AALs 
include: 

AAL 1: For Constant Bit Rate (CBR) services and circuit emulation. 
AAL 2: For Variable Bit Rate (VBR) services. 
AAL 5: For data (e.g., IP datagrams)

AAL Structure 

AAL has two sublayers: the Segmentation And Reassembly (SAR) sublayer and the Convergence 
Sublayer (CS) . As shown in Figure 5.9-6, the SAR sits just above the ATM layer; the CS sublayer sits 
between the user application and the SAR sublayer. 
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Figure 5.9-6: The sublayers of the AAL.

The user data (e.g., an IP datagram) is first encapsulated in a Common Part Convergence Sublayer 
(CPCS) PDU in the Convergence Sublayer. This PDU can have CPCS header and CPSC trailer. 
Typically the CPCS-PDU is much to large to fit into the payload of an ATM cell; thus the CPCS-PDU 
has to be segmented at the ATM source and reassembled at the ATM destination. The SAR sublayer 
segments the CPCS-PDU and adds AAL header and trailer bits to form the payloads f the ATM cells. 
Depending on the AAL types, the AAL and CPCS header and trailers could be empty. 

AAL 5 (Simple and Efficient Adaptation Layer - SEAL) 

AAL5 is a low-overhead AAL that is is used to transport IP datagrams over ATM networks. With 
AAL5, the AAL header and trailer are empty; thus, all 48 bytes of the ATM payload are used to carry 
segments of the CPCS-PDU. An IP datagram occupies the CPCS-PDU payload, which can be from 1 to 
65,535 bytes. The AAL5 CPCS-PDU is shown in Figure 5.9-7. 

 
Figure 5.9-7: CPCS-PDU for AAL5.

The PAD ensures that the CPCS-PDU is an integer multiple of 48 bytes. The length field identifies the 
size of the CPCS-PDU payload, so that the PAD can be removed at the receiver. The CRC is the same 
one that is used by Ethernet, Token Ring and FDDI. 

At the ATM source,  the AAL5 SAR chops the CPCS-PDU into 48-byte segments. As shown in Figure 
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5.9-8, a bit in the PT field of the ATM cell header, which is nominally 0, is set to 1 for the last cell of the 
CPCS-PDU. At the ATM destination, the ATM layer directs cells with a specific VCI to a SAR-sublayer 
buffer. The ATM cell headers are removed, and the AAL-indicate bit is used to delineate the CPCS-
PDUs. Once the CPCS-PDU is delineated, it is passed to the AAL convergence sublayer. At the 
convergence sublayer, the length field is used to extract the CPCS-PDU payload (e.g., an IP datagram), 
which is passed to the higher layer. 

 
Figure 5.9-8: The AAL_indicate bit is used to reassemble IP datagrams from ATM cells.

Moving a Datagram through an Internet Backbone 

Let us  now return to the problem of moving a datagram from an entry router to an exit router in Figure 
5.9-1. Recall that IP in the entry router passes down to  ATM the datagrm along with the ATM address 
of the exit router. ATM in the entry router indexes an ATM table to determine the VCI for the VC that 
leads to the ATM destination address. AAL5 then creates ATM cells out of the IP datagarm: 

●     The datagram is encapsulated in a CPCS-PDU using the format in Figure 5.8-8.
●     The CPCS-PDU is chopped up into 48-byte chunks. Each chunk is placed in the payload field of 

an ATM cell.
●     All of the cells except for the last cell have the third bit of the PT field set to zero. The last cell 

has the bit set to one.

AAL5 then passes the cells to the ATM layer. ATM sets the VCI and CLP fields and passes each cell to 
the TC sublayer. For each cell, the TC sublayer calculates the HEC and inserts it in the HEC field. The 
TC sublayer then inserts the bits of the cells into the PMD sublayer. 

The ATM network then moves each cell across to the ATM destination address. At each ATM switch 
between ATM source and ATM destination, the ATM cell is processed by the ATM physical and ATM 
layers, but not by the AAL layer. At each switch the VCI is typically translated (see Section 1.4) and the 
HEC is recalculated. When the cells arrive at the ATM destination address, they are directed to an AAL 
buffer that has been put aside for the particular VC. The CPCS-PDU is reconstructed using  the 
AAL_indicate bit to determine which cell is the last cell of the CPCS-PDU. Finally, the IP datagram is 
extracted out of the CPCS-PDU and is passed up the protocol stack to the IP layer. 
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5.9.5 ARP and ATM

Consider once again the problem of moving a datagram from entry router to exit router across the ATM 
network in Figure 5.8-1. Recall that ARP has the important role of translating the exit router's address to 
an ATM destination address. This translation is straightforward if the ARP table is complete and 
accurate. But as with Ethernet, ATM ARP tables are auto-configured and may not be complete. As with 
Ethernet, if the desired mapping is not in the table, 
 an ARP protocol must contact the exit router and obtain the mapping. However, there is a fundamental 
difference here between Ethernet and ATM -- Ethernet is a broadcast technology and ATM is a switched 
technology. What this means is that ATM can simply send ARP request message when a broadcast 
packet. ATM must work harder to get the mapping. There are two generic approaches that can be used: 
broadcast ARP request messages and ARP server. 

Broadcast ARP Request Messages

In this approach, the entry router constructs an ARP request message, converts the message to cells, and 
sends the cells into the ATM network. These cells are sent by the source along a special VC reserved for 
ARP request messages. The switches broadcast all cells received on this special VC. The exit router 
receives the ARP request message and sends the entry router an ARP response message (which is not 
broadcasted). The entry router then updates its ARP table. This approach can place a significant amount 
of overhead ARP broadcast traffic into the network. 

ARP Server

In this approach, ARP server is attached directly to one of the ATM switches in the network, and 
permanent VCs exist between each router and the ARP server. All of these permanent VCs use the same 
VCI on all links from the touters to the ARP server. There are also permanent VCs from the ARP server 
to each router; each of these VCs have different VCIs out of the ARP server. The ARP server contains 
an up-to-date ARP table that maps IP addresses to ATM  addresses. Using some registration protocol, all 
touters must register themselves with the ARP server. This approach eliminates the the broadcast ARP 
traffic. However it requires an ARP server, which can swamped with ARP request messages. 

An important reference for running ARP over ATM is [RFC 1577], which discusses IP and ARP over 
ATM. [RFC 1932] also provides a good overview of IP over ATM. 
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5.10 X.25 and Frame Relay

In this section we discuss two end-to-end wide-area-networking (WAN) technologies, namely, X.25 and frame relay. 
Introduced in the early 1980s and popular in Europe up through the mid 1990s, X.25 is arguably the first public packet-
switching technology. Frame relay, a successor to X.25, is another public packet-switching technology which has been 
popular in North America throughout the 1990s. 

Given that X.25 and frame relay are end-to-end WAN technologies, you may be wondering why we are discussing 
them in a chapter that is devoted to the data-link layer? We have chosen to discuss these technologies in this chapter 
for the same reason we chose to discuss ATM in this chapter -- all of these technologies are often employed today to 
carry IP datagrams from one IP router to another. Thus, from the perspective of IP (which is also an end-to-end WAN 
technology), X.25, frame relay and ATM are link layer technologies. Because IP is one of the protocols being 
highlighted in this book, we have put X.25, frame relay and ATM were IP believes these technologies belong, namely, 
in the link layer. 

Although X.25 still exists throughout Europe and in certain nitch markets in North America, the X.25 networks are on 
the verge of extinction throughout the world. They were designed almost twenty years ago for a technological context 
that is very different from today's. Frame relay had great appeal to corporate customers throughout the 1990s, but it is 
increasingly fighting fierce competition from the public Internet. In fact, due to this competition, frame relay may 
become a minor player in the mid 2000s. Even though X.25 is on its way out (if not already completely gone), and 
frame relay may disappear as well a few years down the road, we have chosen to cover these technologies in this book 
because of  their immense historical importance. 

5.10.1  A Few Words about X.25

The X.25 protocol suite was designed in the late 1970s. To understand the motivation behind the design, we need to 
understand the technological context of that ancient era. Although the Apple II personal computer was making a big hit 
at this time [Nerds], PCs and workstations were not wide spread and didn't have much networking support. Instead, 
most people were using inexpensive "dumb terminals" to access distant mainframe over computer networks. These 
dumb terminals had minimal intelligence and storage (no disks); what appeared on their screens was completely 
controlled by the mainframe at the other end of the network. In order to widely support dumb terminals, the designers 
of X.25 decided to "put the intelligence in the network". This philosophy, as we now know, very different from the  
Internet philosophy, which puts intelligence in the end systems and assumes little about the network. 

One way the designers put intelligence in the X.25 network was by employing virtual circuits in X.25 networks. Recall 
from Chapter 1 that virtual-circuit networks require the packet switches to maintain state information. In particular, the 
switch must maintain a table that maps inbound interface/VC-number to outbound interface/VC-number. Moreover, 
complex signalling protocols are needed to establish VCs and tear them down. As we learned in Chapter 4, the IP 
protocol is connectionless and, thus, does not use VCs. When a node wants to send an IP packet into the network it just 
stamps the datagram with a destination address and injects it into the network; it does not first request the network to 
establish a virtual circuit between itself and the destination. 

Another important part of the technological context of the late 1970s and early 1980s conerns the physical links. In 
those days, almost all of the wired links were noisy, error-prone copper links. Fiber-optic links were only being 
researched in the laboratory at that time. Bit error rates over long-haul copper links were many orders of magnitude 
higher than they are now over fiber links. Because of the high error rates, it made sense to design X.25 protocol with 
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error recovery on a hop-by-hop basis. In particular, whenever an X.25 switch sends a packet, it keeps a copy of the 
packet until the next switch (in the packet's route) returns an acknwoledgement. Thus each switch, when receiving a 
packet, performs error checking, and if the packet is error-free it sends an acknowledgement to the previous switch. 
Hop-by-hop error recovery significantly reduces link transmission rates, but it is consistent with the technological 
context of the era -- high link error rates and dumb terminals. The X.25 design also calls for flow-control on a hop-by-
hop basis. Recall, that the TCP transport protocol performs error recovery and flow control on an end-to-end basis, and 
thereby does not require the links to perform these tasks. 

5.10.2 Frame Relay

Frame relay, designed in the late 1980s and widely deployed in the 1990s, is in many ways a second-generation X.25. 
Like X.25, it uses virtual circuits. However, because the fiber-based systems of 1990s had much lower bit error rates 
than the copper-based systems of the 1980s, frame relay was naturally designed for much lower error rates. The 
essence of frame relay is a VC-based packet-switching service with no error recovery and no flow control. Whenever a 
frame relay switch detects an error in a packet, its only possible course of action is to discard the data. This results in a 
network with lower processing overheads and higher transmission rates than X.25, but requires intelligent end systems 
for data integrity. In most cases today, the frame relay network is owned by a public network service provider (e.g., 
AT&T, Sprint or Bell Atlantic) and its use is contracted on a multi-year basis to corporate customers. Frame relay is 
extensively used today to allow LANs on different corporate campuses to send data to each other at reasonably high 
speeds. As shown in Figure 5.10-1, often frame relay interconnects these LANs throguh IP routers, with each IP router 
in  a different corporate campus. Frame relay offers a corporation an alternative to sending its inter-campus IP traffic 
over the public Internet, for which the corporation may have reliability and security concerns. 

 
Figure 5.10-1: Public frame relay network interconnected two Ethernets through routers located on the Ethernets. The 

dotted line represents a virtual circuit.

Frame relay networks can use either switched VCs (SVCs) or Permanent Virtual Circuits (PVC's). For router 
interconnection, a PVC is often permanently established between each pair of routers. N(N-1)/2 PVC's are necessary to 
interconnect N routers. Throughout our discussion we shall assume that the frame relay network uses PVCs (which is 
the more common case). 
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Sending an IP datagram from Ethernet to Frame Relay to Ethernet 

Consider the transmission of an IP datagram between two end systems on two Ethernets interconnected by a frame 
relay network. Let us walk through the steps in the context of Figure 5.9.1. When an Ethernet frame arrives to the 
source router, the router's Ethernet card strips off the Ethernet fields and passes the IP datagram to the network layer. 
The network layer passes the IP datagram to the frame relay interface card. This card encapsulates the IP datagram in 
the frame relay packet, as shown in Figure 5.10-2. It also calculates the CRC (2 bytes) and inserts the resulting value 
CRC field. The link layer field (2 bytes) includes a 10-bit virtual circuit number field. The interface card obtains the 
VC number from a table that associates IP network numbers to VC numbers. The interface card then transmits the 
packet. 

 
Figure 5.10-2: Encapsulating user data (e.g., and IP datagram) into a frame relay frame.

The interface card transmits the frame relay packet onto a leased line, typically obtained from local telephone company 
(e.g. Bell Atlantic). The leased line connects the router to a nearby frame relay switch, owned by the frame relay 
service provider (e.g. Sprint). The switch examines the FCS field. If the frame has an error, the switch discards the 
frame; unlike X.25, frame relay does not bother to retransmit packets on a hop-by-hop basis. If there is no error in the 
frame, the switch uses the frame's VC number to route the frame to the next switch (or to the destination router). The 
destination router removes the frame relay fields and then delivers the datagram over Ethernet to the destination host. 
If  TCP segments are lost or arrive out of sequence, then TCP  in the communicating hosts (intelligent end systems) 
correct the problem. For more details about how an IP datagram is sent across and IP network, see [RFC 2427]. 
  

Committed Information Rate 

Frame relay makes use of innovative mechanism referred to as the committed information rate (CIR). Every frame 
relay VC has a committed information rate. We will define the CIR rigorously below, but roughly the CIR is a 
commitment on the part of the frame relay network to dedicate to the VC a specified transmission rate determined by 
the CIR. The CIR servicet, introduced by frame relay in the early 1990s, is many ways a forerunner to the Internet's 
differentiated service. (See Chapter 6.) As we shall shortly see, frame relay provides the CIR service by marking 
packets. 

In frame relay networks, frame relay packets can belong to one of two priority levels -- either high priority or low 
priority. Packets are assigned priorities by marking a special bit in the packet header -- the so-called discard eligibility 
(DE) bit  -- to either 0 for high priority and 1 for low priority. If a frame is a high-priority frame, then the frame relay 
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network should deliver the packet to the destination under all but the most desperate network conditions, including 
periods of congestion and backbone link failures. However, for low priority packets, the frame relay network is 
permitted to discard the frame under congested conditions. Under particularly draconian conditions, the network can 
even discard high-priority packets. Congestion is typically measured by the state of output buffers in frame relay 
switches. When an output buffer in a frame relay switch is about to overflow, the switch will first discard the low 
priority packets, that is, the packets in the buffer with the DE bit set to 0. 

The actions that a frame-relay switch takes on the marked packets should be clear, but we haven't said anything about 
how packets get marked. This is where the CIR comes in. To explain this,  we need to introduce a little frame-relay 
jargon, which we do in the context of Figure 5.9.1. The access rate is the rate of the access link, that is, the rate of  the 
link from the source router to the "edge" frame relay switch. This rate is often 64 Kbps but integer multiples of 64 
Kbps up to 1.544 Mbps are also common. Denote by R for the access rate. As we learned in Chapter 1, each packet 
sent over the link of rate R is transmitted at rate R bps.  The edge switch is responsible for marking packets that arrive 
from the source router. To perform the marking, the edge switch examines the arrival times of packets from the source 
router over short, fixed intervals of time, called the measurement interval, denoted by Tc. Most frame-relay service 

providers use a Tc value that falls somewhere between 100 msecs and 1 sec. 

Now we can precisely describe the CIR. Each VC that emanates from the source router (there may be many, possibly 
destined to different LANs) is assigned a committed information rate (CIR), which is in units of bits/sec. The CIR is 
never greater than R, the access rate. Customers pay for a specific CIR; the higher the CIR, the more the customer pays 
to the frame-relay service provider. If the VC generates packets at a rate that is less than the CIR, than all of the VCs 
packets will be marked as high-priority packets (DE=0). However, if the rate at which the VC generates packets 
exceeds the CIR, then the fraction of the VC's packets that exceed the rate will be marked as low priority packets. 
More specifically, over each measurement interval Tc, for the first CIR*Tc bits the VC sends, the edge switch marks 

the corresponding packets as high-priority  packets (DE = 0). The edge switch marks all additional packets sent over 
this interval  as low priority packets (DE = 1). 

To get a feel for what is going on here, let us look at an example. Let us suppose that the frame-relay service provider 
uses a measurement interval of Tc = 500 msec. Suppose that the access link is R = 64 Kbps and that the CIR assigned 

to a particular VC is 32 Kbps. Also suppose, for simplicity, that each frame relay packet consists of exactly L= 4000 
bits. This means that every 500 msec the VC can send CIR*Tc/L = 4 packets as high-priority packets. All additional 

packets sent within the 500 msec interval are marked as low priority packets. Note that up to 4 low-priority packets can 
be sent in over each 500 msec interval (in addition to 4 high-priority packets). Because the frame network "almost" 
guarantees that all of the high-priority packets will be delivered to the destination frame-relay node, the VC is 
essentially guaranteed of a throughput of at least 32 Kbps. Frame relay does not, however, make any guarantees about 
the end-to-end delays of either the high- or low-priority packets. 

Increasing the measurement interval Tc increases the potential burstiness of the high-priority packets emmitted from 

the source router. In the previous example, if Tc = .5 sec, up to four high-priority packets can be emmitted back-to-

back; for Tc = 1 sec, up to eight high-priority packets can be emmitted back-to-back. When the frame relay network 

uses a smaller value of Tc, it forces the stream of high priority packets to be smoother (less bursty); but a large value of 

Tc gives the VC more flexibility. But for every choice of Tc, the long-run average rate of bits emmitted as high-priority 

bits never exceeds the CIR of the VC. 

We must keep in mind that many PVCs may emanate from the source router and travel over the access link. It is 
interesting to note that the sum of the CIRs for all these VCs is permitted to exceed the access rate, R. This is referred 
to as overbooking. Because overbooking is permitted, an access link may transmit high-priority packets at a 
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corresponding bit rate that exceeds the CIR (even though  each individual VC sends prioirty packets at a rate that does 
not exceed the CIR). 

We conclude this section by mentioning that the Frame Relay Forum [FRForum] maintains a number or relevant 
specifications. An excellent introductory course for frame relay is made available on the Hill Associates Web site 
[Hill]. Walter Goralski has also written a readable yet in depth book about frame relay [Goralski]. 
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Chapter 5 Summary

5.11 Summary

In this chapter, we've examined the data link layer - its services, the principles underlying its operation, 
and a number of important specific protocols that use these principles in implementing data link 
services. 

We saw that the basic service of the data link layer is to move a network-layer datagram from one node 
(router or host)  to an adjacent node. We saw that all data link protocols operate by encapsulating a 
network-layer datagram within a link-layer frame before transmitting the frame over the "link" to the 
adjacent node.  Beyond this common framing function, however, we learned that different data link 
protocols can provide very different link access, delivery (reliability, error detection/correction), flow 
control, and transmission (e.g., full-duplex versus half-duplex) services.  These differences are due in 
part to the wide variety of link types over which data link protocols must operate.  A simple point-to-
point link has a single sender and receiver communicating over a single "wire."  A multiple access link 
is shared among many senders and receivers; consequently the data link protocol for a multiple access 
channel has a protocol (its multiple access protocol)  for coordinating link access.  In the cases of ATM, 
X.25 and frame relay, we saw that the "link" connecting two adjacent nodes (e.g., two IP routers that are 
adjacent in an IP sense - that they are next-hop IP routers towards some destination), may actually be a 
network in and of itself.  In one sense, the idea of a network being considered as a "link" should not 
seem odd.  A telephone "link" connecting a home modem/computer to a remote modem/router, for 
example, is actually a path through a sophisticated and complex telephone network. 

Among the principles underlying data link communication, we examined error detection and correction 
techniques, multiple access protocols, link-layer addressing, and the construction of extended local area 
networks via hubs. bridges, and switches.  In the case of error detection/correction, we examined how it 
is possible to add additional bits to a frame's header that are used to detect, and in some cases correct, bit-
flip errors  that might occur when the frame is transmitted over the link.  We covered simple parity and 
checksumming schemes, as well as the more robust cyclic redundancy check. We then moved on to the 
topic of multiple access protocols.  We identified and studied three broad approaches for coordinating 
access to a broadcast channel:  channel partitioning approaches (TDM, FDM, CDMA), random access 
approaches (the ALOHA protocols, and CSMA protocols), and taking-turns approaches (polling and 
token passing).  We saw that a consequence of having multiple nodes share a single broadcast channel 
was the need to provide node address at the data link level.  We learned that physical addresses were 
quite different from network-layer addresses, and that in the case of the Internet, a special protocol (ARP 
- the address resolution protocol) is used to translate between these two forms of addressing.  We then 
examined how nodes sharing a broadcast channel form a local area network (LAN), and how multiple 
LANs can be connected together to form larger LANs - all without the intervention of network-layer 
routing to interconnect these local nodes. Finally, we covered a number of specific data link layer 
protocols in detail - Ethernet, the wireless IEEE 802.11 protocol,  and the Point-to-Point protocol, PPP. 
As discussed in sections 5.9 and 5.10, ATM, X.25, and frame relay can also be used to connect two 
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network-layer routers.  For example, in the IP-over-ATM scenario, two adjacent IP routers can be 
connected to each other by a virtual circuit through an ATM network.  In such circumstances, a network 
that is based on one network architecture (e.g., ATM, or frame relay) can serve as a single logical link 
between two neighboring nodes (e.g., IP routers) in another network architecture.. 

Having covered the data link layer, our journey down the protocol stack is now over!  Certainly, the 
physical layer lies below the data link layer, but the details of physical layer is the topic probably best 
left for another course (e.g., in communication theory, rather than computer networking).  We have, 
however, touched upon several aspects of the physical layer in this chapter (e.g., our brief discussions of 
Manchester encoding in section 5.5 and of signal fading in section 5.7) and in Chapter 1 (our discussion 
of physical media in section 1.5). 

Although our journey down the protocol stack is over, our study of computer networking is not yet over. 
In the following three chapters we cover multimedia networking, network security, and network 
management.  These three topics do not fit conveniently into any one layer; indeed, each  topic crosscuts 
many layers.  Understanding these topics (sometimes billed as "advanced topics" in some networking 
texts) thus requires a firm foundation in all layers of the protocol stack - a foundation that is now 
complete with our completed study of the data link layer! 

Copyright 1999. James F. Kurose and Keith W. Ross. All Rights Reserved. 
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Chapter 5

Homework Problems and Discussion Questions

Review Questions

Sections 5.1-5.3 

1) If all the links in the Internet were to provide the reliable-delivery service, would the TCP reliable-
delivery service be completely redundant? Why or why not? 

2) What are some of possible services that a link-layer protocol can offer to the network layer? Which of 
these link-layer services have corresponding services in IP? In TCP? 

3) Suppose the information content of a packet is the bit pattern 1010101010101011 and an even parity 
scheme is being used. What would be the value of the checksum field in a single parity 
  scheme? 

4) Suppose two nodes start to transmit at the same time a packet of length L over a broadcast channel of 
rate R. Denote the propagation delay between the two nodes as tprop. Will there be a collision if  tprop < 

L/R? Why or why not? 

5) In section 5.2.1, we listed for desirable characteristics of a broadcast channel. Slotted ALOHA has 
which of these charateristics? Token passing has which of these characteristics? 

6) What are human cocktail analogies for polling, and token passing protocols? 

7) Why would the token-ring protocol be inefficient if the LAN has a very large perimeter? 

8) How big is the LAN address space? The IPv4 address space? The IPv6 address space? 

9) Suppose nodes A, B, and C each attach to the same broadcast LAN (through their adapters). If A 
sends thousands of frames to B with each frame adddressed to the LAN address of B, will C's adapter 
process these frames? If so, will C's adapter pass the IP datagrams in these frames to C (i.e., the adapter's 
parent node)? How will your answers change if A sends frames with the LAN broadcast address? 

10) Why is an ARP query sent within a broadcast frame? Why is an ARP response sent within a frame 
with a specific LAN address? 
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11) For the network in Figure 5.3-4, the router has two ARP modules each with its own ARP table. Is it 
possible that the same LAN address appear in both tables? 

12) Compare the frame structures for 10BaseT, 100BaseT and Gigabit Ethernet. How do they differ? 

13) Suppose a 10 Mbps adapter sends into a channel an infinite stream of 1s using Manchester encoding. 
The signal emerging from the adatper will have how many transitions per second? 

14) After the 5th collision, what is the probability that the value of K that a node chooses is 4? The result 
K=4 corresponds to a delay of how many seconds on a 10 Mbps Ethernet. 

15) Does the TC sublayer at the transmitter fill in any of the fields in the ATM header? Which ones 

Section 5.6 

16) In the IEEE 802.11 specification, the length of the SIFS period must be shorter than the DIFS 
paeriod.  Why? 

17)  Suppose the IEEE 802.11 RTS and CTS frames were as long as the standard DATA and ACK 
frames.  Would there be any advantage to using the CTS and RTS frames?  Why? 

Section 5.9 

18) Does the TC sublayer distinguish between different VCs at either the transmitter or receiver? 

19) Why is it important for the TC Sublayer in the transmitter to provide a continuous stream of cells 
when the PMD Sublayer is cell based? 

20) Does the TC sublayer at the transmitter fill in any of the fields in the ATM header? Which ones? 
  

Problems

1) Suppose the information content of a packet is the bit pattern 1010101010101011 and an even parity 
scheme is being used.  What would the value of the checksum field be for the case of a two-dimensional 
parity scheme? Your answer should be such that a minumum length checksum field is used. 

2) Give an example (other than the one in Figure 5.2-3!) showing that two-dimensional parity checks 
can correct and detect a single bit error. Show by counterexample that a double bit error can not always 
be corrected. Show by example that some double bit errors can be detected. 
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3) Suppose the information portion of a packet (D in Figure 5.2-1 contains 10 bytes consisting of the 8-
bit unsigned binary representation of the integers 0 through 9. Compute the Internet checksum for this 
data. 

4) Consider the 4-bit generator, G shown in Figure 5.2-5,  and suppose that D has the value 10101010.  
What is the value of R? 

5) Consider the single sender CDMA example in Figure 5.3-4.  What would be the sender's output (for 
the two data bits shown)  if the senders CDMA code were (1, -1, 1, -1, 1, -1, 1, -1)? 

6) Consider sender 2 in Figure 5.3-5.  What is the sender's output to the channel (before it is added to the 
signal from sender 1), Zi,m

 2 ? 

7) Suppose that the receiver in Figure 5.3-5 wanted to receive the data being sent by sender 2.  Show (by 
calculation), that the receiver is indeed able to recover sender 2's data from the aggregate channel 
signalby using sender 2's code. 

8) In  section 5.3, we provided an outline of the derivation of the efficiency of slotted ALOHA. In this 
problem we''ll complete the derivation. 

a) Recall that when there are N active nodes the efficiency of slotted ALOHA is Np(1-p)N-1. Find 
the value of p that maximizes this expression. 

b) Using the value of p found in part (a), find the efficiency of slotted ALOHA by letting N 
approach infinity. Hint: (1 - 1/N)N approches 1/e as N approaches infinity.

9) Show that the maximum efficiency of pure Aloha is 1/(2e).  Note: this problem is easy if you have 
completed the problem above! 

10) Graph the efficiency of slotted ALOHA and pure ALOHA as a function of p for N=100. 

11) Consider a broadcast channel with N nodes and a transmission rate of R bps. Suppose the broacast 
channel uses polling (with an additional polling node) for multiple access. Suppose the amount of time 
from when a node completes transmission until the subsequent node is permitted to transmit (i.e., the 
polling delay) is tpoll. Suppose that within a polling round, a given  node is allowed to transmit at most Q 

bits. What is the maximum throughput of the broadcast channel. 

12) Consider three LANs interconnected by two routers, as shown in the diagram below. 

a) Redraw the diagram to include adapters. 
b) Assign IP addresses to all of the interfaces. For LAN 1 use addresses of the form 111.111.111.
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xxx ; for LAN 2 uses addresses of the form 122.222.222.xxx ; and for LAN 3 use addresses of 
the form 133.333.333.xxx . 
c) Assign LAN addresses to all of the adapters. 
d) Consider sending an IP datagram from host A to host F. Suppose all the ARP tables are up-to-
date. Enumerate all the steps as done for the single-router example in section 5.3.2. 
e) Repeat (d), now assuming that the ARP table in the sending host is empty (and the other tables 
are up-to-date).

13) Recall that with the CSMA/CD protocol, the adapter waits K*512 bit times after a collision, where 
K is drawn randomly. For K=100, how long does the adapter wait until returning to Step 2 for a 10 
Mbps Ethernet? For a 100 Mbps Ethernet? 

14) Suppose nodes A and B are on the same 10 Mbps Ethernet segment, and the propagation delay 
between the two nodes is 225 bit times. Suppose node A begins transmitting a frame, and before it 
finishes station B begins transmitting a frame. Can A finish transmitting before it detects that B has 
transmitted? Why or why not? If the answer is yes, then A incorrectly believes that its frame was 
successfully transmitted without a collision. 

Hint: Suppose at time t=0 bit times, A begins transmitting a frame. In the worst case, A transmits a 
minimum size frame of 512+64 bit times. So A would finish transmitting the frame at t=512+64 bit 
times. Thus the answer is no if B's signal reaches A before bit time t=512+64 bits. In the worst case, 
when does B's signal reach A? 

15) Suppose nodes A and B are on the same 10 Mbps Ethernet segment, and the propagation delay 
between the two nodes is 225 bit times. Suppose A and B send frames at the same time, the frames 
collide, and then A and B choose different values of K in the CSMA/CD algorithm. Assuming no other 
nodes are active, can the retransmissions from A and B collide? For our purposes, it suffices to work out 
the following example. Suppose A and B begin transmission at t=0 bit times. They both detect collisions 
at t=225 bit times. They finish transmitting jam signal at t= 225+48= 273 bit times. Suppose KA=0 and 
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KB=1. At what time does B schedule its retransmission? At what time does A begin transmission? 

(Note, the nodes must wait for an idle channel after returning to Step 2-- see protocol.) At what time  
does A's signal reach B? Does B refrain from transmitting at its scheduled time? 

16) Consider a 100Mbps 100BT Ethernet. In order to have an efficiency of .50, what should be the 
maximum distance between a node and the hub? Assume a frame length of 64 bytes and that there are no 
repeaters. Does this maximum distance also ensure that a transmitting node A will be able to detect 
whether any other node transmitted while A was transmitting? Why or why not? How does your 
maximum distance compare to the actual 100 Mbps standard? 

17) In this problem you will derive the efficiency of a CSMA/CD-like multiple access protocol. In this 
protocol, time is slotted and all adapters are synchronized to the slots.  Unlike slotted ALOHA, however, 
the length of a slot (in seconds) is much less than a frame time (the time to transmit a frame). Let S be 
the length of a slot. Suppose all frames are of constant length L = k R S, where R is the transmission rate 
of the channel and k is a large integer. Suppose there are N nodes, each with an infinite number of 
frames to send. We also assume that tprop < S, so that all nodes can detect a collision before the end of a 

slot time. The protocol is as follows: 

●     If for a given slot, no node has possession of the channel, all nodes contend for the channel; in 
particular, each node transmits in the slot with probability p. If exactly one node transmits in the 
slot, that node takes possession of the channel for the subsequent k-1 slots and transmits its entire 
frame.

●     If some node has possession of the channel, all other nodes refrain from transmitting until the 
node that possesses the channel has finsished transmitting its frame. Once this node has 
transmitted its frame,  all nodes contend for the channel.

Note that the channel alternates between two states: the "productive state" which lasts exactly k slots, 
and the non-productive state which lasts for a random number of slots. Clearly, the channel efficiency is 
the ratio of k/(k+x), where x is the expected number of consecutive unproductive slots. 

a) For fixed N and p, determine the efficiency of this protocol. 
b) For fixed N, determine the p that maximizes the efficiency. 
c) Using the p (which is a function of N) found in part (b), determine the efficiency as N approaches 
infinity. 
d) Show that this efficiency approaches 1 as the frame length becomes large. 

18) Suppose two nodes, A and B, are attached to opposite ends of a 900 m cable, and that they each have 
one frame of 1000 bits (including all headers and preambles) to send to each other. Both nodes attempt 
to transmit at time t=0. Suppose there are four repeaters between A and B, each inserting a 20 bit delay. 
Assume the transmission rate is 10 Mbps, and CSMA/CD with backoff intervals of multiples of 512 bits 
is used. After the first collision, A draws K=0 and B draws K=1 in the exponential backoff protocol. 
Ignore the jam signal. 
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a) What is the one-way propagation delay (including repeater delays) between A and B in 
seconds. Assume that the signal propragation speed is 2 * 108m/sec. 

b) At what time (in seconds) is A's packet completely delivered at B. 

c) Now suppose that only A has a packet to send and that the repeaters are replaced with bridges. 
Suppose that each bridge has a 20 bit processing delay in addition to a store-and-forward delay. 
At what time in seconds is A's packet delivered at B? 
 

19) Consider the network shown below. 

a) How many IP networks are there in the above figure? Provide class C IP addresses for all of the 
interfaces including the router interfaces. 

b) Provide LAN addresses for all of the adaptors. 

c) Consider sending a datagram from host A to host F. Trace the steps assuming all the ARP tables are 
up-to-date. 

d) Repeat c), but now assume that all ARP tables are up to date, except for the ARP tables in router, 
which are empty. 

20) You are to design a LAN for the campus layout shown below. 
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You may use the following equipment: 
  
  

Thin Coax
$1 per meter

UTP
$1 per meter

Fiber Optic Cable - pair
$2 per meter
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NIC - thin coax ports
$70

NIC - UTP port
$70

2-Port Repeater
$800

Multiport Repeater (8 thin coax ports)
$1,500

Multiport Fiber Repeater (6 Fiber ports)
$2,000

2-Port Bridge (any combo of thin coax, UTP, fiber)
$2,200

Hub - 36 UTP ports
$4,000

Hub - 6 fiber ports, 24 UTP ports
$6,000

Pentium File Server - w/NOS (max. 30 users)
$9,000

Bridges always include interface cards. 

You must respect the followng design requirements: 

1.  Each department must have access to the resources of all other departments.
2.  The traffic generated by users of one department cannot affect another department's LAN unless 

accessing a resource on that other department's LAN.
3.  A file server can support only 30 users.
4.  File servers may not be shared by multiple departments.
5.  All repeaters, bridges, and hubs must reside in the wiring closets (WCs).

a) You are required to use thin coax (no UTP) and, if deemed necessary, fiber optics. Provide a diagram 
for your design. Also provide a list of the equipment you use (with quantities) and the total cost of the 
LAN. 

b) Repeat (a), but using UTP (no thin coax) and, if deemed necessary, fiber optics. 

21) Suppose a frame-relay VC generates packets of fixed lenght L. Let R, Tc and CIR denote the access 

rate, the measurement interval and the committed information rate, respectively. (a) As a function of 
these variables, determine how many high-priority packets the VC can send in a measurement interval. 
(b) As a function of these variables, determine how many low-priority packets the VC can send in a 
measurement interval. For part (b) assume that in each measurement interval, the VC first generates the 
maximum number of high-priority packets permitted and then generates low-priority packets. 
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22)  In Figure 5.9.1, suppose the source Ethernet includes a Web server which is very busy serving 
requests from clients in the destination Ethernet. Each HTTP response message is carried in one or more 
IP datagrams. When the IP datagrams arrive to the frame relay interface, each datagram is encapsulated 
in a frame-relay frame. Suppose that each Web object is of size O and each frame-relay packet is of size 
L. Suppose that the Web server begins to serve one object at the beginning of each measurement 
interval. Ignoring all packet overheads (at the application, transport, IP and frame-relay layers!), 
determine the maximum size of O (as a function of Tc, CIR and L) such that each object is entirely 

carried by high-priority frame-relay packets. 

Discussion Questions

You are encouraged to surf the Web in answering the following questions. 

1) Roughly,what is the current price range of a 10 Mbps Ethernet adapter? Of a 10/100 Mbps adapter? 
Of  a Gigabit Ethernet adapter? 

2) Hubs and switches are often priced in terms of number of interfaces (also called ports in LAN jargon). 
Roughly, what is current per-interface price range for a 10 Mbps hub? For a  100 Mbps hub? For a 
switch consisting of only 10 Mbps interfaces? For a switch consisting of only 100 Mbps interfaces? 

3) Many of the functions of an adapter can be performed in software that runs on the node's CPU. What 
are the advantages and disadvantages of moving this functionality  from the adapter to the node? 

4) Use the Web to find the protocol numbers used in a Ethernet frame for IP and ARP. 

5) Is some form of ARP protocol necessary for IP over frame relay? Why or why not? 
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6.1 Multimedia Networking Applications

Back in Chapter 2  we examined the Web, file transfer, and electronic mail in some detail.  The data 
carried by these networking applications is, for the most part, static content such as text and images. 
When static content is sent from one host to another, it is desirable for the content to arrive at the 
destination as soon as possible. Nevertheless, moderately long end-to-end delays, up to tens of seconds, 
are often tolerated for static content. 

In this chapter we consider networking applications  whose data contains audio and video content. We 
shall refer to networking applications as multimedia networking applications. (Some authors refer to 
these applications continuous-media applications.) Multimedia networking applications are typically 
highly sensitive to delay;  depending on the particular multimedia networking application, packets that 
incur more than an x second delay - where x can range from a 100 msecs to five seconds - are useless. 
On the otherhand, multimedia networking applications are typically loss tolerant; occassional loss only 
causes occassional glitches in the audio/video playback, and often these losses can be partially or fully 
concealed. Thus, in terms of service requirements, multimedia applications are diametrically opposite of 
static-content applications: multimedia applications are delay sensitive and loss tolerant whereas the 
static-content applications are delay tolerant and loss intolerant. 

6.1.1 Examples of Multimedia Applications

The Internet carries a large variety of exciting multimedia applications. Below we define three classes 
of  multimedia applications. 

1.  Streaming stored audio and video: In this class of applications, clients request on-demand 
compressed audio or video files, which are stored on servers. For audio, these files can contain a 
professor's lectures, rock songs, symphonies, archives of famous radio broadcasts, as well as 
historical archival recordings. For video, these files can contain video of professors' lectures, full-
length movies, prerecorded television shows, documentaries, video archives of historical events, 
video recordings of sporting events, cartoons and  music video clips. At any time a client 
machine can request an audio/video file from a server.  In most of the existing stored audio/video 
applications, after a delay of a few seconds the client begins to playback the audio file while it 
continues to receive the file from the server. The feature of playing back audio or video while the 
file is being received is called streaming. Many of the existing products also provide for user 
interactivity, e.g., pause/resume and temporal jumps to the future and past of the audio file. The 
delay from when a user makes a request (e.g., request to hear an audio file or skip two-minutes 
forward) until the action manifests itself at the the user host (e.g., user begins to hear audio file) 
should be on the order of 1 to 10 seconds for acceptable responsiveness. Requirements for packet 
delay and jitter are not as stringent as those for real-time applications such as Internet telephony 
and real-time video conferencing (see below). There are many streaming products for stored 
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audio/video, including RealPlayer from RealNetworks and NetShow from Microsoft.
2.  One to many streaming of real-time audio and video: This class of applications is similar to 

ordinary broadcast of radio and television, except the transmission takes place over the Internet. 
These applications allow a user to receive a radio or television transmission emitted from any 
corner of the world. (For example, one of the authors of this book often listens to his favorite 
Philadelphia radio stations from his home in France.) Microsoft provides an Internet radio station 
guide. Typically, there are many users who are simultaneously receiving the same real-time audio/
video program. This class of applications is non-interactive; a client cannot control a server's 
transmission schedule. As with streaming of stored multimedia, requirements for packet delay 
and jitter are not as stringent as those for Internet telephony and real-time video conferencing. 
Delays up to tens of seconds from when the user clicks on a link until audio/video playback 
begins can be tolerated. Distribution of the real-time audio/video to many receivers is efficiently 
done with multicast; however, as of this writing, most of the one-to-many audio/video 
transmissions in the Internet are done with separate unicast streams to each of the receivers.

3.  Real-time interactive audio and video:  This class of applications allows people to use audio/
video to communicate with each other in real-time. Real-time interactive audio is often referred 
to as Internet phone,  since, from the user's perspective, it is similar to traditional circuit-
switched telephone service. Internet phone can potentially provide PBX, local and long-distance 
telephone service  at very low cost. It can also facilitate computer-telephone integration (so called 
CTI), group real-time communication, directory services, caller identification, caller filtering, etc. 
There are many Internet telephone products currently available.With real-time interactive video, 
also called video conferencing, individuals communicate visually as well as orally. During a 
group meeting, a user can open a window for each participant  the user is interested in seeing. 
There are also many real-time interactive video products currently available for the Internet, 
including Microsoft's Netmeeting. Note that in a real-time interactive audio/video application, a 
user can speak or move at anytime. The delay from when a user speaks or moves until the action 
is manifested at the receiving hosts should be less than a few hundred milliseconds. For voice, 
delays smaller than 150 milliseconds are not perceived by a human listener, delays between 150 
and 400 milliseconds can be acceptable, and delays exceeding 400 milliseconds result frustrating 
if not completely unintilligible voice conversations.

One-to-many real-time audio and video is not interactive - a user cannot pause or rewind a transmission 
that hundreds of others listen to. Although streaming stored audio/video allows for interactive actions 
such as pause and rewind, it is not real-time, since the content has already been gathered and stored on 
hard disks. Finally, real-time interactive audio/video is interactive in the sense that participants can 
orally and visually respond to each other in real time. 

6.1.2 Hurdles for Multimedia in the Internet

IP, the Internet's network-layer protocol, provides a best-effort service to all the datagrams it carries. In 
other words, the Internet makes its best effort to move each datagram from sender to receiver as quickly 
as possible. However, the best-effort service does not make any promises whatsoever about the end-to-
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end delay for an individual packet. Nor does the service make any promises about the variation of pakcet 
delay within a packet stream. As we learned in Chapter 3, because TCP and UDP run over IP, neither of 
these protocols can make any delay guarantees to invoking applications. Due to the lack of any special 
effort to deliver packets in a timely manner, it is extermely challenging problem to develop successful 
multimedia networking applications for the Internet. To date, multimedia over the Internet has achieved 
significant but limited success. For example, streaming store audio/video with user-interactivity delays 
of five-to-ten seconds is now commonplace in the Internet. But during peak traffic periods, performance 
may be unsatisfactory, particularly when intervening links are congested links (such as congested 
transoceanic link). 

Internet phone and real-time interactive video has, to date, been less successful than streaming stored 
audio/video. Indeed, real-time interactive voice and video impose rigid constraints on packet delay and 
packet jitter. Packet jitter is the variability of packet delays within the same packet stream. Real-time 
voice and video can work well in regions where bandwidth is plentiful, and hence delay and jitter are 
minimal. But quality can deteriorate to unacceptable levels as soon as the real-time voice or video packet 
stream hits a moderately congested link. 

The design of multimedia applications would certainly be more straightforward if their were some sort 
of first-class and second-class Internet services, whereby first-class packets are limited in number and 
always get priorities in router queues. Such a first-class service could be satisfactory for delay-sensitive 
applications. But to date, the Internet has mostly taken an egalitarian approach to packet scheduling in 
router queues: all packets receive equal service; no packets, including delay-sensitive audio and video 
packets, get any priorities in the router queues. No matter how much money you have or how important 
you are, you must join the end of the line and wait your turn! 

So for the time being we have to live with the best effort service. No matter how important or how rich 
we are, our packets have to wait their turn in router queues. But given this constraint, we can make 
several design decisions and employ a few tricks  to improve the user-perceived quality of a multimedia 
networking application. For example, we can send the audio and video over UDP, and thereby 
circumvent TCP's low throughput when TCP enters its slow-start phase. We can delay playback at the 
receiver by 100 msecs or more in order to diminish the effects of network-induced  jitter. We can 
timestamp packets at the sender so that the receiver knows when the packets should be played back. For 
stored audio/video we can prefetch data during playback when client storage and extra bandwidth is 
available. We can even send redundant information in order to mitigate the effects of network-induced 
packet loss. We shall investigate many of these techniques in this chapter. 

6.1.3 How Should the Internet Evolve to Better Support 
Multimedia?

Today there is a tremendous -- and sometimes ferocious -- debate about how the Internet should evolve 
in order to better accommodate multimedia traffic with its rigid timing constraints. At one extreme, 
some researchers argue that it isn't necessary to make any fundamental changes to the best-effort service 
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and the underlying Internet protocols. Instead, according to these extremists, it is only necessary to add 
more bandwidth to the links (along with network caching for stored information and multicast support 
for one-to-many real-time streaming). Opponents to this viewpoint argue that additional bandwidth can 
be costly, and as soon as it is put in place it will be eaten up by new bandwidth hungry applications (e.g., 
high-definition video on demand). 

At the other extreme, some researchers argue that fundamental changes should be made to the Internet 
so that applications can explicitly reserve end-to-end bandwidth. These researchers feel, for example, 
that if a user wants to make an Internet phone call from host A to host B, then the user's Internet phone 
application should be able to explicitly reserve bandwidth in each link along a route from host A to host 
B. But allowing applications to make reservations and requiring the network to honor the reservations 
requires some big changes. First we need a protocol that, on the behalf of applications, reserves 
bandwidth from the senders to their receivers. Second, we need to modify scheduling policies in the 
router queues so that bandwidth reservations can be honored. With these new scheduling policies, all 
packets no longer get equal treatment; instead, those that reserve (and pay) more  get more. Third, in 
order to honor reservations, the applications need to give the network a description of the traffic that 
they intend to send into the network. The network must then police each application's traffic to make 
sure that it abides to the description. Finally, the network must have a means of determining whether it 
has sufficient available bandwidth to support any new reservation request. These mechanisms, when 
combined, require new and complex software in the hosts and routers as well as new types of services. 

There is a camp inbetween the two extremes - the so-called differentiated services camp. This camp 
wants to make relatively small changes at the network and transport layers, and introduce simple pricing 
and policing schemes at the edge of the network (i.e., at the interface between the user and the user's 
ISP). The idea is to introduce a small number of classes (possibly just two classes), assign each datagram 
to one of the classes,  give datagrams different levels of service according to their class in the router 
queues, and charge users to reflect the class of packets that they are emitting into the network. A simple 
example of a differentiated-services Internet is as follows. By toggling a single bit in the datagram 
header, all IP datagrams are labeled as either first-class or second-class datagrams. In each router queue, 
each arriving first class datagram jumps in front of all the second-class datagrams; in this manner, 
second-class datagrams do not interfere with first-class datagrams -- it as if the first-class packets have 
their own network! The network edge counts the number of first-class datagrams each user sends into 
the network each week. When a user subscribes to an Internet service, it can opt for a "plantinum 
service" whereby the user is permitted to send a large but limited number of first-class datagrams into 
the network each week; first-class datagrams in excess of the limit are converted to second-class 
datagrams at the network edge. A user can also opt for a "low-budget" service, whereby all of his 
datagrams are second-class datagrams. Of course, the user pays a higher subscription rate for the 
plantinum service than for the low-budget service. Finally, the network is dimensioned and the first-
class service is priced so that "almost always" first-class datagrams experience insignificant delays at all 
router queues. In this manner, sources of audio/video can subscribe to the first-class service, and thereby 
receive "almost always" satisfactory service. We will cover differentiated services in Section 6.8. 
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6.1.4 Audio and Video Compression

Before audio and video can be transmitted over a computer network, it has to be digitized and 
compressed. The need for digitization is obvious: computer networks transmit bits, so all transmitted 
information must be represented as a sequence of bits. Compression is important because uncompressed 
audio and video consumes a tremendous amount of storage and bandwidth; removing the inherent 
redundancies in digitized audio and video signals can reduce by orders of magnitude the amount the data 
that needs to be stored and transmitted. As an example, a single image consisting of 1024 pixels x 1024 
pixels  with each pixel encoded into 24 bist requires 3 MB of storage without compression. It would take 
seven minutes to send this image over a 64 Kbps link. If the image is compressed at a modest 10:1 
compression ratio, the storage requirement   is reduced to 300 KB and the transmission time drops to 
under 6 seconds. 

The fields of audio and video compression are vast. They have been active areas of research for more 
than 50 years, and there are now literally hundreds of popular techniques and standards for both audio 
and video compression. Most universities offer entire courses on audio and video compression, and 
often offer a separate course on audio compression and a separate course on video compression. 
Furthermore, electrical engineering and computer science departments often offer independent courses 
on the subject, with each department approaching the subject from a different angle. We therefore only 
provide here a brief and high-level introduction to the subject. 

Audio Compression in the Internet

A continuously-varying analog audio signal (which could emanate from speech or music) is normally 
converted to a digital signal as follows: 

●     The analog audio signal is first sampled at some fixed rate, e.g., at 8,000 samples per second. The 
value of each sample is an arbitrary real number.

●     Each of the samples is then "rounded" to one of a finite number of values. This operation is 
referred to as "quantization". The number of finite values - called quantization values - is 
typically a power of 2, e.g., 256 quantization values.

●     Each of the quantization values is represented by a fixed number of bits. For example if there are 
256 quantization values, then each value - and hence each sample - is represented by 1 byte. Each 
of the samples is converted to its bit representation. The bit representations of all the samples are 
concatenated together to form the digital representation of the signal.

As an example, if an analog audio signal is sampled at 8,000 samples per second , each sample is 
quantized and represented by 8 bits, then the resulting digital signal will have a rate of 64,000 bits per 
second. This digital signal can then be converted back - i.e., decoded - to an analog signal for playback. 
However, the decoded analog signal is typically different from the original audio signal. By increasing 
the sampling rate and the number of quantization values the decoded signal can approximate (and even 
be exactly equal to) the original analog signal. Thus, there is a clear tradeoff between the quality of the 
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decoded signal and the storage and bandwidth requirements of the digital signal. 

The basic encoding technique that we just described is called Pulse Code Modulation (PCM). Speech 
encoding often uses PCM, with a sampling rate of 8000 samples per second and 8 bits per sample, 
giving a rate of 64 kbs. The audio Compact Disk (CD) also uses PCM, without a sampling rate of 44,100 
samples per second with 16 bits per sample; this gives a rate of 705.6 Kbps for mono and 1.411 Mbps 
for stereo. 

A bit rate of 1.411 Mbps for stereo music exceeds most access rates, and even 64 kbps for speech 
exceeds the access rate for a dial-up modem user. For these reasons, PCM encoded speech and music is 
rarely used in the Internet. Instead compression techniques are used to reduce the bit rates of the stream. 
Popular compression techniques for speech include GSM (13 Kbps), G.729 (8.5 Kbps) and G.723 (both 
6.4 and 5.3 Kbps), and also a large number of proprietary techniques, including those used by 
RealNetworks. A popular compression technique for near CD-quality stereo music is MPEG layer 3, 
more commonly known as MP3. MP3 compresses the bit rate for music to 128 or 112 Kbps, and 
produces very little sound degradation. An MP3 file can be broken up into pieces,  and each piece is still 
playable. This headerless file format allows MP3 music files to be streamed across the Internet 
(assuming the playback bitrate and speed of the Internet connection are compatible). The MP3 
compression standard is complex; it uses psychoacoustic masking, redundancy reduction and bit 
reservoir buffering. 

Video Compression in the Internet

A video is a sequence images, with each image typically being displayed at a constant rate, for example 
at 24 or 30 images per second. An uncompressed, digitally encoded image consists of an array of pixels, 
with each pixel encoded into a number of bits to respresent luminance and color. There are two types of 
redundancy in video, both of which can be exploited for compression. Spatial redundancy is the 
redundancy within  a given image. For example, an image that consists of mostly white space can be 
efficiently compressed. Temporal redundancy reflects repitition from image to subsequent image. If, for 
example, an image and the subsequent image are exactly the same, there is no reason re-encode the 
subsequent image; it is more efficient to simply indicate during encoding the subsequent image is 
exactly the same. 

The MPEG compression standards are among the most popular compression techniques. These include 
MPEG 1 for CD-ROM quality video (1.5 Mbps), MPEG2 for high-quality DVD video (3-6 Mbps) and 
MPEG 4 for object-oriented video compression. The MPEG standard draws heavily from the JPEG 
standard for image compression. The H.261 video compression standards are also very popular in the 
Internet, as well are numerous proprietary standards. 

Readers interested in learning more about audio and video encoding are encouraged to see [Rao] and 
[Solari]. Also, Paul Amer maintains a nice set of links to audio and video compression. 
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6.2 Streaming Stored Audio and Video

In recent years, audio/video streaming has become a popular class of applications and a major consumer of network bandwidth. We expect this trend 
to continue for several reasons. First,  the cost of disk storage is decreasing at phenomenal rates, even faster than processing and bandwidth costs; the 
cheap storage will lead to an exponential increase in the amount of stored/audio video in the Internet. Second, improvements in Internet 
infrastructure, such as high-speed residential access (i.e., cable modems and ADSL as discussed in Chapter 1) network caching of video (see Section 
2.2), and a new QoS-oriented Internet protocols (see Sections 6.5-6.9) will greatly facilitate the distribution of stored audio and video. And third, 
there is an enormous pent-up demand for high quality video streaming,  an application which combines two existing killer communication 
technologies --  television and the on-demand Web. 

In audio/video streaming, clients request compressed audio/video files, which are resident on servers. As we shall discuss in this section, the servers 
can be "ordinary" Web servers, or can be special streaming servers tailored for the audio/video streaming application. The files on the servers can 
contain any type of audio/video content, including a professor's lectures, rock songs, movies, television shows, recorded sporting events, etc. Upon 
client request, the server directs an audio/video file to the client by sending the file into a socket. (Sockets are discussed in Sections 2.6-2.7.) Both 
TCP and UDP socket connections are used in practice. Before sending the audio/video file into the network, the file may is segmented, and the 
segments are typically encapsulated with special headers appropriate for audio/video traffic. Real-Time Protocol (RTP), discussed in Section 6.4, is 
a public-domain standard for encapsulating the segments. Once the client begins to receive the requested audio/video file, the client  begins to render 
the file (typically) within a few seconds.  Most of the existing products also provide for user interactivity, e.g., pause/resume and temporal jumps to 
the future and past of  the audio/video file. User interactivity also requires a protocol for client/server interaction. Real Time Streaming Protocol 
(RTSP), discussed at the end of this section, is a public-domain protocol for providing user interactivity. 

Audio/video streaming is often requested by users through a Web client (i.e., browser). But because audio/video play out is not integrated directly in 
today's Web clients, a separate helper application is required for playing out the audio/video. The helper application is often called a media player, 
the most popular of which are currently  RealNetworks' Real Players and the Microsoft Windows Media Player.  The media player performs several 
functions, including: 
  

●     Decompresssion: Audio/video is almost always compressed to save disk storage and network bandwidth. A media player has to decompress 
the audio/video on the fly during play out.

●     Jitter-removal: Packet jitter is the variability of packet delays within the same packet stream. Packet jitter, if not suppressed, can easily lead 
to unintelligible audio and video. As we shall examine in some detail in Section 6.3, packet jitter can often be limited by buffering audio/
video for a few seconds at the client before playback.

●     Error correction: Due to unpredictable congestion in the Internet, a fraction of packets in the packet stream can be lost. If this fraction 
becomes too large, user perceived audio/video quality becomes unacceptable. To this end, many streaming systems attempt to recover from 
losses by either (i) reconstructing loss packets through the transmission of redundant packets, (ii) by having the client explicitly request 
retransmissions of lost packets, (iii) or both.

●     Graphical user interface with control knobs: This is the actual interface that the user interacts with. It typically includes volume controls, 
pause/resume buttons, sliders for making temporal jumps in the audio/video stream, etc.

Plug-ins may be used to embed the user interface of the media player within the window of the Web browser. For such embeddings, the browser 
reserves screen space on the current Web page, and it is up to the media player to manage the screen space. But either appearing in a separate 
window or within the browser window (as a plug-in), the media player is a program that is being executed separately from the browser. 

6.2.1 Acessing Audio and Video from a Web Server

The stored audio/video can either reside on a  Web server, which delivers the audio/video to the client over HTTP; or on an audio/video streaming 
server, which delivers the audio/video over non-HTTP protocols (protocols that can be either proprietary or in the public domain). In this subsection 
we examine the delivery of audio/video from a Web server; in the next subsection, we examine the delivery from a streaming server. 

Consider first the case of audio streaming. When an audio file resides on a Web server, the audio file is an ordinary object in the server's file system, 
just as are HTML and JPEG files. When a user wants to hear the audio file, its host establishes a TCP connection with the Web server and sends an 
HTTP request for the object (see Section 2.2); upon receiving such a request, the Web server bundles the audio file in an HTTP response message 
and sends the response message back into the TCP connection. The case of video can be a little more tricky, only because the audio and video parts 
of the "video" may be stored in two different files, that is, they may be two different objects in the Web server's file system. In this case, two 
separate HTTP requests are sent to the server (over two separate TCP connections for HTTP/1.0), and the audio and video files arrive at the client in 
parallel. It is up to the client to manage the synchronization of the two streams. It is also possible that the audio and video are interleaved in the same 
file, so that only one object has to be sent to the client. To keep the discussion simple, for the case of "video" we assume that the audio and video is 
contained in one file for the remainder of this section. 
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A naive architecture for audio/video streaming is shown in Figure 6.2.1. In this architecture: 

1.  The browser process establishes a TCP connection with the Web server and requests the audio/video file with an HTTP request message.
2.  The Web server sends to the browser the audio/video file in an HTTP response message.
3.  The content-type: header line in the HTTP response message indicates a specific audio/video encoding. The client browser examines 

the content-type of the response message, launches the associated media player, and passes the file to the media player.
4.  The media player then renders the audio/video file.

 
Figure 6.2-1 A naive implementation for audio streaming.

Although this approach is very simple, it has a major drawback: the media player (i.e., the helper application) must interact with the server through 
the intermediary of a Web browser. This can lead to many problems. In particular, when the browser is an intermediary, the entire object must be 
downloaded before the browser passes the object to a helper application; the resulting initial delay is typically unacceptable for audio/video clips of 
moderate length. For this reason, audio/video streaming implementations typically  have the server send the audio/video file directly to the media 
player process. In other words, a direct socket connection is made between the server process and the media player process. As shown in Figure 6.2-
2, this is typically done by making use of a meta file, which is a file that provides information (e.g., URL, type of encoding, etc.) about the audio/
video file that is to be streamed. 
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Figure 6.2-2 Web server sends audio/video directly to the media player.

A direct TCP connection between the server and the media player is obtained as  follows: 

1.  The user clicks on a hyperlink for an  audio/video file.
2.  The hyperlink does not point directly to the audio/video file, but instead to a meta file.  The meta file contains the the URL of the actual audio/

video file. The HTTP response message that encapsulates the meta file includes a content-type: header line that indicates the specific 
audio/video application.

3.  The client browser examines the content-type header line of the response message, launches the associated media player, and passes the entity 
body of the response message (i.e., the meta file) to the media player.

4.  The media player sets up a TCP connection directly with the HTTP server. The media player sends an HTTP request message for the audio/
video file into the TCP connection.

5.  The audio/video file is sent within an HTTP response message to the media player. The media player streams out the audio/video file.

The importance of the intermediate step of acquiring the meta file is clear. When the browser sees the content-type for the file, it can launch the 
appropriate media player, and thereby have the media player directly contact the server. 

We have have just learned how a meta file can allow a media player to dialogue directly with a Web server housing an audio/video. Yet  many 
companies that sell  products for audio/video streaming do not recommend the architecture we just described. This is because the architecture has the 
media player communicate with the server over HTTP and hence also over TCP. HTTP is often considered insufficiently rich to allow for 
satisfactory user interaction with the server; in particular, HTTP does not easily allow a user (through the media server) to send pause/resume, fast-
forward and temporal jump commands to the server. TCP is often considered inappropriate for audio/video streaming, particularly when users are 
behind slow modem links. This is because, upon packet loss, the TCP sender rate almost comes to a halt, which can result in extended periods of 
time during which the media player is starved. Nevertheless, audio and video is often streamed from Web servers over TCP with satisfactory results. 

6.2.2 Sending Multimedia from a Streaming Server to Helper Application

In order to get around HTTP and/or TCP, the audio/video can be stored on and sent from a streaming server to the media player. This streaming 
server could be a proprietary streaming server, such as those marketed by RealNetworks and Microsoft, or could be a public-domain streaming 
server. With a streaming server, the audio/video can be sent over UDP (rather than TCP) using application-layer protocols that may be tailored to 
audio/video streaming than is HTTP. 

This architecture requires two servers, as shown in Figure 6.2-3.  One server, the HTTP server, serves Web pages (including meta files). The second 
server, the  streaming server, serves the audio/video files. The two servers can  run on the same end system or on two distinct end systems. (If the 
Web server is very busy serving Web pages, it may be advantageous to put the streaming server on its own machine.) The steps for this architecture 
are  similar to  those described in the previous architecture. However, now the media player requests the file from a streaming server rather than 
from a Web server, and now the media player and streaming server can interact using their own protocols. These protocols can allow for rich user 
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interaction with the audio/video stream. Furthermore, the  audio/video file can be sent to the media player over UDP instead of TCP. 

 
Figure 6.2-3 Streaming from a streaming server to a media player.

In the architecture of Figure 6.2-3, there are many options for delivering the audio/video from the streaming server to the media player. A partial list 
of the options is given below: 

1.  The audio/video is sent over UDP at a constant rate equal to the drain rate at the reciever (which is the encoded rate of the audio/video). For 
example, if the audio is compressed using GSM at a rate of 13 Kbps, then the server clocks out the compressed audio file at 13 Kbps. As soon 
as the client receives compressed audio/video from the network, it decompresses the audio/video and plays it back.

2.  This is the same as option 1, but the media player delays  play out for 2-5 seconds in order to eliminate network induced jitter. The client 
accomplishes this task by placing the compressed media that it receives from the network into a client buffer, as shown in Figure 6.2-4. Once 
the client has "prefetched" a few seconds of the media, it begins to drain the buffer. For this and the previous option, the drain rate d is equal 
to the fill rate x(t), except when there is packet loss, in which case x(t) is less momentarily less than d.

3.  The audio is sent over TCP and the media player delays play out for 2-5 seconds. The server passes data to the TCP socket at a constant rate 
equal to the receiver drain rate d. TCP retransmits lost packets, and thereby possibly improves sound quality. But the fill rate x(t) now 
fluctuates with time due to TCP slow start and window flow control, even when there is no packet loss.  If there is no packet loss, the average 
fill rate should be approximately equal to the drain rate d. Furthermore, after packet loss TCP congestion control may reduce the 
instantaneous rate to less than d for long periods of time. This can can empty the client buffer and introduce undesirable pauses into the 
output of the audio/video stream at the client.

4.  This is the same as option 3, but now the media player uses a large client buffer - large enough to hold the much if not all of the audio/video 
file (possibly within disk storage). The server pushes the audio/video file into its TCP socket as quickly as it can; the client reads from its 
TCP socket as quickly as it can, and places the decompressed audio video into the large client buffer. In this case, TCP makes use of all the 
instantaneous bandwidth available to the connection, so that at times x(t) can be much larger than d. When the instantaneous bandwidth drops 
below the drain rate, the receiver does not experience loss as long as the client buffer is nonempty.
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Figure 6.2-4 Client buffer being filled at rate x(t) and drained at rate d.

6.2.3 Real Time Streaming Protocol (RTSP)

Audio, video and  SMIL presentations, etc., are often referred to as continuous media. (SMIL stands for Synchronized Multimedia Integration 
Language; it is a document language standard, as is HTML. As its name suggests, SMIL defines how continuous media objects, as well as static 
objects, are synchronized in a presentation that unravels over time. An indepth discussion of SMIL is beyond the scope of this book.) Users typically 
want to control the playback of continous media by pausing playback, repositioning playback to a future or past point of time, visual fast-forwarding 
playback, visual rewinding playback, etc. This functionality is similar to what to a user has with a VCR when watching a video cassette or with a CD 
player when listening to CD music. To allow a user to control playback, the media player and server need a protocol for exchanging playback 
control information. RTSP, defined in [RFC 2326], is such a protocol. 

But before getting into the details of RTSP, let us indicate what RTSP does not do: 

●     RTSP does not define compression schemes for audio and video.
●     RTSP does not define the how audio and video is encapusalated in packets for transmission over a network; encapsulation for streaming 

media can be provided by RTP or by a proprietary protocol. (RTP is discussed in Section 6.4) For example, RealMedia’s G2 server and 
player use RTSP to send control information to each other. But the media stream itself can be encapsulated RTP packets or with some 
proprietary RealNetworks scheme.

●     RTSP does not restrict how the the streamed media is transported; it can be transported over UDP or TCP.
●     RTSP does not restrict how the media player buffers the audio/video. The audio/video can be played out as soon as it begins to arrive at the 

client, it can be played out after a delay of a few seconds, or it can be downloaded in its entirety before play out.

So if RTSP doesn't do any of the above, what does RTSP do? RTSP is a protocol that allows a media player to control the transmission of a media 
stream. As mentioned above, control actions inlcude pause/resume, repositioning of playback, fast forward and rewind. RTSP is a so-called out-of-
band protocol. In particular, the RTSP messages are sent out-of-band, whereas the media stream, whose packet structure is not defined by RTSP, is 
considered “in-band”. The RTSP messages use different port numbers than the media stream. RTSP uses port number 554. (If the RTSP messages 
were to use the same port numbers as the media stream, then RTSP messages would be said to be “interleaved” with the media stream.) The RTSP 
specification [RFC 2326] permits RTSP messages to be sent either over TCP or UDP. 

Recall from Section 2.3 that File Transfer Protocol (FTP) also uses the out-of-band notion. In particular, FTP uses two client/server pairs of sockets, 
each pair with its own port number: one client/server socket pair supports a TCP connection that transports control information; the other client/
server socket pair supports a TCP connection that actually transports the file. The control TCP connection is the so-called out-of-band channel 
whereas the TCP connection that transports the file is the so-called data channel. The out-of-band channel is used for sending remote directory 
changes, remote file deletion, remote file renaming, file download requests, etc. The inband channel transports the file itself. The RTSP channel is in 
many ways similar to FTP's control channel. 

Let us now walk through  a simple RTSP example, which is illustrated in Figure 6.2-5. The Web browser first requests a  presentation description 
file from a Web server. The presentation description file can have references to several continous-media files as well as directives for 
syncrhonization of the continuous-media files. Each reference to a continuous-media file begins with the the URL method, rtsp:// . Below we 
provide a sample presentation file, which has been adapted from the paper [Schulzrinne]. In this presentation, an audio and video stream are played 
in parallel and in lipsync (as part of the same "group"). For the audio stream, the media player can choose ("switch") among two audio recordings, a 
low fidelity recording and a hi fidelity recording. 
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<title>Twister</title> 
<session> 
         <group language=en lipsync> 
                   <switch> 
                       <track type=audio 
                              e="PCMU/8000/1" 
                              src = "rtsp://audio.example.com/twister/audio.en/lofi"> 
                       <track type=audio 
                              e="DVI4/16000/2" pt="90 DVI4/8000/1" 
                              src="rtsp://audio.example.com/twister/audio.en/hifi"> 
                    </switch> 
                <track type="video/jpeg" 
                              src="rtsp://video.example.com/twister/video"> 
           </group> 
</session> 

The Web server encapsulates the presentation description file in an HTTP response message and sends the message to the browser. When the 
browser receives the HTTP response message, the browser invokes a media player (i.e., the helper application) based on the content-type: field 
of the message. The presentation description file includes references to media streams, using the URL method rtsp:// , as shown in the above sample. 
As shown in Figure 6.2-4, the player and the server then send each other a series of RTSP messages. The player sends an RTSP SETUP request, and 
the server sends an RTSP SETUP response. The player sends an RTSP PLAY request, say, for lofi auido, and  server sends RTSP PLAY response. 
At this point, the streaming server pumps the lofi audio into its own in-band channel. Later, the media player sends an RTSP PAUSE request, and 
the server responds with an RTSP PAUSE response. When the user is finished, the media player sends an RTSP TEARDOWN request, and the 
server responds with an RTSP TEARDOWN response. 

 

Figure 6.2-4 Interaction between client and server using RTSP

Each RTSP session has a session identifier, which is chosen by the server. The client initiates the session with the SETUP request, and the server 
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responds to the request with an identifier. The client repeats the session identifier for each request, until the client closes the session with the 
TEARDOWN request. The following is a simplified example of an RTSP session: 
  

C:SETUP rtsp://audio.example.com/twister/audio RTSP/1.0 
   Transport: rtp/udp; compression; port=3056; mode=PLAY 

S: RTSP/1.0 200 1 OK 
     Session 4231 

C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 
     Session: 4231 
     Range: npt=0- 

C: PAUSE rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 
     Session: 4231 
     Range: npt=37 

C: TEARDOWN rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0 
     Session: 4231 

S: 200 3 OK

Notice that in this example, the player choose not to playback the complete present, but instead only hte lofi portion of the presentation. The RTSP 
protocol is actually capable of doing much more than described in this brief introduction. In particular, RTSP has facilities that allows clients to 
stream towards the server (e.g., for recording). RTSP has been adapted by RealNetworks, currently the industry leader in audio/video streaming. 
RealNetworks makes available a nice page on RTSP [RealNetworks]. 
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6.3 Making the Best of the Best-Effort Service:

An Internet Phone Example

The Internet's network layer protocol, IP, provides a best-effort service. That is to say that the Internet makes its best effort to move each datagram 
from source to destination as quickly as possible. However, the best-effort service does not make any promises whatsoever on the extent of the end-
to-end delay for an individual packet, or on the extent of packet jitter and packet loss within the packet stream. 

Real-time  interactive multimedia applications, such as Internet phone and real-time video conferencing, are acutely senstive to packet delay, jitter 
and loss. Fortunately, designers of these applications can introduce several useful mechanisms that can preserve good audio and video quality as 
long as delay, jitter and loss are not excessive. In this section we examine some of these mechanisms. To keep the discussion concrete,  we discuss 
these mechanisms in the context of an Internet phone application, described in the paragraph below. The situation is similar for real-time video 
conferencing applications [Bolot 1994]. 

The speaker in our Internet phone application generates an audio signal consisting of alternating talk spurts and silent periods. In order to conserve 
bandwidth, our Internet phone application only generates packets during talk spurts. During a talk spurt the sender generates bytes at a rate of 8 
Kbytes per second, and every 20 milliseconds the sender gathers bytes into chunks. Thus the number of bytes in a chunk is (20 msecs)*(8 Kbytes/
sec) = 160 bytes. A special header is attached to each chunk, the contents of which is discussed below. The chunk along with its header are 
encapsulated in a UDP segment, and then the UDP datagram is sent into the socket interface. Thus, during a talk spurt a UDP segment is sent every 
20 msec. 

If each packet makes it to the receiver (i.e., no loss) and has a small constant end-to-end delay, then packets arrive at the receiver periodically every 
20 msec during a talk spurt. In these ideal conditions, the receiver can simply play back each chunk as soon as it arrives. But, unfortunately, some 
packets can be lost and most packets will not have a fixed end-to-end delay, in even a lightly congested Internet. For this reason, the receiver must 
take more care in (i) determining when to play back a chunk, and (ii) determining what to do with a missing chunk. 

6.3.1 The Limitations of a Best-Effort Service

We mentioned that the best-effort service can lead to packet loss, excessive end-to-end delay, and delay jitter. Let's examine now these issues in 
more detail. 

Packet Loss 

Consider one of the UDP datagrams generated by our Internet phone application. The UDP segment is encapsulated in an IP datagram, and the IP 
datagram makes it way through the network towards the receiver. As the datagram wanders through the network, it passes through buffers (i.e., 
queues) in the routers in order to access outbound links. It is possible that one or more of the buffers in the route from sender to receiver is full and 
cannot admit the IP datagram. In this case, the IP datagram is discarded and becomes a lost packet. It never arrives to the receiving application. 

Loss could be eliminated by sending the packets over TCP rather than over UDP. Recall that TCP retransmits packets that do not arrive at the 
destination. However, retransmission mechanisms are generally not acceptable for interactive real-time audio applications, such as Internet phone, 
because they increase end-to-end delay [Bolot 1996]. Furthermore, due to TCP congestion control, after packet loss the transmission rate at the 
sender can be reduced to a rate that is lower than the drain rate at the receiver. This can have a severe impact on voice intelligibility at the receiver. 
For these reasons, almost all existing Internet phone applications run over UDP and do not bother to retransmit lost packets. 

But losing packets is not necessarily as grave as one might think. Indeed, packet loss rates between 1% and 20% can be tolerated, depending on how 
the voice is encoded and transmitted, and on how the loss is concealed at the receiver. For example, forward error correction (FEC)  can help conceal 
packet loss. As we shall see below, with FEC redundant information is transmitted along with the original information so that some of the lost 
original data can be recovered from the redundant information. Nevertheless, if one or more of the links between sender and receiver is severely 
congested, and packet loss exceeds 10-20%, then there is really nothing that can be done to achieve acceptable sound quality. The best-effort service 
has its limitations. 

End-to-End Delay 

End-to-end delay is the accumulation of processing and queueing delays in routers, propagation delays, and end-system processing delays. For 
highly interactive audio applications, like Internet phone,  end-to-end delays smaller than 150 milliseconds are not perceived by a human listener; 
delays between 150 and 400 milliseconds can be acceptable but not ideal; and delays exceeding 400 milliseconds result in unintilligible voice 
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conversations. The receiver in an Internet phone application will typically disregard any packets that are delayed more than a certain threshold, e.g., 
more than 400 milliseconds. Thus, packets that are delayed by more than the threshold are effectively lost. 

Delay Jitter 

One of the components of end-to-end delay is the random queueing delays in the routers. Because of these random queueing delays within the 
network, the time from when a packet is generated at the source until it is received at the receiver can fluctuate from packet to packet. This 
phenonemom is called jitter. 

As an example, consider two consecutive packets within a talk spurt in our Internet phone application. The sender sends the second packet 20 msec 
after sending the first packet. But at the receiver the spacing between these packets can become greater than 20 msec.  To see this, suppose the first 
packet arrives to a nearly empty queue at a router, but just before the second packet arrives to the queue a large number of packets from other 
sources arrive to the same queue. Because the second packet suffers a large queueing delay,  the first and second packets become spaced apart by 
more than 20 milliseconds. (In fact, the spacing between two consecutive packets can become one second or more.) The spacing between 
consecutive packets can also become less than 20 milliseconds. To see this, again consider two consecutive packets within a talk spurt. Suppose the 
first packet joins the end of a queue with a large number of packets, and the second packet arrives to the queue before packets from other sources 
arrive to the queue. Thus, our two packets find themselves right behind each other in the queue. If the time it takes to transmit a packet on the 
router's onbound link is less than 20 milliseconds, then the first and second packets become spaced apart by less than 20 milliseconds. 

The situation is analogous to driving cars on roads. Suppose you and your friend are each driving in your own cars from San Diego to Phoenix. 
Suppose  you and your friend have similar driving styles, and that you both drive at 100 km/hour, traffic permitting. Finally, suppose your friend 
starts out one hour before you. Then, depending on intervening traffic, you may arrive at Phoenix more or less than one hour after your friend. 

If the receiver ignores the presence of jitter, and plays out chunks as soon as they arrive, then the resulting audio quality can easily become 
unintelligible at the receiver. Fortunately, jitter can be often be removed by using  sequence numbers, timestamps and a playout delay, as we 
discuss below. 

6.3.2 Removing Jitter at the Receiver for Audio

For a voice application such as Internet phone or audio-on-demand, the receiver should attempt to provide synchronous playout of voice chunks in 
the presence of random network jitter. This is typically done by combining the following three mechanisms: 

●     Appending a sequence number on each chunk. The sender increments the sequence number by one for each of the packet it generates.
●     Appending a timestamp on each chunk. The sender stamps each chunk with time at which the chunk was generated.
●     Delaying playout of chunks at the receiver. The playout delay of the received audio chunks must be long enough so that most of the packets 

are received before their scheduled playout times. This playout delay can be either fixed throughout the duration of the conference, or it may 
vary adaptively during the conference's lifetime. Packets that do not arrive before their scheduled playout times are considered lost and 
forgotten; as mentioned above, the receiver may use some form of speech interpolation to attempt to conceal the loss.

The sequence number and timestamp occupy fields in the header of the audio chunk. A standardized format for the header of the audio chunks is 
described in the next section. 

We now discuss how these three mechanisms, when combined, can alleviate or even eliminate the effects of jitter. We examine two playback 
strategies: fixed playout delay and adaptive playout delay. 

Fixed Playout Delay 

With the fixed delay strategy, the receiver attempts to playout each chunk exactly q milliseconds after the chunk is generated. So if a chunk is 
timestamped at time t, the receiver plays out the chunk at time t+q, assuming the chunk has arrived by the scheduled playout time t+q. Packets that 
arrive after their scheduled playout times are discarded and considered lost. 

Note that sequence numbers are not necessary for this fixed delay strategy. Also note that even in the presence of occassional packet loss, we can 
continue to operate the fixed delay strategy. 

What is a good choice of q? Internet telephone can support delays up to about 400 milliseconds, although a more satisfying interactive experience is 
achieved with smaller values of q. On the otherhand, if q is made much smaller than 400 milliseconds, then many packets may miss their scheduled 
playback times due to the network-induced delay jitter. Roughly speaking, if large variations in end-to-end delay are typical, it is preferable to use a 
large q; on the other hand, if delay is small and variations in delay are also small, it is preferable to use a small q, perhaps less than 150 milliseconds. 
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The tradeoff between the playback delay and packet loss is illustrated in Figure 6.3-1. The figure shows the times at which packets are generated and 
played out for a single talkspurt. Two distinct initial playout delays are considered.  As shown by the left-most staircase, the sender generates 
packets at regular intervals -- specifically, every 20 msec. The first packet in this talkspurt is received at time r. As shown in the figure, the arrivals 
of subsequent packets are not evenly spaced due to the network jitter. 

For the first playout schedule, the fixed inital playout delay is set to p- r. With this schedule, the fourth packet does not arrive by its scheduled 
playout time, and the receiever considers it lost. For the second playout schedule, the fixed initial playout delay is set to p'- r. For this schedule all of 
the packets arrive before their scheduled playout times, and there is therefore no loss. 

 
Figure 6.3-1: Packet loss for different fixed playout delays

Adaptive Playout Delay 

The above example demonstrates an important delay-loss tradeoff that arises when designing a playout strategy with fixed playout delays. By 
making the initial playout delay large, most packets will make their deadlines and there will therefore be negligible loss; however, for interactive 
services such as Internet phone, long delays can become bothersome if not intolerable. Ideally, we would like the playout delay to be minimized 
subject to the constraint that the loss be below a few percent. 

The natural way to deal with this tradeoff is to estimate the network delay and the variance of the network delay, and to accordingly adjust the 
playout delay at the beginning of each talkspurt.  This adaptive adjustment of the playout delays at the beginning of the talkspurts will cause the the 
sender's silent periods to be compressed and elongated; however, compression and elongation of silence by a small amount is not noticeable in 
speech. 
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Following the paper [Ramjee 1994], we now describe a generic algorithm that the receiver can use to adaptively adjust its playout delays. To this 
end, let 

ti = timestamp of the ith packet = the time packet was generated by sender

ri = the time packet i is received by receiver 

pi = the time packet i is played at receiver

The end-to-end network delay of the ith packet is ri - ti. Due to network jitter, this delay will vary from packet to packet. Let di denote an estimate of 

the average network delay upon reception of the ith packet. This estimate is constructed from the timestamps as follows: 
di = (1-u) di-1 + u (ri - ti)

where u is a fixed constant (e.g., u = .01). Thus di is a smoothed average of the observed network delays r1 - t1,..., ri - ti; the estimate places more 

weight on the recently observed network delays than on the observed network delays of the distant past. This form of estimate should not be 
completely unfamiliar; a similar idea is used to estimate round-trip times, as discussed in Chapter 3. Let vi denote an estimate of the average 

deviation of the delay from the estimated average delay. This estimate is also constructed from the timestamps: 

vi = (1-u) vi-1 + u | ri - ti - di | .

The estimates di and vi are calculated for every packet received, although they are only used to determine the playout point for the first packet in any 

talkspurt. 

Once having calculated these estimates, the receiver employs the following algorithm for the playout of packets. If packet i is the first packet of a 
talkspurt, its playout time, pi, is computed as: 

pi = ti + di + Kvi,

where K is a positive constant (e.g., K = 4). The purpose of the K vi term is to set the playout time far enough into the future so that only a small 

fraction of the arriving packets in the talk spurt will be lost due to late arrivals. The playout point for any subsequent packet in a talkspurt is 
computed as an offset from the point in time when the first packet in the talkspurt was played out. In particular, let 

qi = pi -ti ,

be length of time from when the first packet in the talk spurt is generated until it is played out. If packet j also belongs to this talk spurt, it is played 
out at time 

pj = tj + qi .

The algorithm just described makes perfect sense assuming that the receiver can tell whether a packet is the first packet in the talk spurt. If there is 
no packet loss, then the receiver can determine whether packet i is the first packet of the talk spurt by comparing the timestamp of the ith packet with 
the timestamp of the (i-1)st packet. Indeed, if ti - ti-1 > 20 msec, then the receiver knows that ith packet starts a new talkspurt. But now suppose there 

is occassional packet loss. In this case two successive packets received at the destination may have timestamps that differ by more than 20 msec 
when the two packets belong to the same talkspurt. So here is where the sequence numbers become useful. The receiver can use the sequence 
numbers to determine whether the  > 20 msec difference in timestamps is due to a new talkspurt or to lost packets. 

6.3.3 Recovering from Packet Loss

We have discussed in some detail how an Internet phone application can deal with packet jitter. We now briefly describe a few schemes that attempt 
to preserve acceptable audio quality in the presence of packet loss. Such schemes are called loss recovery schemes. Here we define packet loss in a 
broad sense: a packet is lost if either it never arrives at the receiver or if it arrives after its scheduled playout time. Our Internet phone example will 
again serve as a context for describing the loss recovery schemes. 

As mentioned at the beginning of this section, retransmitting lost packets is not appropriate in an interactive real-time application such as Internet 
phone. Indeed, retransmitting a packet that missed its playout deadline serves absolutely no purpose. And retransmitting a packet that overflowed a 
router queue can not normally be accomplished quickly enough. Because retransmissions are inappropriate, Internet phone applications  often use 
some type of  loss anticipation scheme. Two types of loss-anticipiation schemes are forward-error correction (FEC) and interleaving. 

Forward-Error Correction (FEC) 
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The basic idea of FEC is to add redundant information to the original packet stream. For the cost of  marginally increasing the transmission rate of 
the audio of the stream, the redundant information can be used to reconstruct "approximations" or exact versions of some of the lost packets. 
Following  [Bolot 1996] and [Perkins 1998], we now outline two FEC mechanisms. The first mechanism sends a redundant encoded chunk after 
every n chunks. The redundant chunk is obtained by exclusive OR-ing the n original chunks [Shacham 1990] . In this manner if any one packet of 
the group of n+1 packets is lost, the receiver can fully reconstruct the lost packet. But if two or more packets in a group are lost, ther receiver cannot 
reconstuct the lost packets. By keeping n+1, the group size, small, a large fraction of the lost packets can be recovered when loss is not excessive. 
However, the smaller the group size, the greater the relative increase of the transmission rate of the audio stream. In particular, the transmission rate 
increases by a factor of 1/n; for example, if n=3, then the transmission rate increases by 33%. Furthermore, this simple scheme increases the playout 
delay because the receiver must receive the entire group of packets before it can playout a group. (During a talkspurt, the receiver schedules periodic 
playback of the chunks based on the worst-case scenario - namely, the first packet in a group is lost within some group. This requires the receiver to 
delay playback of each packet for the time it takes to receive an entire group.) 

The second FEC mechanism to send a lower quality audio stream as the redundant information.  For example, the sender creates a nominal audio 
stream and a corresponding low-bit rate audio stream. (The nominal stream could be a PCM encoding at 64 Kbps and the lower-quality stream could 
be a GSM encoding at 13 Kbps.) The low-bit rate stream is referred to as the redundant stream. As shown in Figure 6.3-2, the sender constructs the 
nth packet by taking the nth chunk from the nominal stream and appending to it the (n-1)st chunk from the redundant stream. In this manner, 
whenever there is non-consecutive packet loss, the receiver can conceal the loss by playing out the low-bit-rate encoded chunk that arrives with the 
subsequent packet. Of course, low-bit-rate chunks give lower quality than the nominal chunks; but a stream of mostly high-quality chunks, 
occasional low-quality chunks and no missing chunks gives good overall audio quality. Note that in this scheme, the receiver only has to receive two 
packets before playback, so that the increased playout delay is small. Furthermore, if the low-bit-rate encoding is much less than the nominal 
encoding, then the marginal increase in the transmission rate is small. 

 
Figure 6.3-2: Piggybacking lower-quality redundant information

In order to cope with non-consecutive loss, a simple variation can be employed. Instead of appending just the (n-1)st low-bit-rate chunk to the nth 
nominal chunk, the sender can append the (n-1)st and (n-2)nd low-bit-rate chunk, or append the (n-1)st and (n-3)rd low-bit-rate chunk, etc. By 
appending more low-bit-rate chunks to each nominal chunk, the audio quality at the receiver becomes acceptable for a wider variety of harsh best-
effort environments. On the otherhand, the additional chunks increase the transmission bandwidth and the playout delay. 

Free Phone and RAT are well-documented Internet phone application that uses FEC. They can transmit lower-quality audio streams along with the 
nominal audio stream, as described above. 

Interleaving 

As an alternative to redundant transmission, an Internet phone application can send interleaved audio. As shown in Figure 6.3-3, the sender 
resequences units of audio data before transmission, so that originally adjacent units are separated by a certain distance in the transmitted stream.  
Interleaving reduces the effect of packet losses. If, for  example, units are 5 ms in length and chunks are 20 ms (i.e., 4 units per chunk), then the first 
chunk could contain units 1, 5, 9, 13; the second chunk could contain units 2, 6, 10, 14; and so on. Figure 6.3-3 shows that the loss of a single packet 
from an interleaved stream results in multiple small gaps in the reconstructed stream, as opposed to the single large gap which would occur in a non-
interleaved stream. 
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Figure 6.3-3: Sending interleaved audio

Interleaving can significantly improve the perceived quality of an audio stream [Perkins 1998]. The obvious disadvantage of interleaving is that it 
increases latency. This limits its use for interactive applications such as Internet phone, although it can perform well for streaming stored audio. The 
major advantage of interleaving is that it does not increase the bandwidth requirements of a stream. 

Receiver-based repair of damaged audio streams 

Receiver-based recovery schemes attempt to produce a replacement for a lost packet that is similar to the original. As discussed in [Perkins 1998], 
this is possible since audio signals, and in particular speech, exhibit large amounts of short-term self similarity. As such, these techniques work for 
relatively small loss rates (less than 15%), and for small packets (4-40ms). When the loss length approaches the length of a phoneme (5-100ms) 
these techniques breakdown, since whole phonemes may be missed by the listener. 

A simple form of receiver-based recovery is packet repetition. Packet repetition replaces lost packets with copies of the packets that arrived 
immediately before the loss. It has low computational complexity and performs reasonably well.  Another form of receiver-based recovery is 
interpolation, which uses audio before and after the loss to interpolate a suitable packet to cover the loss. It performs somewhat better than packet 
repetition, but is significantly more computationally intensive [Perkins 1998]. 

6.3.4 Streaming Stored Audio and Video

We conclude this section with a few words about streaming stored audio and video. Streaming stored audio/video can also use sequence numbers, 
timestamps, and playout delay to alleviate or even eliminate the effects of network jitter. However, there is an important difference between real-
time interactive audio/video and streaming stored audio/video . Specifically, streaming of stored audio/video can tolerate significantly larger delays. 
Indeed, when a user requests an audio/video clip, the user may find it acceptable to wait five seconds or more before playback begins. And most 
users can tolerate similar delays after interactive actions such as a temporal jump to the future. This greater tolerance for delay gives the application 
developer greater flexibility when designing an stored media applications. 
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6.4 RTP

In the previous section we learned that the sender side of a multimedia application appends header fields to the audio/video chunks before passing 
the chunks to the transport layer. These header fields include sequence numbers and timestamps. Since most all multimedia networking applications 
can make use of sequence numbers and timestamps, it is convenient to have a standardized  packet structure that includes fields for audio/video data, 
sequence number and timestamp, as well as other potentially useful fields. RTP, defined in [RFC 1889], is such a standard.  RTP can be used for 
transporting common formats such as WAV or GSM for sound and MPEG1 and MPEG2 for video. It can also be used for transporting proprietary 
sound and video formats. 

In this section we attempt to provide a readable introduction to RTP and to its companion protocol, RTCP. We also discuss the role of RTP in the 
H.323 standard for real-time interactive audio and video conferencing. The reader is encouraged to visit Henning Schulzrinne's RTP site 
[Schulzrinne 1997], which provides a wealth of information on the subject. Also, readers may want to visit the Free Phone site, which describes an 
Internet phone application that uses RTP. 

6.4.1 RTP Basics

RTP typically runs on top of UDP. Specifically, audio or video chunks of data, generated by the sending side of a multimedia application, are 
encapsulated in RTP packets, and each RTP packet is in turn encapsulated in a UDP segment. Because RTP provides services (timestamps, sequence 
numbers, etc.) to the multimedia application, RTP can be viewed as a sublayer of the transport layer, as shown in Figure 6.4-1. 

 
Figure 6.4-1 RTP can be viewed as a sublayer of the transport layer.

From the application developer's perspective, however, RTP is not part of the transport layer but instead part of the application layer. This is because 
the developer must integrate RTP into the application. Specifically, for the sender side of the application, the developer must write code into the 
application which creates the RTP encapsulating packets; the application then sends the RTP packets into a UDP socket interface. Similarly, at the 
receiver side of the application, the RTP packets enter the application through a UDP socket interface; the developer therefore must write code into 
the application that extracts the media chunks from the RTP packets. This is illustrated in Figure 6.4-2. 
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Figure 6.4-2 From a developer's perspective, RTP is part of the application layer.

As an example consider using RTP to transport voice. Suppose the voice source is PCM encoded (i.e., sampled, quantized, and digitized) at 64 kbps. 
Further suppose that the application collects the encoded data in 20 msec chunks, i.e, 160 bytes in a chunk. The application precedes each chunk of 
the audio data with an RTP header, which includes the type of audio encoding,  a sequence number and a timestamp. The audio chunk along with 
the RTP header form the RTP packet. The RTP packet is then sent into the UDP socket interface, where it is encapsulated in a UDP packet. At the 
receiver side, the application receives the RTP packet from its socket interface. The application extracts the audio chunk from the RTP packet, and 
uses the header fields of the RTP packet to properly decode and playback the audio chunk. 

If an application incorporates RTP -- instead of a proprietary scheme to provide payload type, sequence numbers or timestamps -- then the 
application will more easily interoperate with other networking applications. For example, if two different companies develop Internet phone 
software and they both incorporate RTP into their product, there may be some hope that a user using one of the Internet phone products will be able 
to communicate with a user using the other Internet phone product. At the end of this section we shall see that RTP has been incorporated into an 
important part of an Internet telephony standard. 

It should be emphasized that RTP in itself does not provide any mechanism to ensure timely delivery of data or provide other quality of service 
guarantees; it does not even guarantee delivery of packets or prevent out-of-order delivery of packets. Indeed, RTP encapsulation is only seen at the 
end systems -- it is not seen by intermediate routers. Routers do not distinguish between IP datagrams that carry RTP packets and IP datagrams that 
don't. 

RTP allows each source (for example, a camera or a microphone) to be assigned its own independent RTP stream of packets. For example, for a 
videoconference between two participants, four RTP streams could be opened: two streams for transmitting the audio (one in each direction) and two 
streams for the video (again, one in each direction). However, many popular encoding techniques -- including MPEG1 and MPEG2 -- bundle the 
audio and video into a single stream during the encoding process. When the audio and video are bundled by the encoder, then only one RTP stream 
is generated in each direction. 

RTP packets are not limited to unicast applications. They can also be sent over one-to-many and many-to-many multicast trees. For a many-to-many 
multicast session, all of the senders and sources in the session typically send their RTP streams  into the same multicast tree  with the same multicast 
address. RTP multicast streams belonging together, such as audio and video streams emanating from multiple senders in a videoconference 
application, belong to an RTP session. 

6.4.2 RTP Packet Header Fields

As shown in the Figure 6.4-3, the four principle packet header fields are the payload type, sequence number, timestamp and the source identifier. 

 
Figure 6.4-3 RTP header fields.

Payload Type Field 
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The payload type field in the RTP packet is seven-bits long. Thus 27 or 128 different payload types can be supported by RTP.  For an audio stream, 
the payload type field is used to indicate the type of audio encoding (e.g., PCM, adaptive delta modulation, linear predictive encoding) that is being 
used. If a sender decides to change the encoding in the middle of a session, the sender can inform the receiver of the change through this payload 
type field. The sender may want to change the encoding  in order to increase the audio quality or to decrease the RTP stream bit rate. Figure 6.4-4 
lists some of the audio payload types currently supported by RTP. 
  
  

Payload Type Number Audio Format Sampling Rate Throughput

0 PCM mu-law 8 KHz 64 Kbps

1 1016 8 KHz 4.8 Kbps

3 GSM 8 KHz 13 Kbps

7 LPC 8 KHz 2.4 Kbps

9 G.722 8 KHz 48-64 Kbps

14 MPEG Audio 90 KHz -

15 G.728 8 KHz  16 Kbps

Figure 6.4-4 Some audio payload types supported by RTP.

For a video stream the payload type can be used to indicate the type of video encoding (e.g., motion JPEG, MPEG1, MPEG2, H.231). Again, the 
sender can change video encoding on-the-fly during a session. Figure 6.4-5 lists some of the video payload types currently supported by RTP. 
  

Payload Type Number Video Format

26 Motion JPEG

31 H.261

32 MPEG1 video

33 MPEG2 video

Figure 6.4-5 Some video payload types supported by RTP.

Sequence Number Field 

The sequence number field is 16-bits long. The sequence number increments by one for each RTP packet sent, and may be used by the receiver to 
detect packet loss and to restore packet sequence. For example if the receiver side of the application receives a stream of RTP packets with a gap 
between sequence numbers 86 and 89, then the receiver knows that packets 87 and 88 were lost. The receiver can then attempt to conceal the lost 
data. 

Timestamp Field 

The timestamp field is 32 bytes long. It  reflects the sampling instant of the first byte in the RTP data packet. As we saw in the previous section, the 
receiver can use the timestamps in order to remove packet jitter introduced in the network and to provide synchronous playout at the receiver. The 
timestamp is derived from a  sampling clock at the sender. As an example, for audio the timestamp clock increments by one for each sampling 
period (for example, each 125 usecs for a 8 KHz sampling clock); if the audio application generates chunks consisting of 160 encoded samples, then 
the timestamp increases by 160 for each RTP packet when the source is active. The timestamp clock continues to increase at a constant rate even if 
the source is inactive. 

Synchronization Source Identifier (SSRC) 

The SSRC field is 32 bits long. It identifies the source of the RTP stream. Typically, each stream in a RTP session has a distinct SSRC. The SSRC is 
not the IP address of the sender, but instead a number that the source assigns randomly when the new stream is started. The probability that two 
streams get assigned the same SSRC is very small. 

6.4.3 RTP Control Protocol (RTCP)
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[RFC 1889] also specifies RTCP, a protocol which a multimedia networking application can use in conjunction with RTP. The use of RTCP is 
particularly attractive when the networking application multicasts audio or video to multiple receivers from one or more senders. As shown in Figure 
6.4-6, RTCP packets are transmitted by each participant in an RTP session to all other participants in the session. The RTCP packets are distributed 
to all the participants using IP multicast. For an RTP session, typically there is a single multicast address, and all RTP and RTCP packets belonging 
to the session use the multicast address. RTP and RTCP packets are distinguished from each other through the use of distinct port numbers. 

 
Figure 6.4-6 Both senders and receivers  send RTCP messages.

RTCP packets do not encapsulate chunks of audio or video. Instead, RTCP packets are sent periodically and contain sender and/or receiver reports 
that announce statistics that can be useful to the application. These statistics include number of packets sent, number of packets lost and interarrival 
jitter. The RTP specification [RFC 1889] does not dictate what the application should do with this feedback information. It is up to the application 
developer to decide what it wants to do with the feedback information. Senders can use the feedback information, for example, to modify their 
transmission rates. The feedback information can also be used for diagnostic purposes; for example, receivers can determine whether problems are 
local, regional or global. 

RTCP  Packet Types

Receiver reception packets 

For each RTP stream that a receiver receives as part of a session, the receiver generates a reception report. The receiver aggregates its reception 
reports into a single RTCP packet. The  packet is then sent into multicast tree that connects together all the participants in the session. The reception 
report includes several fields, the most important of which are listed below. 

❍     The SSRC of the RTP stream for which the reception report is being generated.
❍     The fraction of packets lost within the RTP stream. Each receiver calculates the number of RTP packets lost divided by the number of 

RTP packets sent as part of the stream. If a sender receives reception reports indicating that the receivers are receiving only a small 
fraction of the sender's transmitted packets, the sender can switch to a lower encoding rate, thereby decreasing the congestion in the 
network, which may improve the reception rate.

❍     The last sequence number received in the stream of RTP packets.
❍     The interarrival jitter, which is calculated as the average interarrival time between successive packets in the RTP stream.

Sender report packets 

For each RTP stream that a sender is transmitting, the sender creates and transmits RTCP sender-report packets. These packets include information 
about the RTP stream, including: 

●     The SSRC of the RTP stream.
●     The timestamp and wall-clock time of the most recently generated RTP packet in the stream
●     The number of packets sent in the stream.
●     The number of bytes sent in the stream.
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The sender reports can be used to synchronize different media streams within a RTP session. For example, consider a videoconferencing application 
for which each sender generates two independent RTP streams, one for video and one for audio. The timestamps in these RTP packets are tied to the 
video and audio sampling clocks, and are not tied to the wall-clock time (i.e., to real time). Each RTCP sender-report contains, for the most recently 
generated packet in the associated RTP stream, the timestamp of the RTP packet and the wall-clock time for when the packet was created. Thus the 
RTCP sender-report packets associate the sampling clock to the real-time clock. Receivers can use this association in the RTCP sender reports to 
synchronize the playout of audio and video. 

Source description packets 

For each RTP stream that a sender is transmitting, the sender also creates and transmits source-description packets. These packets contain 
information about the source, such as e-mail address of the sender, the sender's name and the application that generates the RTP stream. It also 
includes the SSRC of the associated RTP stream. These packets provide a mapping between the source identifier (i.e., the SSRC) and the user/host 
name. 

RTCP packets are stackable, i.e., receiver reception reports, sender reports, and source descriptors can be concatenated into a single packet. The 
resulting packet is then encapsulated into a UDP segment and forwarded into the multicast tree. 

RTCP Bandwidth Scaling

The astute reader will have observed that RTCP has a potential scaling problem. Consider for example an RTP session that consists of one sender 
and a large number of receivers. If each of the receivers periodically generate RTCP packets, then the aggregate transmission rate of RTCP packets 
can greatly exceed the rate of RTP packets sent by the sender. Observe that the amount of traffic sent into the multicast tree does not change as the 
number of receivers increases, whereas the amount of RTCP traffic grows linearly with the number of receivers. To solve this scaling problem, 
RTCP modifies the rate at which a participant sends RTCP packets into the multicast tree as a function of the number of participants in the session. 
Observe that, because each participant sends control packets to everyone else, each participant can keep track of the total number of participants in 
the session. 

RTCP attempts to limit its traffic to 5% of the session bandwidth. For example, suppose there is one sender, which is sending video at a rate of 2 
Mbps. Then RTCP attempts to limit its traffic to 5% of 2 Mbps, or 100 Kbps, as follows. The protocol gives 75% of  this rate, or 75 Kbps, to the 
receivers; it gives the remaining 25% of the rate, or 25 Kbps, to the sender. The 75 Kbps devoted to the receivers is equally shared among the 
receivers. Thus, if there are R receivers, then each receiver gets to send RTCP traffic at a rate of 75/R Kbps and the sender gets to send RTCP traffic 
at a rate of 25 Kbps. A participant (a sender or receiver) determines the RTCP packet transmission period by dynamically calculating the the average 
RTCP packet size (across the entire session) and dividing the average RTCP packet size by its allocated rate. In summary, the period for transmitting 
RTCP packets for a sender is 

And the period for transmitting RTCP packets for a receiver is 

6.4.4 H.323

H.323 is a standard for real-time audio and video conferencing among end systems on the Internet. As shown in Figure 6.4-7, it also covers how end 
systems attached to the Internet communicate with telephones attached to ordinary circuit-switched telephone networks. In principle, if 
manufacturers of Internet telephony and video conferencing all conform to H.323, then all their products should be able to interoperate, and should 
be able to communicate with ordinary telephones.  We discuss H.323 in this section, as it provides an application context for RTP. Indeed, we shall 
see below that RTP is an integral part of the H.323 standard. 
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Figure 6.4-7 H.323 end systems attached to the Internet can communicate with telephones attached to a circuit-switched telephone network.

H.323 end points  (a.k.a. terminals) can be stand-alone devices (e.g., Web phones and Web TVs) or applications in a PC (e.g., Internet phone or 
video conferencing software). H.323 equipment also includes gateways and gatekeepers. Gateways permit communication among H.323 end points 
and ordinary telephones in a circuit-switched telephone network. Gatekeepers, which are optional, provide address translation, authorization, 
bandwidth management, accounting and billing. We will discuss gatekeepers in more detail at the end of this section. 

The H.323 is an umbrella specification that includes: 

●     A specification for how endpoints negotiate common audio/video encodings. Because H.323 supports a variety of audio and video encoding 
standards, a protocol is needed to allow the communicating endpoints to agree on a common encoding.

●     A specification for how audio and video chunks are encapsulated and sent over network. As you may have guessed, this is where RTP comes 
into the picture.

●     A specification for how endpoints communicate with their respective gatekeepers.
●     A specification for how Internet phones communicate through a gateway with ordinary phones in the public circuit-switched telephone 

network.

Figure 6.4-8 shows the H.323 protocol architecture. 
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Figure 6.4-8 H.323 protocol architecture.

Minimally, each H.323 endpoint must support the G.711 speech compression standard. G.711 uses PCM to generate digitized speech at either 56 
kbps or 64 kbps. Although H.323 requires every endpoint to be voice capable (through G.711), video capabilities are optional. Because video 
support is optional, manufacturers of terminals can sell simpler speech terminals as well as more complex terminals that support both audio and 
video. 

As shown in Figure 6.4-8, H.323 also requires that all H.323 end points use the following protocols: 

●     RTP -  the sending side of an endpoint encapsulates all media chunks within RTP packets. Sending side then passes the RTP packets to UDP.
●     H.245 -  an “out-of-band” control protocol for controlling media between H.323 endpoints. This protocol is used to negotiate a common 

audio or video compression standard that will be employed by all the participating endpoints in a session.
●     Q.931 - a signaling protocol for establishing and terminating calls. This protocol provides traditional telephone functionality (e.g., dial tones 

and ringing) to H.323 endpoints and equipment.
●     RAS (Registration/Admission/Status) channel protocol - a protocol that allows end points to communicate with a gatekeeper (if gatekeeper is 

present).

Audio and Video Compression

The H.323 standard supports a specific set of audio and video compression techniques. Let's first consider audio. As we just mentioned, all H.323 
end points must support the G.711 speech encoding standard. Because of this requirement, two H.323 end points will always be able to default to 
G.711 and communicate. But H.323 allows terminals to support a variety of other speech compression standards, including G.723.1, G.722, G.728 
and G.729. Many of these standards compress speech to rates that will pass through 28.8 Kbps dial-up modems. For example, G.723.1 compresses 
speech to either 5.3 kbps or 6.3 kbps, with sound quality that is comparable to G.711. 

As we mentioned earlier, video capabilities for an H.323 endpoint are optional. However, if an endpoint does supports video, then it must (at the 
very least) support the QCIF H.261 (176x144 pixels) video standard. A video capable endpoint my optionally support other H.261 schemes, 
including CIF, 4CIF and 16CIF., and the H.263 standard. As the H.323 standard evolves, it will likely support a longer list of audio and video 
compression schemes. 

H.323 Channels

When a end point participates in an H.323 session, it maintains several channels, as shown in Figure 6.4-9. 
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Figure 6.4-9 H.323 channels

Examining Figure 6.4-9, we see that an end point can support many simultaneous RTP media channels. For each media type, there will typically be 
one send media channel and one receive media channel; thus, if audio and video are sent in separate RTP streams, there will typically be four media 
channels. Accompanying the RTP media channels, there is one RTCP media control channel, as discussed in Section 6.4.3. All of the RTP and 
RTCP channels run over UDP. In addition to the RTP/RTCP channels, two other channels are required, the call control channel and the call 
signaling channel. The H.245 call control channel is a TCP connection that carries H.245 control messages. Its principle tasks are (i) opening and 
closing media channels; and (ii) capability exchange, i.e., before sending media, endpoints agree on and encoding algorithm. H.245, being a control 
protocol for real-time interactive applications, is analogous to RTSP, which is a control protocol for streaming of stored multimedia. Finally, the 
Q.931 call signaling channel provides classical telephone functionality, such as dial tone and ringing. 

Gatekeepers

The gatekeeper is an optional H.323 device. Each gatekeeper is responsible for an H.323 zone. A typical deployment scenario is shown in Figure 6.4-
10. In this deployment scenario, the H.323 terminals and the gatekeeper are all attached to the same LAN, and the H.323 zone is the LAN itself. If a 
zone has a gatekeeper, then all H.323 terminals in the zone are required to communicate with it using the RAS protocol, which runs over TCP. 
Address translation is one of the more important gatekeeper services. Each terminal can have an alias address, such as the name of the person at the 
terminal, the e-mail address of the person at the terminal, etc. The gateway translates these alias addresses to IP addresses. This address translation 
service is similar to the DNS service, covered in Section 2.5. Another gatekeeper service is bandwidth management: the gatekeeper can limit the 
number of simultaneous real-time conferences in order to save some bandwidth for other applications running over the LAN. Optionally, H.323 calls 
can be routed through gatekeeper, which is useful for billing. 
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Figure 6.4-10 H.323 terminals and gatekeeper on the same LAN.

H.323 terminal must register itself with the gatekeeper in its zone. When the H.323 application is invoked at the terminal, the terminal  uses RAS to 
send its IP address and alias (provided by user) to the gatekeeper. If gatekeeper is present in a zone, each terminal in the zone must contact 
gatekeeper to ask permission to make a call. Once it has permission, the terminal can send the gatekeeper an e-mail address, alias string or phone 
extension for the terminal it wants to call, which may be in another zone. If necessary, a gatekeeper will poll other gatekeepers in other zones to 
resolve an IP address. 

An excellent tutorial on H.323 is provided by [Web ProForums]. The reader is also encouraged to see [Rosenberg 1999] for an alternative 
architecture than H.323 for providing telephone service in the Internet. 
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6.5 Beyond Best-Effort

In previous sections we learned how sequence numbers, timestamps, FEC, RTP and RTCP can be used by 
multimedia applications in today's Internet.  But are these techniques alone enough to support reliable and 
robust multimedia applications,  e.g., an IP telephony service that is equivalent to a service in today's telephone 
network?  Before answering this question, let us first recall that today's Internet provides a best-effort service 
to all of its applications, i.e., does not make any promises about the Quality of Service (QoS) an application will 
receive. An application will receive whatever level of performance (e.g., end-end packet delay and loss) that the 
network is able to provide at that moment. Recall also that today's public Internet does not allow delay-sensitive 
multimedia applications to request any special treatment. All packets are treated equal at the routers, including 
delay-sensitive audio and video packets.  Given that all packets are treated equally, all that's required to ruin the 
quality of an on-going IP telephone call is enough interfering traffic (i.e., network congestion) to noticeably 
increase the delay and loss seen by an IP telephone call. 

In this section, we will identify new architectural components that can be added to the Internet architecture to 
shield an application from such congestion and thus make high-quality  networked multimedia applications a 
reality.  Many of the issues that we will discuss in this, and the remaining sections of this chapter are currently 
under active discussion in the IETF diffserv, intserv, and rsvp working groups. 

 
Figure 6.5-1: A simple network with two applications

Figure 6.5-1 shows a simple network scenario that illustrates the most important architectural components that 
have been proposed for the Internet in order to provide explicit support for the QoS needs of multimedia 
applications.  Suppose that two application packet flows originate on hosts H1 and H2 on one LAN and are are 
destined for hosts H3 and H4 on another LAN. The routers on the two LANs are connected by a 1.5 Mbps link.  
Let us assume the LAN speeds are significantly higher than 1.5 Mbps, and focus on the output queue of router 
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R1; it is here that packet delay and packet loss will occur if the aggregate sending rate of the H1 and H2 
exceeds 1.5 Mbps.  Let us now consider several scenarios, each of which will provide us with important insight 
into the underlying principles for providing QoS guarantees to multimedia applications. 
  

Scenario 1: A 1 Mbps Audio Application and an FTP Transfer.

 
Figure 6.5-2: Competing audio and ftp applications

Scenario 1 is illustrated in Figure 6.5-2.  Here, a 1 Mbps  audio application (e.g., a CD-quality audio call) 
shares the 1.5 Mbps link between R1 and R2 with an FTP application that is transferring a file from H2 to H4. 
In the best-effort Internet, the audio and FTP packets are mixed in the output queue at R1 and (typically) 
transmitted in a first-in-first-out (FIFO) order.  In this scenario, a burst of packets from the FTP source could 
potentially fill up the queue, causing IP audio packets to be excessively delayed or lost due to buffer overflow 
at R1. How should we solve this potential problem?  Given that the FTP application does not have time 
constraints, our intuition might be to give strict priority to audio packets at R1.  Under a strict priority 
scheduling discipline, an audio packet in the R1 output buffer would always be transmitted before any FTP 
packet in the R1 output buffer. The link from R1 to R2 would look like a dedicated link of 1.5Mbps to the audio 
traffic, with FTP traffic only using the R1-to-R2 link only when no audio traffic is queued. 

In order for R1 to distinguish between the audio and FTP packets in its queue, each packet must  be marked as 
belonging to one of these two "classes" of traffic. Recall from Section 4.7 that this was the original goal of the 
Type-of-Service (ToS) field in IPv4.  As obvious as this might seem, this then is our first principle underlying 
the provision of quality of service guarantees: 
  

Principle 1: Packet marking allows a router to distinguish among packets belonging to different 
classes of traffic.
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Scenario 2: A 1 Mbps Audio Application and a High Priority FTP Transfer.

Our second scenario is only slightly different from scenario 1.  Suppose now that the FTP user has purchased 
"platinum service" (i.e., high priced) Internet access from its ISP, while the audio user  has purchased cheap, 
low-budget Internet service that costs only a minuscule fraction of platinum service.  Should the cheap user's 
audio packets be given priority over FTP packets in this case?  Arguably not.  In this case, it would seem more 
reasonable to distinguish packets on the basis of the sender's IP address. More generally, we see that it is 
necessary for a router to classify packets according to some criteria.  This then calls for a slight modification to 
principle 1: 

Principle 1: Packet classification allows a router to distinguish among packets belonging to 
different classes of traffic.

Explicit packet marking  is one way in which packets may be distinguished. However, the marking carried by a 
packet does not, by itself, mandate that the packet will receive a given quality of service.  Marking is but one 
mechanism for distinguishing packets.  The manner in which a router distinguishes among packets by treating 
them differently is a policy decision. 

Scenario 3: A Misbehaving Audio Application and an FTP Transfer

Suppose now that somehow (by use of mechanisms that we will study in subsequent sections), the router knows 
it should give priority to packets from the 1 Mbps audio application. Since the outgoing link speed is 1.5 Mbps, 
even though the FTP packets receive lower priority, they will still, on average, receive 0.5 Mbps of 
transmission service.  But what happens if the audio application starts sending packets at a rate of 1.5 Mbps or 
higher (either maliciously or due to an error in the application)?  In this case, the FTP packets will starve, i.e., 
will not receive any service on the R1-to-R2 link. Similar problems would occur if multiple applications (e.g., 
multiple audio calls), all with the same priority, were sharing a link's bandwidth; one non-compliant flow could 
degrade and ruin the performance of the other flows.  Ideally, one wants a degree of isolation among flows, in 
order to protect one flow from another misbehaving flow.  This then is a second underlying principle the 
provision of QoS guarantees. 
  

Principle 2: It is desirable to provide a degree of isolation among traffic flows, so that one flow is 
not adversely affected by another misbehaving  flow.

In the following section, we will examine several specific mechanisms for providing this isolation among 
flows.  We note here that two broad approaches can be taken.  First, it is possible to "police" traffic flows, as 
shown in Figure 6.5-3.  If a traffic flow must meet certain criteria (e.g., that the audio flow not exceed a peak 
rate of 1 Mbps), then a policing mechanism can be put into place to ensure that this criteria is indeed observed.  
If the policed application misbehaves, the policing mechanism will take some action (e.g., drop or delay 
packets that are in violation of the criteria) so that the traffic actually entering the network conforms to the 
criteria.  The leaky bucket mechanism that we examine in the following section is perhaps the most widely used 
policing mechanism.  In Figure 6.5-3, the packet classification and marking mechanism (principle 1) and the 
policing mechanism (principle 2) are co-located at the "edge" of the network, either in the end system, or at an 
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edge router. 

 
Figure 6.5-3: Policing (and marking) the audio and ftp traffic flows

An alternate approach for providing isolation among traffic flows is for the link-level packet scheduling 
mechanism to explicitly allocate a fixed amount of link bandwidth to each application flow.  For example, the 
audio flow could be allocated 1Mbps at R1, and the ftp flow could be allocated 0.5 Mbps.  In this case, the 
audio and FTP flows see a logical link with capacity 1.0 and 0.5 Mbps, respectively, as shown in Figure 6.5-4. 
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Figure 6.5-4: Logical isolation of audio and ftp application flows

With strict enforcement of the link-level allocation of bandwidth,  a flow can only use the amount of bandwidth 
that is has been allocated ; in particular, it can not utilize bandwidth that is not currently being used by the other 
applications.  For example, if the audio flow goes silent (e.g., if the speaker pauses and generates no audio 
packets), the FTP flow would still not be able to transmit more than .5 Mbps over the R1-to-R2 link, even 
though the audio flow's 1 Mbps bandwidth allocation is not being used at that moment. It is therefore desirable 
to use bandwidth as efficiently as possible, allowing one flow to use another flow's unused bandwidth at any 
given point in time. This the the third principle underlying the provision of quality of service: 

Principle 3: While providing isolation among flows, it is desirable to use resources (e.g., link 
bandwidth and buffers) as efficiently as possible.

Scenario 4: Two 1 Mbps Audio Applications over an Overloaded 1.5 Mbps Link

In our final scenario, two 1 Mbps audio connections transmit their packets over the 1.5 Mbps link, as shown in 
Figure 6.5-5.  The combined data rate of the two flows (2 Mbps) exceeds the link capacity.  Even with 
classification and marking (principle 1), isolation of flows (principle 2), and sharing of unused bandwidth 
(principle 3), of which there is none, this is clearly a losing proposition.  There is simply not enough bandwidth 
to accommodate the applications' needs. If the two applications equally share the bandwidth, each would only 
receive 0.75 Mbps. Looked at another way, each application would lose 25% of its transmitted packets. This is 
such an unacceptably low quality of service that the application is completely unusable;  there's no need even to 
transmit  any audio packets in the first place. 
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Figure 6.5-5: Two competing audio applications overloading the R1-to-R2 link

For a flow that needs a minimum quality of service in order to be considered "usable,"  the network should 
either allow the flow to use the network (if the network can provide the required QoS) or else block the flow 
from using the network.  The telephone network is an example of a network that performs such call blocking - 
if the required resources (an end-to-end circuit, in the case of the telephone network) can not be allocated to the 
call, the call is blocked (prevented form entering the network) and a busy signal is returned to the user.  In our 
example above, there is no gain in allowing a flow into the network if it will not receive a sufficient QoS to be 
considered "usable."  Indeed, there is a cost to admitting a flow that does not receive its needed QoS, as 
network resources are being used to support a flow which provides no utility to the end user. 

Implicit with the need to provide a guaranteed QoS to a flow is the need for the flow to declare its QoS 
requirements.   This process of having a flow declare its QoS requirement, and then having the network either 
accept the flow (at the required QoS) or block the flow (because the resources needed to meet the declared QoS 
requirements can not be provided) is referred to as the call admission process.  The need for call admission is 
the fourth underlying principle in the provision of QoS guarantees: 
  

Principle 4: A call admission process is needed in which flows declare their QoS requirements 
and are then either admitted to the network (at the required QoS) or blocked from the network (if 
the required QoS can not be provided by the network).

In our discussion above, we have identified four basic principles in providing QoS guarantees for multimedia 
applications.  These principles are summarized in Figure 6.5-6.  In the following section we consider various 
mechanisms for implementing these principles.  In the sections following that, we then examine  proposed 
Internet service models for providing QoS guarantees. 
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Figure 6.5-6: Four principles of providing QoS support.
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6.6 Scheduling and Policing Mechanisms

In the previous section we identified the important underlying principles in providing quality of service 
(QoS) guarantees to networked multimedia applications.  In this section, we will examine various 
mechanisms that are used to provides these QoS guarantees.  In the following section, we will then 
examine how these mechanisms can be combined to provide various forms of Quality of Service in the 
Internet. 

6.6.1 Scheduling Mechanisms

Recall from our discussion in Section 1.6 (Delay and Loss in Packet-Switched Networks ) and Section 
4.8 (What's Inside a Router?) that packets belonging to various network flows are multiplexed together 
and queued for transmission at the output buffers associated with a link.  The manner in which queued 
packets are selected for transmission on the link is known as the link scheduling discipline.  We saw in 
the previous section that the link scheduling discipline plays an important role in providing QoS 
guarantees.  Let us now consider several of the most important link scheduling disciplines in more detail. 

First-In-First-Out (FIFO)

Figure 6.6-1 shows the queuing model abstractions for the First-in-First-Out (FIFO)  link scheduling 
discipline.  Packets arriving to the link output queue are queued for transmission if the link is currently 
busy transmitting another packet.  If there is not sufficient buffering space to hold the arriving packet, 
the queue's packet discarding policy then determines whether the packet will be dropped ("lost") or 
whether other packets will be removed from the queue to make space for the arriving packet. In our 
discussion below we will ignore packet discard.  When a packet is completely transmitted over the 
outgoing link (i.e., receives service) it is removed from the queue. 

 
Figure 6.6-1: FIFO queuing abstraction

The FIFO scheduling discipline (also known as First-Come-First-Served - FCFS) selects packets for link 
transmission in the same order in which they arrived at the output link queue.  We're all familiar with 
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FIFO queuing from bus stops (particularly in England, where queuing seems to have been perfected) or 
other service centers, where arriving customers join the back of the single waiting line, remain in order, 
and are then served when they reach the front of the line. 

 
Figure 6.6-2: The FIFO queue in operation

Figure 6.6-2 shows an example of the FIFO queue in operation.  Packet arrivals are indicated by 
numbered arrows above the upper timeline, with the number indicating the order in which the packet 
arrived.  Individual packet departures are shown below the lower timeline.  The time that a packet spends 
in service (being transmitted) is indicated by the shaded rectangle between the two timelines.  Because of 
the FIFO discipline, packets leave in the same order in which they arrived.  Note that after the departure 
of packet 4, the link remains idle (since packets 1 through 4 have been transmitted and removed from the 
queue) until the arrival of packet 5. 

Priority Queuing

file:///D|/Downloads/Livros/computação/Computer%20Netwo...0Featuring%20the%20Internet/scheduling_and_policing.htm (2 of 10)20/11/2004 15:52:54



Scheduling and Policing mechanisms for Providing QoS Guarantees

 
Figure 6.6-3: Priority queuing model

Under priority queuing, packets arriving to the output link are classified into one of  two or more 
priority classes at the output queue, as shown in Figure 6.6-3.  As discussed in the previous section, a 
packet's priority class may depend on an explicit marking that it carries in its packet header (e.g., the 
value of the Type of Service (ToS) bits in an IPv4 packet), its source or destination IP address, its 
destination port number, or other criteria.  Each priority class typically has its own waiting area (queue).  
When choosing a packet to transmit, the priority queuing discipline will transmit a packet from the 
highest priority class that has a non-empty queue (i.e., has packets waiting for transmission).  The choice 
among packets in the same priority class is typically done in a  FIFO manner. 

Figure 6.6-4 illustrates the operation of a priority queue with two priority classes.  Packets 1,3 and 4 
belong the the high priority class and packets 2 and 5 belong to the low priority class. Packet 1 arrives 
and, finding the link idle, begins transmission.  During the transmission of packet 1, packets 2 and 3 
arrive and are queued in the low and high priority queues, respectively.  After the transmission of packet 
1, packet 3 (a high priority packet) is selected for transmission over packet 2 (which, even though it 
arrived earlier, is a low priority packet).  At the end of the transmission of packet 3, packet 2 then begins 
transmission.  Packet 4 (a high priority packet) arrives during the transmission of packet 3 (a low priority 
packet).  Under a so-called non-preemptive priority queuing discipline, the transmission of a packet is 
not interrupted once it has begun.  In this case, packet 4 queues for transmission and begins being 
transmitted after the transmission of packet 2 is completed. 
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Figure 6.6-4: Operation of the priority queue

Round Robin and Weighted Fair Queuing

Under the round robin queuing discipline, packets are again sorted into classes, as with priority 
queuing.  However, rather than there being a strict priority of service among classes, a round robin 
scheduler alternates service among the classes.  In the simplest form of round robin scheduling, a class 1 
packet is transmitted, followed by a class 2 packet, followed by a class 1 packet, followed by a class 2 
packet, etc.  A so-called work-conserving queuing discipline will never allow the link to remain idle 
whenever there are packets (of any class) queued for transmission.  A work-conserving round robin 
discipline that looks for a packet of a given class but finds none will immediately check the next class in 
the round robin sequence. 

Figure 6.6-5 illustrates the operating of a two-class round robin queue. In this example, packets 1, 2 and 
4 belong to class one, and packets 3 and 5 belong to the second class.  Packet 1 begins transmission 
immediately upon arrival at the output queue.  Packets 2 and 3 arrive during the transmission of packet 1 
and thus queue for transmission.  After the transmission of packet 1, the link scheduler looks for a class-
two packet and thus transmits packet 3.  After the transmission of packet 3, the scheduler looks for a 
class-one packet and thus transmits packet 2.  After the transmission of  packet 2, packet 4 is the only 
queued packet; it is thus transmitted immediately after packet 2. 
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Figure 6.6-5: Operation of the two-class round robin queue

A generalized abstraction of round robin queuing that has found considerable use in QoS architectures is 
the so-called Weighted Fair Queuing (WFQ) discipline [Demers 90, Parekh 93]. WFQ is illustrated in 
Figure 6.6-6.  Arriving packets are again classified and queued in the appropriate per-class waiting area. 
As in round robin scheduling, a WFQ scheduler will again serve classes in a circular manner - first 
serving class 1, then serving class 2,   then serving class 3, and then (assuming there are three classes) 
repeating the service pattern.  WFQ is also a work-conserving queuing discipline and thus will 
immediately move on to the next class in the service sequence upon finding an empty class queue. 
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Figure 6.6-6: Weighted Fair Queuing (WFQ)

WFQ differs from round robin in that each class may receive a differential amount of service in any 
interval of time. Specifically, let each class, i,  is assigned a weight, wi. Under WFQ, during any interval 

of time during which there are class i packets to send, class i will then be guaranteed to receive a fraction 
of service equal to wi/(Σwj), where the sum in the denominator is taken over all classes that also have 

packets queued for transmission.  In the worst case, even if all classes have queued packets, class i will 
still be guaranteed to receive a fraction wi/(Σwj), of the bandwidth. Thus, for a link with transmission rate 

R, class i will always achieve a throughput of at least R
.
wi/(Σwj). Our description of WFQ has been an 

idealized one, as we have not considered the fact that packets are discrete units of data and a packet's 
transmission will not be interrupted to begin transmission another packet;  [Demers 90], [Parekh 93] 
discuss this packetization issue.   As we will see in the following sections, WFQ plays a central role in 
QoS architectures.  It is also widely available in today's  router products [Cisco 1999]. (Intranets that use 
WFQ-capable routers can therefore provide QoS to their internal flows.) 
  

6.6.2 Policing: The Leaky Bucket

In the section 6.5 we also identified policing, the regulation of the rate at which a flow is allowed to 
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inject packets into the network, as one of the cornerstones of any QoS architecture. But what aspects of a 
flow's packet rate should be policed? We can identify three important policing criteria, each differing 
from the other according to the time scale over which the packet flow is policed: 

●     Average rate. The network may wish to limit the long-term average rate (packets per time 
interval) at which a flow's packets can be sent into the network.  A crucial issue here is the 
interval of time over which the average rate will be policed. A flow whose average rate is limited 
to 100 packets per second is more constrained than a source that is limited to 6000 packets per 
minute, even though both have the same average rate over a long enough interval of time.  For 
example, the latter constraint would allow a flow to send 1000 packets in a given second-long 
interval of time (subject to the constraint that the rate be less that 6000 packets over a minute-long 
interval containing these 1000 packets), while the former constraint would disallow this sending 
behavior.

●     Peak rate. While the average rate constraint limits the amount of traffic that can be sent into the 
network over a relatively long period of time, a peak rate constraint limits the maximum number 
of packets that can be sent over a shorter period of time. Using our example above, the network 
may police a flow at an average rate of 6000 packets per minute, while limiting the flow's peak 
rate to 1500 packets per second.

●     Burst size. The network may also wish to limit the maximum number of packets (the "burst" of 
packets) that can be sent into the network over a extremely short interval of time. In the limit as 
the interval length approaches zero, the burst size limits the number of packets that can be 
instantaneously sent into the network. While it is physically impossible to instantaneously send 
multiple packets into the network (after all, every link has a physical transmission rate that can 
not be exceeded!), the abstraction of a maximum burst size is a useful one.
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Figure 6.6-7: The Leaky Bucket Policer

The leaky bucket  (also call a token bucket) mechanism is an abstraction that can be used to characterize 
these policing limits. As shown in Figure 6.6-7,  a leaky bucket consists of a bucket that can hold up to b 
tokens. Tokens are added to this bucket as follows. New tokens, which may potentially be added to the 
bucket, are always being generated at a rate of  r tokens per second. (We assume here for simplicity that 
the unit of time is a second.)  If  the bucket is filled with less that b tokens when a token is generated, the 
newly generated token is added to the bucket; otherwise the newly generated token is ignored, and the 
token bucket remains full with b tokens. 

Let us now consider how is the leaky bucket can be used to police a packet flow. Suppose before a 
packet is transmitted into the network,  it must first remove a token from the token bucket.  If the token 
bucket is empty, the packet must wait for a token. (An alternative is for the packet to be dropped, 
although we will not consider that option  here.)  Let us now consider how this behavior polices a traffic 
flow. Because there can be at most b tokens in the bucket, the maximum burst size for a leaky-bucket-
policed flow is b packets. Furthermore, because the token generation rate is r, the maximum number of 
packets that can enter the network of any interval of time of length t is rt+b. Thus, the token generation 
rate, r, serves to limit the long term average  rate at which packet can enter the network. It is also 
possible to use leaky buckets (specifically, two leaky buckets in series) to police a flow's peak rate in 
addition to the long-term average rate; see the homework problems at the end of this Chapter. 

Leaky Bucket + Weighted Fair Queuing => Provable Maximum Delay in a 
Queue
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In Sections 6.7 and 6.8 we will examine the so-called intserv and diffserv approaches for providing 
Quality of Service in the Internet.  We will see that both leaky bucket policing and WFQ scheduling will 
play an important role. Let us thus close this section by considering a router's output that multiplexes n 
flows, each policed by a leaky bucket with parameters bi and ri, i = 1,...,n, using WFQ scheduling.  We 

assume that each flow is treated as a separate class by the WFQ scheduler, as shown in Figure 6.6-8. 

 
Figure 6.6-8: n multiplexed leaky bucket flows with WFQ scheduling

Recall from our discussion of WFQ that each flow is guaranteed to receive a share of the link bandwidth 

equal to at least  R
.
wi/(Σwj), where R is the transmission rate of the link in packets/sec. What then is the 

maximum delay that a packet will experience while waiting for service in the WFQ  (i.e., after passing 
through the leaky bucket)?    Let us focus on flow 1.  Suppose that flow 1's token bucket is initially full.  
A burst of b1  packets then arrives to the leaky bucket policer for flow 1.  These packets remove all of 

the tokens (without wait)  from the leaky bucket and then join the WFQ waiting area for flow 1.  Since 
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these b1 packets are served at a rate of at least R
.
wi/(Σwj) packet/sec., the last of these packets will then 

have a maximum delay, dmax, until its transmission is completed, where 

dmax =   b1/ (C.
wi/(Σwj))

The justification of this formula is that if  there are b1 packets in the queue and packets are being 

serviced (removed) from the queue at a rate of at least C
.
wi/(Σwj) packets per second, then the amount of 

time until the last bit of the last packet is transmitted can not be more than b1/ (C.
wi/(Σwj)). A 

homework problem asks you prove that as long as r1 < C
.
wi/(Σwj), then dmax is indeed the maximum 

delay that any packet in flow 1 will ever experience in the WFQ queue. 
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6.7 Integrated Services

In the previous sections, we identified both the principles and the mechanisms used to provide Quality of 
Service in the Internet.  In this section we consider how these ideas are exploited in a particular 
architecture for providing quality of service in the Internet - the so-called intserv (Integrated Services) 
Internet architecture .  Intserv is a framework developed within the IETF to provide individualized 
quality of service guarantees to individual application sessions.  Two key features lie at the heart of  
intserv architecture: 

●     Reserved Resources. A router is required to know what amounts of its resources (buffers, link 
bandwidth) are already reserved for on-going sessions.

●     Call Setup.  A session requiring QoS guarantees must first be able to reserve sufficient resources 
at each network router on its source-to-destination path to ensure that its end-to-end QoS 
requirement is met.  This call setup (also known as call admission) process requires the 
participation of each router on the path.  Each router must determine the local resources required 
by the session, consider the amounts of its resources that are already committed to other on-going 
sessions, and determine whether it has sufficient resources to satisfy the per-hop QoS 
requirement of the session at this router  without violating QoS local QoS guarantees made to 
already admitted session.
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Figure 6.7-1: The call setup process

Figure 6.7-1 depicts the call setup process.  Let us now consider the steps involved in call admission in 
more detail: 

●     Traffic characterization and specification of the desired QoS.  In order for a router to 
determine whether or not its resources are sufficient to meet the QoS requirements of a session, 
that session must first  declare its QoS requirement, as well as characterize the traffic that it will 
be sending into the network, and for which it requires a QoS guarantee.  In the Intserv 
architecture, the so-called Rspec (R for reserved) defines the specific QoS being requested by a 
connection; the so-called Tspec (T for traffic) characterizes the traffic the sender will be sending 
into the network, or the receiver will be receiving from the network. The specific form of the 
Rspec and Tspec will vary, depending on the service requested, as discussed below.  The Tspec 
and Rspec are defined in part in [RFC2210], [RFC 2215].

●     Signaling for call setup.  A session's Tspec and Rspec must be carried to the routers at which 
resources will be reserved for the session.  In the Internet, the RSVP protocol, which is discussed 

file:///D|/Downloads/Livros/computação/Computer%20Netw...wn%20Approach%20Featuring%20the%20Internet/intserv.htm (2 of 5)20/11/2004 15:52:55



Integrated Services

in detail in the next section, is currently  the signaling protocol of choice.  [RFC 2210] describes 
the use of the RSVP resource reservation protocol with the Intserv architecture.

●     Per-element call admission. Once a router receives the Tspec and Rspec for a session requesting 
a QoS guarantee,  it can determine whether or not it can admit the call. This call admission 
decision will depend on the traffic specification, the requested type of service, and the existing 
resource commitments already made by the router to on-going sessions. Per-element call 
admission is shown in Figure 6.7-2.

 
Figure 6.7-2: Per-element call behavior

The Intserv architecture defines two major classes of service: Guaranteed Service and Controlled-Load 
service.  We will see shortly that each provides a very different form of a quality of service  guarantee. 

6.7.1 Guaranteed Quality of Service

The Guaranteed Service definition, defined in [RFC 2212] provides firm (mathematically provable) 
bounds on the queuing delays that a packet will experience in a router.  While the details behind 
Guaranteed Service are rather complicated, the basic idea is really quite simple.  To a first 
approximation, a source's traffic characterization is given by a leaky bucket (see Section 6.6) with 
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parameters (r,b) and the requested service is characterized by a transmission rate, R, at which packets 
will be transmitted.  In essence, a session requesting Guaranteed Service is requiring that the bits in its 
packet be guaranteed a forwarding rate of R bits/sec.   Given that traffic is specified using a leaky bucket 
characterization, and a guaranteed rate of R is being requested, it is also possible to bound the maximum 
queuing delay at the router.    Recall that with a leaky bucket traffic characterization, the amount of 
traffic (in bits) generated over any interval of length t is bounded by rt+b. Recall also from Section 6.6, 
that when a leaky bucket source is fed into a queue which guarantees that queued traffic will be serviced 
at least at a rate of R bits per second, then the maximum queuing delay experienced by any packet will 
be bounded by b/R, as long as R is greater than r.   The actual delay bound guaranteed under the 
Guaranteed Service definition is slightly more complicated, due to packetization effects (the simple b/R 
bound assumes that data is in the forms of a fluid-like flow rather than discrete packets), the fact that the 
traffic arrival process is subject to the peak rate limitation of the input link (the simple b/R bound 
assumes that a burst of b bits can arrive in zero time, and possible additional variations in a packet's 
transmission time. 

6.7.2 Control Load Network Service

A session receiving Controlled-Load service will receive "a quality of service closely approximating the 
QoS that same flow would receive from an unloaded network element." [RFC 2211].  In other words, 
the session may assume that a "very high percentage" of its packets will successfully pass through the 
router without being dropped and will experience a queuing delay in the router that is close to zero.  
Interestingly,  Control Load service makes no quantitative guarantees about performance - it does not 
specify what constitutes a "very high percentage" of packets nor what quality of service closely 
approximates that of an unloaded network element. 

The Controlled Load service targets real-time multimedia applications that have been developed for 
today's Internet.  These applications perform quite well when the network is unloaded, but rapidly 
degrade in performance as the network becomes more loaded. 
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6.8 RSVP

As we learned in the previous section, in order for a network to provide QoS guarantees, there must be a 
signaling protocol that allows applications running in hosts to reserve resources in the Internet. RSVP 
[RFC 2205], is such a signaling protocol for the Internet. 

When people talk about resources in the Internet context, they usually mean link bandwidth and router 
buffers. To keep the discussion concrete and focused, however, we shall assume that the word resource 
is synonymous with bandwidth. For our pedagogic purposes, RSVP stands for Bandwidth Reservation 
Protocol. 

6.8.1 The Essence of RSVP

The RSVP protocol allows applications to reserve bandwidth for their data flows. It  is used by a host, 
on the behalf of an application data flow, to request a specific amount of bandwidth from the network. 
RSVP is also used by the routers to forward bandwidth reservation requests. To implement RSVP, 
RSVP software must be present in the receivers, senders, and routers. The two principle characteristics 
of RSVP are: 

1.  It provides reservations for bandwidth in multicast trees (unicast is handled as a special case).
2.  It  is receiver-oriented, i.e., the receiver of a data flow initiates and maintains the resource 

reservation used for that flow.

These two characteristics are illustrated in Figure 6.8-1:. 

file:///D|/Downloads/Livros/computação/Computer%20Net...Down%20Approach%20Featuring%20the%20Internet/rsvp.htm (1 of 12)20/11/2004 15:52:57



rsvp

 
Figure 6.8-1: RSVP: multicast- and receiver-oriented.

The above diagram shows a multicast tree with data flowing from the top of the tree to six hosts. 
Although data originates from the sender, the reservation messages originate from the receivers. When a 
router forwards a reservation message upstream towards the sender, the router may merge the 
reservation message with other reservation messages arriving from downstream. 

Before discussing RSVP in greater detail, we need to recall the notion of a  session. As with RTP, a 
session can consist of multiple multicast data flows. Each sender in a session is the source  of one or 
more data flows; for example, a sender might be the source of a video data flow and an audio data flow. 
Each  data flow in a session has the same multicast address. To keep the discussion concrete, we assume 
that routers and hosts identify  the session to which a packet belongs by the packet's multicast address. 
This assumption is somewhat restrictive; the actual RSVP specification allows for more general methods 
to identify a session. Within a session, the data flow to which a packet belongs also needs to be 
identified. This could be done, for example, with the flow identifier field in IPv6. 

What RSVP is Not

We emphasize that the RSVP standard [RFC 2205] does not specify how the network provides the 
reserved bandwidth to the data flows. It is merely a protocol that allows the applications to reserve the 
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necessary link bandwidth. Once the reservations are in place, it is up to the routers in the Internet to 
actually provide the reserved bandwidth to the data flows. This provisioning is done with the scheduling 
mechanisms (prirority scheduling, weighted fair queuing, etc.) discussed in Section 6.6. 

It is also important to understand that RSVP is not a routing protocol -- it does not determine the links in 
which the reservations are to be made. Instead it depends on an underlying routing protocol (unicast or 
multicast) to determine the routes for the flows. Once the routes are in place, RSVP can reserve 
bandwidth in the links along these routes. (We shall see shortly that when a route changes, RSVP re-
reserves resources.) And once the reservations are in place, the routers' packet schedulers can actually 
provide the reserved bandwidth to the data flows. Thus, RSVP is only one piece - albeit an important 
piece - in the QoS guaranteee puzzle. 

RSVP is sometimes referred to as a signaling protocol. By this it is meant that RSVP is a protocol that 
allows hosts to establish and tear-down reservations for data flows. The term "signaling protocol" comes 
from the jargon of the circuit-switched telephony community. 

Heterogeneous Receivers

Some receivers can receive a flow at 28.8 Kbps, others at 128 Kbps, and yet others at 10 Mbps or 
higher. This heterogeneity of the reservers poses an interesting question. If a sender is multicasting a 
video to a group of heterogeneous receivers, should the sender encode the video for low quality at 28.8 
Kbps, for medium quality at 128 Kbps, or for high quality at 10 Mbps? If the video is encoded at 10 
Mbps, then only the users with 10 Mbps access will be able to watch the video. On the other hand, if the 
video is encoded at 28.8 kbps, then the 10 Mbps users will have to see a low-quality image when they 
know they can something much better. 

To resolve this dilemma it is often suggested that video and audio be encoded in layers. For example, a 
video might be encoded into two layers: a base layer and an enhancement layer. The base layer could 
have a rate of 20 Kbps whereas the enhancement layer could have a rate of 100 Kbps; in this manner 
receivers with 28.8 access could receive the low-quality base-layer image, and receivers with 128 Kbps 
could receive both layers to construct a high-quality image. 

We note that the sender does not have to know the receiving rates of all the receivers. It only needs to 
know the maximum rate of the all its receivers. The sender  encodes the video or audio into multiple 
layers and sends all the layers up to the maximum rate into multicast tree. The receivers pick out the 
layers that are appropriate for their receiving rates.  In order to not excessively waste bandwidth in the 
network's links, the heterogeneous receivers must communicate to the network the rates they can handle. 
We shall see that RSVP gives foremost attention to the issue of reserving resources for heterogeneous 
receivers. 

6.8.2 A Few Simple Examples
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Let us first describe RSVP in the context of a concrete one-to-many multicast example. Suppose there is 
a source that is transmitting into the Internet the video of a major sporting event. This session has been 
assigned a multicast address, and the source stamps all of its outgoing packets with this multicast 
address. Also suppose that an underlying multicast routing protocol has established a multicast tree from 
the sender to four receivers as shown below; the numbers next to the receivers are the rates at which the 
receivers want to receive data. Let us also assume that the video is layered encoded to accommodate this 
heterogeneity of receiver rates. 

 
Figure 6.9-2: An RSVP example

Crudely speaking, RSVP operates as follows for this example. Each receiver sends a reservation 
message upstream into the multicast tree. This reservation message specifies the rate at which the 
receiver would like to receive the data from the source. When the reservation message reaches a router, 
the router adjusts its packet scheduler to accommodate the reservation. It then sends a reservation 
upstream.  The amount of bandwidth reserved upstream from the router depends on the bandwidths 
reserved downstream. In the example in Figure 6.9-2, receivers R1, R2, R3 and R4 reserve 20 kbps, 120 
kbps, 3 Mbps and 3 Mbps, respectively. Thus router D's downstream receivers request a maximum of 3 
Mbps. For this one-to-many transmission, Router D sends a reservation message to Router B requesting 
that Router B reserve 3 Mbps on the link between the two routers. Note that only 3 Mbps is reserved and 
not 3+3=6 Mbps; this is because receivers R3 and R4 are watching the same sporting event, so there 
reservations may be merged. Similarly, Router C  requests that Router B reserve 100 Kbps on the link 
between routers B and C; the layered encoding ensures that receiver R1's 20 Kbps stream is included in 
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the 100 Mbps stream. Once Router B receives the reservation message from its downstream routers and 
passes the reservations to its schedulers, it sends a new reservation message to its upstream router, 
Router A. This message reserves 3 Mbps of bandwidth on the link from Router A to Router B, which is 
again the maximum of the downstream reservations. 

We see from this first example that RSVP is receiver-oriented, i.e., the receiver of a data flow initiates 
and maintains the resource reservation used for that flow. Note that each router receives a reservation 
message from each of its downstream links in the multicast tree and sends only one reservation message 
into its upstream link. 

As another example, suppose that four persons are participating in a video conference, as shown in 
Figure 6.8-3. Each person has three windows open on her computer to look at the other three persons. 
Suppose that the underlying routing protocol has established the multicast tree among the four hosts as 
shown in the diagram below. Finally, suppose each person wants to see each of the videos at 3 Mbps. 
Then on each of the links in this multicast tree, RSVP would reserve 9 Mbps in one direction and 3 
Mbps in the other direction. Note that RSVP does not merge reservations in this example, as each person 
wants to receive three distinct streams. 

 
Figure 6.8-3: An RSVP video conference example.

Now consider an audio conference among the same four persons over the same multicast tree. Suppose b 
bps are needed for an isolated audio stream. Because in an audio conference it is rare that more than two 
persons speak at the same time, it is not necessary to reserve 3*b bps into each receiver; 2*b should 
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suffice. Thus, in this last application we can conserve bandwidth by merging reservations. 

Call Admission

Just as the manager of a restaurant should not accept reservations for more tables than the restaurant has, 
the amount of bandwidth on a link that a router reserves should not exceed the link's capacity. Thus 
whenever a router receives a new reservation message, it must first determine if its downstream links on 
the multicast tree can accommodate the reservation. This admission test is performed whenever a router 
receives a reservation message. If the admission test fails, the router rejects the reservation and returns 
an error message to the appropriate receiver(s). 

RSVP does not define the admission test; but it assumes that the routers perform such a test and that 
RSVP can interact with the test. 

6.8.3 Path Messages

So far we have only discussed the RSVP reservation messages, which originate at the receivers and flow 
upstream towards the senders. Path messages are another important RSVP message type; they originate 
at the senders and flow downstream towards the receivers. 

The principle purpose of the path messages is to let the routers know on which links they should forward 
the reservation messages. Specifically, a path message sent within the multicast tree from a Router A to 
a Router B contains Router A's unicast IP address. Router B puts this address in a path-state table, and 
when it receives a reservation message from a downstream node it accesses the table and learns that it 
should send a reservation message up the multicast tree to Router A. In the future some routing 
protocols may supply reverse path forwarding information directly, replacing the reverse-routing 
function of the path state. 

Along with some other information, the path messages also contain a sender Tspec, which defines the 
traffic characteristics of the data stream that the sender will generate (see Section 6.8). This Tspec can be 
used to prevent over reservation. 

6.8.4 Reservation Styles

Through its reservation style, a reservation message specifies whether merging of reservations from the 
same session is permissible. A reservation style also specifies from which senders in a session the 
receiver desires to receive data. Recall that a router can identify the sender of a datagram from the 
datagram's source IP address. 

There are currently three reservation styles defined: wildcard-filter style; fixed-filter style; and shared-
explicit style. 
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Wildcard-Filter Style: When a receiver uses the wildcard-filter style in its reservation message, it is 
telling the network that it wants to receive all flows from all upstream senders in the session and that its 
bandwidth reservation is to be shared among the senders. 

Fixed-Filter Style: When a receiver uses the fixed-filter style in its reservation message, it specifies a 
list of senders from which it wants to receive a data flow along with a bandwidth reservation for each of 
these senders. These reservations are distinct, i.e., they are not to be shared. 

Shared-Explicit Style: When a receiver uses the shared-explicit style in its reservation message, it 
specifies a list of senders from which it wants to receive a data flow along with a single bandwidth 
reservation. This reservation is to be shared among all the senders in the list. 

Shared reservations, created by the wildcard filter and the shared-explicit styles, are appropriate for a 
multicast session whose sources are unlikely to transmit simultaneously. Packetized audio is an example 
of an application suitable for shared reservations; because a limited number of people talk at once, each 
receiver might issue a wildcard-filter or a shared-explicit reservation request for twice the bandwidth 
required for one sender (to allow for over speaking). On the other hand, the fixed-filter reservation, 
which creates distinct reservations for the flows from different senders, is appropriate for video 
teleconferencing. 

Examples of Reservation Styles

Following the Internet RFC, we now give examples for the three reservation styles. In Figure 6.8.4, a 
router has two incoming interfaces, labeled A and B, and two utgoing interfaces, labeled C and D. The 
many-to-many multicast session has three senders -- S1, S2 and S3 -- and three receivers -- R1, R2 and 
R3. Figure 6.9-4 also shows that interface D is connected to a LAN. 

 
Figure 6.8-4: Sample scenario for RSVP reservation styles

Suppose first that all of the receivers use the wildcard-filter reservation. As shown in the Figure 689-5, 
receivers R1, R2, and R3 want to reserve 4b, 3b, and 2b, respectively, where b is a given bit rate. Then 
the router reserves 4b on interface C and 3b on interface D. Because of the wildcard-filter reservation, 
the two reservations from R2 and R3 are merged for interface D: the larger of the two reservations is 
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used rather than the sum of reservations. The router then sends a reservation message upstream to 
interface A and another to interface B; each of these reservation messages requests is 4b, which is the 
larger of 3b and 4b. 

 
Figure 6.8-5: Wildcard filter reservations.

Now suppose that all of the receivers use the fixed-filter reservation. As shown in Figure 6.8-6, receiver 
R1 wants to reserve 4b for source S1 and 5b for source S2; also shown in the figure are the reservation 
requests from R2 and R3. Because of the fixed-filter style, the router reserves two disjoint chunks of 
bandwidth on interface C: one chunk of 4b for S1 and another chunk of 5b for S2. Similarly, the router 
reserves two disjoint chunks of bandwidth on interface D: one chunk of 3b for S1 (the maximum of b 
and 3b) and one chunk of b for S3. On interface A, the router sends a message with a reservation for S1 
of 4b (the maximum of 3b and 4b). On interface B, the router sends a message with a reservation of 5b 
for S2 and b for S3. 
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Figure 6.8-6: fixed filter reservations

Finally suppose that each of the receivers use the shared-explict reservation. As shown in tFigure 6.8-7, 
receiver R1 desires a pipe of 1b which is to be shared between sources S1 and S2, receiver R2 desires a 
pipe of 3b to be shared between sources S1 and S3, and receiver R3 wants a pipe of 2b for source S2. 
Because of the shared-explicit style, the reservations from R2 and R3 are merged for interface D: only 
one pipe is reserved on interface D, although it is reserved at the maximum of the reservation rates. 
RSVP will reserve on interface B a pipe of 3b to be shared by S2 and and S3; note that 3b is the 
maximum of the downstream reservations for S2 and S3. 
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Figure 6.8-7: shared-explicit reservations

In each of the above examples the three receivers used the same reservation style. Because receivers 
make independent decisions, the receivers participating in a session could use different styles. RSVP 
does not permit, however, reservations of different styles to be merged. 

6.8.5 Soft State

The reservations in the routers and hosts are maintained with soft states. By this it is meant that each 
reservation for bandwidth stored in a router  has an associated timer. If a reservation's timer expires, then 
the reservation is removed. If a receiver desires to maintain a reservation, it must periodically refresh the 
reservation by sending reservation messages. A receiver can also change its reservation (e.g., the amount 
of bandwidth or the senders it wants to receive from) by adjusting its reservation in its stream of refresh 
messages. 

The senders must also refresh the path state by periodically sending path messages. When a route 
changes, the next path message initializes the path state on the new route, and future reservation 
messages will establish reservation state in the route. The state on the old segments of the route will time 
out. 

Soft state, whereby the state is maintained with refresh messages, is used by  many other protocols in 
data networking. For example, as we learned in Chapter 5, in the routing tables in transparent bridges, 
the entries are refreshed by data packets that arrive to the bridge; entries that are not refreshed are timed-
out. A protocol that takes explicit actions to modify or release state is called a hard-state protocol. An 
example of a hard-state protocol is TCP, whereby the connection does not timeout if it stops being used; 
instead one side of the connection must explicitly destroy the connection. 

6.8.6 Transport of Reservation Messages

RSVP messages are sent hop-by-hop directly over IP. Thus the RSVP message is placed in the 
information field of the IP datagram; the protocol number in the IP datagram is set to 46. Because IP is 
unreliable, RSVP messages are not acknowledged upon arrival. If an RSVP path or reservation message 
is lost, a replacement refresh message should arrive soon. 

An RSVP reservation message that originates in a host will have the host's IP address in the source 
address field of the encapsulating IP datagram. It will have the IP address of the first router along the 
reserve-path in the multicast tree in destination address in the encapsulating IP datagram . When the IP 
datagram arrives at the first router, the router strips off the IP fields and passes the reservation message 
to the router's RSVP module. The RSVP module examines the messages multicast address (i.e., session 
identifier) and style type, examines its current state, and then acts appropriately; for example, the RSVP 
module may merge the reservation with a reservation originating from another interface and then send a 
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new reservation message to the next router upstream in the multicast tree. 

Insufficient Resource

Because a reservation request that fails an admission test may embody a number of requests merged 
together, a reservation error must be reported to all the concerned receivers. These reservation errors are 
reported within ResvError messages. The receivers can then reduce the amount of resource that they 
request and try reserving again. The RSVP standard provides mechanisms to allow the backtracking of 
the reservations when insufficient resources are available; unfortunately, these mechanisms add 
significant complexity to the RSVP protocol. Furthermore, RSVP suffers from the so-called killer-
reservation problem, whereby a receiver requests over and over again a large reservation, each time 
getting its reservation rejected due to lack of sufficient resources. Because this large reservation may 
have been merged with smaller reservations downstream, the large reservation may be excluding smaller 
reservations from being established. To solve this thorny problem, RSVP uses the  ResvError messages 
to establish additional state in routers, called blockade state. Blockade state in a router modifies the 
merging procedure to omit the offending reservation from the merge, allowing a smaller request to be 
forwarded and established. The blockade state adds yet further complexity to the RSVP protocol and its 
implementation. 
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●     Protocol Keeps Packets in Line: A short article from Web Week magazine.
●     Guidelines for Deployment of RSVP:  At present, many vendors of operating systems and routers 
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and to  identify areas of limitation and ongoing chartered work addressing some of these 
limitations.
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6.9 Differentiated Services

In the previous section we saw how RSVP reserves per-flow resources at routers within the network. 
The ability to request and  reserve per-flow resources, in turn, makes it possible for the intserv 
framework to provide quality of service guarantees to individual flows.   As work on Intserv and RSVP 
proceeded, however,  researchers involved with these efforts (e.g., [Zhang 1998])  have begun to 
uncover some of the difficulties associated with the Intserv model and per-flow reservation of resources: 

●     Scalability.  The per-flow resource reservation in RSVP implies the need for a router to process 
resource reservations and to maintain per-flow state for each flow passing though the router.  
With recent measurements  [Thompson 1997] suggesting that even for an OC-3 speed link, 
approximately 256,000 source-destination pairs might be seen in one minute in  a backbone 
router, per-flow reservation processing represents a considerable overhead in large neworks.

●     Flexible service models.  The Intserv framework provides for a small number of  pre-specified 
service classes.  This particular set of service classes does not allow for more qualitative or 
relative definitions of service distinctions (e.g., "Service class A will received preferred treatment 
over service class B."). These more qualitiative definitions might well better fit our intuitive 
notion of service distinction (e.g., first class versus coach class in air travel; "platinum" versus 
"gold" versus "standard" credit cards).

●     Better-than-best-effort service to applications, without the need for host RSVP signaling.  
Few hosts in today's Internet are able to generate RSVP signaling or express the Rspec and Tspec 
in the detail needed by the Intserv model.

These considerations have led to the recent so-called "diffserv" (Differentiated Services) activity 
[Diffserv 1999]  within the Internet Engineering Task Force.  The diffserv working group  is developing 
an architecture for providing scalable and flexible service differentiation - i.e., the ability to handle 
different "classes" of traffic in different ways within the Internet.  The need for scalability arises from 
the fact that  hundreds of thousands simultaneous source-destination traffic flows may be present at a 
backbone router of the Internet.  We will see shortly that this need is met by placing only simple  
functionality within the network core, with more complex control operations being implemented towards 
the "edge" of the network. The need for flexibilty arises from the fact that new service classes may arise 
and old service classes may become obsolete.  The differentiated services architecture is flexible in the 
sense that it does not  define specific services or service classes (e.g., as is the case with Intserv).  
Instead, the differentiated services architecture provides the functional components, i.e., the "pieces" of a 
network architecture, with which such services can be built.  Let us now examine these components in 
detail. 

6.9.1 Differentiated Services: A Simple Scenario

To set the framework for defining the architectural components of the differentiated service model, let 
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us begin with the simple network shown in Figure 6.8-1. In the following, we describe one possible use 
of the diffserv components. Many other possible variations are possible, as described in [RFC 2475]. 
Our goal here is to provide an introduction to the key aspects of differentiated services, rather than to 
describe the architecural model in exhaustive detail. 

 
Figure 6.9-1: A simple diffserv network example.

The differentiated services architecture consists of two sets of functional elements: 

●     Edge functions: packet classification and traffic conditioning.  At the incoming "edge" of the 
network (i.e., at either a differentiated services capable host that generates traffic or at the first 
DS-capable router that the traffic passes through), arriving packets are marked. More specifically, 
the Diffierentiated Service (DS) field of the packet header is set to some value. For example, in 
Figure 6.7-1, packets being sent from H1 to H3 might be marked at R1, while packets being sent 
from H2 to H4 might be marked at R2. The mark that a packet receives identifies the class of 
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traffic to which it belongs. Different classes of traffic will then receive different service within 
the core network.  The RFC defining the differeniated service architecture [RFC 2475] uses the 
term "behavior aggregate" rather than "class of traffic."  After being marked, a packet may then 
be immediately forwarded into the network, delayed for some time before being forwarded, or 
may be discarded.  We will see shortly that many factors can influence how a packet is to be 
marked, and whether it is to be forwarded immediately, delayed, or dropped.

●     Core function: forwarding.  When a DS-marked packet arrives at a DS-capable router, the 
packet is forwarded onto its next hop according to the so-called per-hop behavior associated 
with that packet's class.  The per-hop behavior influences how a router's buffers and link 
bandwidth are shared among the competing classes of traffic. A crucial tenet of the DS 
architecture is that a router's per-hop behavior will be based only on packet markings, i.e., the 
class of traffic to which a packet belongs. Thus, if packets being sent from H1 to H3  in Figure 
6.7-1 receive the same marking as packets from H2 to H4, then the network routers treat these 
packets as a aggregate, without distinguishing whether the packets originated at H1 or H2.  For 
example, R3 would not distinguish between packets from H1 and H2 when forwarding these 
packets on to R4.  Thus, the differentiated service architecture obviates the need to keep router 
state for individial source-destination pairs - an important consideration in meeting the scalability 
requirement discussed at the beginning of this section.

An analogy might prove useful here.  At many large-scale social events (e.g., a large public reception, a 
large dance club or discoteque, a concert, a football game),  people entering the event receive a "pass" of 
one type or another.  There are VIP passes for Very Important People; there are over-18 passes for 
people who are eighteen years old or older (e.g., if alcoholic drinks are to be served); there are backstage 
passes at concerts; there are press passes for reporters; there is an ordinary pass (sometimes simply the 
lack of a special pass) for the Ordinary Person.  These passes are typically distributed on entry to the 
event, i.e., at the "edge" of the event.   It is here at the edge where computationally intensive operations 
such as paying for entry, checking for the appropriate type of invitation, and matching an invitation 
against a piece of identification, are performed. Futhermore, there may be a limit on the number of  
people of a given type that are allowed into an event.  If there is such a limit, people may have to wait 
before entering the event.  Once inside the event, one's pass allows one to receive differentiated service 
at many locations around the event - a VIP is provided with free drinks, a better table, free food, entry to 
exclusive rooms, and fawning service. Conversely, an Ordinary Person is excluded from certain areas, 
pays for drinks, and receives only basic service.  In both cases, the service received within the event 
depends solely on the type of  one's pass.  Moreover, all people within a class are treated alike. 

6.9.2 Traffic Classification and Conditioning

In the differentiated services architecture, a packet's mark is carried within the so-called Differentiated 
Services (DS) field in the IPv4 or IPv6 packet header.  The definition of the DS field is intended to 
supersede the earlier definitions of the IPv4 Type-of-Service field (see Section 4.4) and the IPv6 Traffic 
Class Field (see Section 4.7).  The structure of this 8-bit field is shown below in Figure 6.8-2 
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Figure 6.8-2: Structure of the DS field in IVv4 and IPv6 header

The 6-bit Differentiated Service Code Point (DSCP) subfield  determines the so-called per-hop behavior 
(see section 6.8.4) that the packet will receive within the network.  The 2-bit CU subfield of the DS field 
is currently unused.  Restrictions are placed on the use of half of the DSCP values in order to preserve 
backward compatability with the IPv4 ToS field use; see [RFC 2474] for details. For our purposes here, 
we need only note that a packet's mark, its "code point" in the DS terminology, is carried in the 8-bit DS 
field. 

As noted above, a packet is marked (more specificially, its DS field value is set) at the edge of the 
network.  This can either happen at a DS-capable host or at the first point at which the packet encounters 
a DS-capable router.  For our discussion here, we will assume marking occurs at an edge router that is 
directly connected to a sender, as shown in Figure 6.9-1. 

 
Figure 6.9-3: Simple packet classification and marking

Figure 6.9-3 provides a logical view of the classification and marking function within the edge router.  
Packets arriving to the edge router are first "classified."  The classifier selects packets based the values 
of one or more packet header fields (e.g., source address, destination address, source port, destination 
port, protocol ID)  and steers the packet to the appropriate marking function.  The DS field value is then 
set  accordingly at the marker.  Once packets are marked, they are then forwarded along their route to 
the destination.  At each subsequent DS-capable router, these marked packets then receive the service 
associated with the packets' marks.  Even this simple marking scheme can be used to support different 
classes of service within the Internet. For example, all packets coming from a certain set of source IP 
addresses (e.g., those IP addresses that have paid for an expensive priority service within their ISP) 
could be marked on entry to the ISP, and then  receive a specific forwarding service (e.g., a higher 
priority forwarding) at all subsequent DS-capable routers. A question not addressed by the diffserv 
working group is how the classifier obtains the "rules" for such classification.  This could be done 
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manually, i.e., the network administrator could load a table of source addresses that are to be marked in 
a given way into the edge routers, or could be done under the control of some yet-to-be-specified 
signalling protocol. 

In Figure 6.9-3, all packets meeting a given header condition receive the same marking, regardless of the 
packet arrival rate.  In some scenarios, it might also be desirable to limit the rate at which packets 
bearing a given marking are injected into the network.  For example, an end-user might negotiate a 
contract with its ISP to receive high priority service, but at the same time agree to limit the maximum 
rate at which it would send packets into the network.  That is, the end user agrees that its packet sending 
rate would be within some declared traffic profile.  The traffic profile might contain a limit on the peak 
rate, as well as the burstiness of the packet flow, as we saw in Section 6.6 with the leaky bucket 
mechanism.  As long as the user sends packets into the network in a way that conforms to the negotiated 
traffic profile, the packets receive their priority marking.  On the other hand, if the traffic profile is 
violated, the out-of-profile packets might be marked differently, might be shaped (e.g. delayed so that a 
maximum rate constraint would be observed), or might be dropped at the network edge.  The role of the 
metering function, shown in Figure 6.9-4,  is to compare the incoming packet flow with the negotiated 
traffic profile and to determine whether a packet is within the negotiated traffic profile. The actual 
decision about whether to immediately re-mark, forward, delay, or drop a packet is not specified in the 
diffserv architecture.  The diffserv architecture only provides the framework for performing packet 
marking and shaping/dropping; it does not mandate any specific policy for what  marking and 
conditioning (shaping or dropping) is actually to be done. The hope, of course, is that the diffserv 
architectural components are together flexible enough to accomodate a wide and constant evolving set of 
services to end users. 

 
Figure 6.9-4: logical view of packet classification and traffic conditioning at the edge router

6.9.3 Per-Hops Behavior
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So far, we have focused on the edge functions in the differentiated services architecture.  The second key 
component of the DS architecture involves the per hop behavior (i.e., packet forwarding function) 
performed by  DS-capable routers.  The per-hop behavior (PHB) is rather cryptically, but carefully, 
defined as "a description of the externally observable forwarding behavior of a DS node applied to a 
particular DS behavior aggregate." [RFC 2475].  Digging a little deeper into this definition, we can see 
several important considerations embedded within: 

●     A PHB can result in different classes of traffic ( i.e., traffic with different DS field values) 
receiving different performance (i.e., different externally observable forwarding behavior).

●     While a PHB defines differences in performance (behavior) among classes, it does not mandate 
any particular mechanism for achieving these behaviors.  As long as the externally observable 
performance criteria are met, any implementation mechanism and any buffer/bandwidth 
allocation policy can be used.  For example, a PHB would not require that a particular packet 
queueing discipline, e.g., a priority queue versus a weighted-fair-queueing queue versus a first-
come-first-served queue, be used to achieve a particular behavior.  The PHB is the "end", to 
which resource allocation and implemention mechanisms are the "means."

●     Differences in performance must be observable, and hence measurable.

An example of a simple PHB is one that guarantees that a given class of marked packets receive at least x
% of the outgoing link bandwidth over some interval of time.  Another per-hop behavior might specify 
that one class of traffic will always receive strict priority over another class of traffic - i.e., if a high 
priority packet and low priority are present in a router's queue at the same time, the high priority packet 
will always leave first.  Note that while a priority queueing discipline might be a natural choice for 
implementing this second PHB, any queueing discipline that implements the required observable 
behavior is acceptable. 

Currently, two PHB's are under active discussion within the diffserv working group: an Expedited 
Forwarding (EF) PHB [Jacobson 1999] and an Assured Forwarding (AF) PHB [Heinanen 1999]: 

●     The Expedited Forwarding PHB specifies that the departure rate of a class of traffic from a 
router must equal or exceed a configured rate.  That is, during any interval of time, the class of 
traffic can be guaranteed to receive enough bandwidth so that the output rate of the traffic equals 
or exceeds this minimum configured rate. Note that the EF per hop behavior implies some form 
of isolation among traffic classes, as this guarantee is made independently of the traffic intensity 
of any other classes that are arriving to a router.  Thus, even if the other classes of traffic are 
overwhelming router and link resources, enough of those resources must still be made available 
to the class to ensure that it receives its minimum rate guarantee.  EF thus provides a class with 
the simple  abstraction of a link with a minumum guaranteed link bandwidth.

●     The Assured Forwarding PHB is more complex.   AF divides traffic into four classes, where 
each AF class is guaranteed to be provided with some minimum amount of bandwidth and 
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buffering.  Within each class, packets are further partitioned into one of three "drop preference" 
categories.  When congestion occurs within an AF class, a router can then discard (drop) packets 
based on their drop preference values.  See  [Heinanen 1999] for details. By varying the amount 
of resources allocated to each class, an ISP can provide different levels of performance to the 
different AF traffic classes.

The AF PHB could be used as a building block to provide different levels of service to the end 
systems, e.g., an Olympic-like gold, silver, and bronze classes of service. But what would be 
required to do so? If gold service is indeed going to be "better" (and presumably more 
expensive!) than silver service, then the ISP must ensure that gold packets receive lower delay 
and/or loss than silver packets. Recall, however, that a minimum amount of bandwidth and 
buffering are to be allocated to eachclass. What would happen if gold service was allocated x% 
of a link's bandwidth and silver service was allocated x/2 % of the link's bandwidth, but the 
traffic intensity of gold packets was 100 times higher than that of silver packets? In this case, it is 
likely that silver packets would receive betterperformance than the gold packets! (An outcome 
that leaves the silver service buyers happy, but the high-spending gold service buyers extremely 
unhappy!) Clearly, when creating a service out of a PHB, more than just the PHB itself will come 
into play. In this example, the dimensioning of resources - determining how much resources will 
be allocated to each class of service - must be done hand-in-hand with knowledge about the 
traffic demands of the various classes of traffic.

6.9.4  A Beginning

The differentiated services architecture is still in the early stages of its development and is rapidly 
evolving. RFC's 2474 and 2475 [RFC1474], [RFC2475] define the fundamental framework of the 
diffserv architecture but themselves are likely to evolve as well.  The AF and EF PHB's discussed above 
have yet to enter the RFC standards track. The ways in which PHB's, edge functionality, and traffic 
profiles can be combined to provide an end-to-end services, such as a virtual leased line service [Nicols 
1998] or an Olympic-like gold/silver/bronze service [Heinanen 1999], are still under investigation.  In 
our discussion above, we have assumed that the DS architecture is deployed within a single 
adminstrative domain.  The (typical) case where an end-to-end service must be fashioned from a 
connection that crosses several administrative domains, and through non-DS capable routers, pose 
additional challenges beyond those described above. 
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Chapter 6 Summary

6.10 Summary

Multimedia networking is perhaps the most exciting development in the Internet today. People 
throughout the world are spending less time in front their radios and televisions and are instead turning 
to the Internet to receive audio and video emissions, both live and prerecorded. As high-speed access 
penetrates more residences, this trend will continue --  couch potatoes throughout the world will access 
their favorite video programs through the Internet rather then through the traditional microwave and 
satellite channels. In addition to audio and video distribution, the Internet is also being used to transport 
phone calls. In fact, over the next ten years the Internet mayl render the traditional circuit-switched 
telephone system obsolete in many countries. The Internet will not only provide phone service for less 
money, but will also provide numerous value-added services, such as video conferencing, online 
directory services, and voice messaging services. 

In Section 6.1 we classified multimedia applications into three categories: streaming stored audio and 
video; one-to-many transmission of real-time audio and video; and real-time interactive audio and video. 
We emphasized that multimedia applications are delay sensitive and loss tolerant, which is very different 
from static-content applications, which are delay tolerant and loss intolerant. We also discussed some of 
the hurdles that today's best-effort Internet places before multimedia applications. We surveyed several 
proposals to overcome these hurdles, including simply improving the existing networking infrastructure 
(by adding more bandwidth, more network caches, and deploying multicast), adding functionality to the 
Internet so that applications can reserve end-to-end resources (and so that the network can honor these 
reservations), and finally introducing service classes to provide service differentiation. 

In Sections 6.2-6.4 we examined architectures and mechanisms for multimedia networking in a best-
effort network. In Section 6.2 we surveyed several architectures for streaming stored audio and video. 
We discussed user interaction -- such as pause/resume, repositioning,  and visual fast forward -- and 
provided an introduction to RTSP, a protocol that provides client-server interaction to streaming 
applications. In Section 6.3 we examined how interactive real-time applications can be designed to run 
over a best effort network. We saw how a combination of client buffers, packet sequence numbers and 
timestamps can greatly alleviate the effects of network induced jitter. We also studied how forward error 
correction and packet interleaving can improve user perceived performance when a fraction of the 
packets are lost or are significantly delayed. In Section 6.4 we explored media chunk encapsulation, and 
we investigated in some detail one of the more important standards for media encapsulation, namely, 
RTP. We also looked at how RTP fits into the emerging H.323 architecture for interactive real-time 
conferencing 

Sections 6.5-6.9 looked at how the Internet can evolve to provide guaranteed QoS to its applications. In 
Section 6.5 we identified several principles for providing QoS to multimedia applications. These 
principles include packet marking and classification, isolation of packet flows, efficient use of resources, 
and call admission. In Section 6.6 we surveyed a variety scheduling policies and policing mechanisms 
that can provide the foundation of a QoS networking architecture. The scheduling policies include 
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priority scheduling, round-robin scheduling, and weighted-fair queuing. We then explored the leaky 
bucket as a policing mechanism, and showed how the leaky bucket and weighted-fair queuing can be 
combined to bound the maximum delay a packet experiences at the output queue of a router. 

In Sections 6.7-6.9 we showed how these principles and mechanisms have led to the definitions of new 
standards for providing QoS in the Internet. The first class of these standards is the so-called intserv 
standard, which includes two services -- the guaranteed QoS service and the controlled load service. The 
guaranteed QoS service provides hard, mathematical provable guarantees on the delay of each of the 
individual packets in a flow. The control-load service does not provide any hard guarantees, but instead 
ensures that most of an application's packets will pass through a seemingly uncongested Internet. The 
intserv architecture requires a signaling protocol for reserving bandwidth and buffer resources within the 
network. In Section 6.8 we examined in some detail an Internet signaling protocol for reservations, 
namely, RSVP. We indicated that one of the drawbacks of RSVP (and hence the Intserv architecture) is 
the need for routers to maintain per-flow state, which may not scale. We concluded the chapter in 
Section 6.9 by outlining a recent and promising proposal for providing QoS in the Internet, namely, the 
diffserv architecture. The diffserv architecture does not require routers to maintain per-flow state; it 
instead classifies packets into a small number of aggregate classes, to which routers provide per-hop 
behavior. The diffserv architecture is still in its infancy, but because the architecture requires relatively 
minor changes to the existing Internet protocols and infrastructure, it could be deployed relatively 
quickly. 

Now that we have finished our study of multimedia networking, it is time to move on to another exciting 
topic in networking, namely, network security. Recent advances in multimedia networking may displace 
the distribution of audio and video information to the Internet; as we shall see in the next chapter, recent 
advances in network security may displace the majority of economic transactions to the Internet. 

Copyright 1996-2000. James F. Kurose and Keith W. Ross. All Rights Reserved. 
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Homework Problems and Discussion Questions

Chapter 6

Review Questions

Sections 6.1-6.2 

1) What is meant by interactivity for streaming stored audio/video? What is meant by interactivity for 
real-time interactive audio/video? 

2) Three "camps" were discussed for evolving the Internet so that it better supports multimedia 
applications. Briefly summarize the views of each camp. In which camp do you belong? 

3) Figures 6.2-2, 6.2-3 and 6.2-4 present three schemes for streaming stored media. What are the 
advantages and disadvantages of each scheme? 

Sections 6.3-6.4 

4) What is the difference between end-to-end delay and delay jitter? What are the causes of delay jitter? 

5) Why is a packet that is received after its scheduled playout time considered lost? 

6) Section 6.3 describes two FEC schemes. Briefly summarize them. Both schemes increase the 
transmission of the stream by adding overhead. Does interleaving also increase the transmission rate? 

7) How are different RTP streams in different sessions identified by a receiver?  How are different 
streams from within the same session identified? How are RTP and RTPC packets (as part of the same 
session) distinguished. 

8) Three RTCP packet types are described in Section 6.4. Briefly summarize the information contained 
in each of these packet types. 

9) In Figure 6.4-9, which of the H.323 channels run over TCP and which over UDP? Why? 

Sections 6.5-6.9 

10) In Section 6.6, we discussed non-preemptive priority queuing. What would be preemptive priority 
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queueing? Does preemptive priority queueing make sense for computer networks? 

11) Give an example of scheduling discipline that is not work conserving. 

12) Guaranteed Service provides an application no loss and firm bounds on delay. Referring back to 
Figure 2.1-2, are there any applications that require both no loss and firm bounds on delay? 

13) What are some of the difficulties associated with the Intserv model and per-flow reservation of 
resources? 
  

Problems

1) Surf the Web and find three products for streaming stored audio and/or video. For each product, 
determine: (a) whether meta files are used; (b) whether the audio/video is sent over UDP or TCP; (c) 
whether RTP is used; (d) and whether RTSP is used. 

2) Write a poem, a short story, a description of a recent vacation, or any other piece which takes 2-5 
minutes to recite. Recite and record your piece. Convert your recording to one of the RealNetworks 
audio formats using one of the RealNetworks free encoders. Upload the file to the same server that holds 
your personal homepage. Also upload the corresponding meta file to the server. Finally create a link 
from your homepage to the meta file. 

3) Consider the client buffer shown in Figure 6.2-4. Suppose that the streaming system uses the fourth 
option, that is, the server pushes the media into the socket as quickly as possible. Suppose the available 
TCP bandwidth >> d most of the time. Also suppose that the client buffer can only hold 
about one third of the media. Describe how x(t) and the contents of the client buffer will evolve over 
time. 

4) Are the TCP receive buffer and the media player's client buffer the same thing? If not, how do they 
interact? 

5) In the Internet phone example in Section 6.3, let h be the total number header bytes added to each 
chunk, including UDP and IP header. 

(a) Assuming an IP datagram is emitted every 20 msec, find the transmission in bits in 
second for the datagrams generated by one side of this application. 
(b)

5) Consider the procedure described in Section 6.3 for estimating average delay di. Suppose that u = .1. 

Let r1 - t1 be the most recent sample delay, let  r2 - t2 be the next most recent sample delay, etc. 
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(a) For a given audio application suppose four packets have arrived at the receiver with 
sample delays r4 - t4  ,  r3 - t3  ,  r2 - t2  ,  r1 - t1 . Express the estimate of delay d in terms of 

the four samples. 
(b) Generalize your formula for n sample delays. 
(c) For the formula in part (b) let n approach infinity and give the resulting formula. 
omment on why this averaging procedure is called an exponential moving average.

6) Repeat the above question for the estimate of average delay deviation. 

7) Compare the procedure described in Section 6.3 for estimating average delay with the procedure in 
Section 3.5 for estimating round-trip time. What do the procedures have in common? How are they 
different? 

8) Consider the adaptive playout strategy described in Section 6.3. 

(a) How can two successive packets received at the destination have timestamps that differ by 
more than 20 msecs when the two packets belong to the same talkspurt? 
(b) How can the receiver use sequence numbers to determine whether a packet is the first packet 
in a talkspurt? Be specific.

9) Recall the two FEC schemes for Internet phone described in Section 6.3. Suppose that the first 
scheme generates a redundant chunk for every four original chunks. Suppose the second scheme uses a 
low-bit-rate encoding whose transmission rate is 25% the transmission rate of nominal stream. 

(a) How much additional bandwidth does each scheme require? How much playback 
delay does each scheme add? 
(b) How do the two schemes perform if at most one packet is lost in every group of five 
packets? Which scheme will have better audio quality? 
(c) How do the two schemes perform if at most one packet is lost in every group of two 
packets? Which scheme will have better audio quality?

10) How is the interarrival time jitter calculated in the RTCP reception report? Hint: Read the RTP RFC. 

11) Suppose in a RTP session there are S senders and R receivers. Use the formulas at the end of Section 
6.4 to show that RTCP limits its traffic to 5% of the session bandwidth. 

12) 

(a) How is RSTP similar to HTTP?  Does RSTP have methods? Can HTTP be used to 
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request a stream? 
(b) How is RSTP different from HTTP. For example, is HTTP in-band or out-of-band? 
Does RTSP require state information about the client (consider the pause/resume 
function)?

13) What are the current Microsoft  products for audio/video real-time conferencing. Do these products 
use any of the protocols discussed in this chapter (e.g., RTP or RTSP)? 

14) Suppose that the WFQ scheduling policy is applied to a buffer that supports three classes, and 
suppose the weights are .5, .25 and .25 for the three classes. 

a) Suppose that each class has a large number of packets in the buffer. In what sequence 
might the three classes be served in to achieve the WFQ weights? (For round-robin 
scheduling, a natural sequence is 123123123...). 
b) Suppose that classes 1 and 2 have a large number of packets in the buffer, and there are 
no class 2 packets in the buffer. In what sequence might the three classes be served in to 
achieve the WFQ weights?

15)  Consider the leaky bucket policer (discussed in Section 6.6) that polices the average rate and burst 
size of a packet flow.  We now want to police the peak rate, p, as well. Show how the output of this 
leaky bucket policer can be fed into a second leaky bucket policer so that the two leaky buckets in series 
police the average rate, peak rate, and burst size. Be sure to give the bucket size and token generation 
rate for the second policer. 

16) A packet flow is said to conform to a leaky bucket specification (r,b) with burst size b and average 
rate r if the number of packets that arrive to the leaky bucket is less than rt + b packets in every interval 
of time of length t for all t.  Will a packet flow that conforms to a leaky bucket specification (r,b) ever 
have to wait at a leaky bucket policer with parameters r and b? Justify your answer. 

17) Show that as long as r1 < R
.
wi/(Σwj), then dmax is indeed the maximum delay that any packet in flow 

1 will ever experience in the WFQ queue. 

Discussion Questions

1) How can a host use RTCP feedback information to determine whether problems are local, regional, or 
global? 

2) Do you think it is better to stream stored audio/video on top of TCP or UDP? 

3) In RSVP, are reservation sytles relevant for one-to-many multicast sessions? 

file:///D|/Downloads/Livros/computação/Computer%20Ne...own%20Approach%20Featuring%20the%20Internet/mmHW.htm (4 of 5)20/11/2004 15:52:59

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/www.microsoft.com


Homework problems: Multimedia Netowrking

4) Write a one-page report on prospects for Internet phone in the market place. 

5) Can the problem of providing QoS guarantees be solved simply by "throwing enough bandwidth" at 
the problem, i.e., by upgrading all link capacities so that bandwidth limitations are no longer a concern? 

6) An interesting emerging market is using Internet phone and a company's high-speed LAN to replace 
the same company's PBX (private branch exchange). Write a one-page report on this issue. Cover the 
following questions in your report: 

(a) What is a traditional PBX? Who uses them? 
(b) Consider a call between a user in the company and another user out of the company, 
who is connected to the traditional telephone network. What sort of technology is needed 
at the interface between the LAN and the traditional telephone network? 
(c) In addition to Internet phone software and the interface of question (b), what else is 
needed to replace the PBX?

7)  Consider the four "pillars" of providing QoS support in Section 6.5.   Describe the circumstances, if 
any, under which each of these pillars can be removed. 

8) Use the Web to find three companies that manufacture H.323 gatekeepers. Describe their products. 
  
  

file:///D|/Downloads/Livros/computação/Computer%20Ne...own%20Approach%20Featuring%20the%20Internet/mmHW.htm (5 of 5)20/11/2004 15:52:59



What is Network Security?

7.1 What is Network Security?

Let us introduce Alice  and Bob , two people who want to communicate "securely." This being a 

networking text, we should remark that Alice and Bob may be two routers that want to securely exchange routing 
tables, two hosts that want to establish a secure transport connection, or two email applications that want to exchange 
secure e-mail - all case studies that we will consider later in this chapter.  Alice and Bob are well-known fixtures in the 
security community, perhaps because their names are more fun than a generic entity named "A" that wants to securely 
communicate with a generic entity named "B."   Illicit love affairs, wartime communication, and business transactions 
are the commonly cited human needs for secure communications; preferring the first to the latter two, we're happy to 
use Alice and Bob as our sender and receiver, and imagine them in this first scenario. 
  

7.1.1  Secure Communication

We said that Alice and Bob want to communicate "securely," but what precisely does this mean?  Certainly, Alice 
wants only Bob to be able to understand a message that she has sent, even though they are communicating over an 
"insecure" medium where an intruder (Trudy, the intruder) may intercept, read, and perform computations on whatever 
is transmitted from Alice to Bob.  Bob also wants to be sure that the message that he receives from Alice was indeed 
sent by Alice, and Alice wants to make sure that the person with whom she is communicating is indeed Bob. Alice and 
Bob also want to make sure that  the contents of Alice's message have not been altered in transit.  Given these 
considerations, we can identify the following desirable properties of secure communication: 

●     Secrecy.  Only the sender and intended receiver should be able to understand the contents of the transmitted 
message. Because eavesdroppers may intercept the message, this necessarily requires that the message be 
somehow encrypted (disguise data) so that an intercepted message can not be decrypted (understood) by an 
interceptor. This aspect of secrecy is probably the most commonly perceived meaning of the term "secure 
communication."  Note, however, that this is not only a restricted definition of secure communication (we list 
additional aspects of secure communication below), but a rather restricted definition of secrecy as well.  For 
example, Alice might also want the mere fact that she is communicating with Bob (or the timing or  frequency 
of her communications) to be a secret!  We will study cryptographic techniques for encrypting and decrypting 
data in section 7.2.

●     Authentication.  Both the sender and receiver need to confirm the identity of other party involved in the 
communication - to confirm that the other party is indeed who or what they claim to be.  Face-to-face human 
communication solves this problem easily by visual recognition.  When communicating entities exchange 
messages over a medium where they can not "see" the other party, authentication is not so simple.  Why, for 
instance, should you believe that a received email containing a text string saying that the email came from a 
friend of yours indeed came from that friend?  If someone calls on the phone claiming to be your bank and 
asking for your account number, secret PIN, and account balances for verification purposes, would you give 
that information out over the phone?  Hopefully not.  We will examine authentication techniques in section 7.3, 
including several that, perhaps surprisingly, also rely on the cryptographic techniques we study in section 7.2

●     Message Integrity.  Even if the sender and receiver are able to authenticate each other, they also want to insure 
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that the content of their communication is not altered, either malicously or by accident, in transmission.  
Extensions to the checksumming techniques that we encountered in reliable transport and data link protocols 
will also be studied in section 7.3; these techniques also rely on cryptographic concepts in section 7.2

Having established what we mean by secure communication, let us next consider exactly what is meant by an "insecure 
channel."  What information does an intruder have access to, and what actions can be taken on the transmitted data? 
Figure 7.1-1 illustrates the scenario. 

 
Figure 7.1-1: Sender, receiver and intruder (Alice, Bob, and Trudy)

Alice, the sender, wants to send data to Bob, the receiver.  In order to securely exchange data, while meeting the 
requirements of secrecy, authentication, and message integrity, Alice and Bob will exchange both control message and 
data messages (in much the same way that TCP senders and receivers exchange both control segments and data 
segments).  All, or some of these message will typically be encrypted. A passive intruder can listen to and record the 
control and data messages on the channel; an active intruder can remove messages from the channel and/or itself add 
messages into the channel. 
  

7.1.2 Network Security Considerations in the Internet

Before delving into the technical aspects of network security in the following sections, let's conclude our introduction 
by relating our fictitious characters -  Alice, Bob, and Trudy - to "real world" scenarios in today's Internet. 

Let's begin with Trudy, the network intruder. Can a "real world" network intruder really listen to and record network 
messages? Is it easy to do so? Can an intruder actively inject or remove messages from the network?  The answer to all 
of these questions is an emphatic "YES."  A packet sniffer is a program running in a network attached device that 
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passively receives all data-link-layer frames passing by the device's network interface.  In a broadcast environment 
such as an Ethernet LAN, this means that the packet sniffer receives all frames being transmitted from or to all hosts 
on the local area network.  Any host with an Ethernet card can easily serve as a packet sniffer, as the Ethernet interface 
card needs only be set to "promiscuous mode" to receive all passing Ethernet frames.  These frames can then be passed 
on to application programs that extract application-level data.  For example, in the telnet scenario shown in Figure 7.1-
2, the login  password prompt sent from A to B, as well as the password entered at B are "sniffed" at host C.   Packet 
sniffing is a double-edged sword - it can be invaluable to a network administrator for network monitoring and 
management (see Chapter 8) but also used by the unethical hacker.  Packet-sniffing software is freely available at 
various WWW sites, and as commercial products.  Professors teaching a networking course have been known to assign 
lab exercises that involve writing a packet-sniffing and application-level-data-reconstruction program. 

 
Figure 7.1-2: packet sniffing

Any Internet-connected device (e.g., a host) necessarily sends IP datagrams into the network.  Recall from Chapter 4 
that these datagrams carry the sender's IP address, as well as application-layer data.  A user with complete control over 
that device's software (in particular its operating system) can easily modify the device's protocols to place an arbitrary 
IP address into a datagram's source address field. This is known as IP spoofing.   A user can thus craft an IP packet 
containing any payload (application-level) data it desires and make it appear as if that data was sent from an arbitrary 
IP host. Packet sniffing and IP spoofing are just two of the more common forms of  security "attacks" on the Internet.  
These and other network attacks are discussed in the collection of essays [Denning 1997]. A summary of reported 
attacks is maintained at the CERT Coordination Center [CERT 1999]. 

Having established that there are indeed real bogeymen (a.k.a. "Trudy") loose in the Internet, what are the Internet 
equivalents of Alice and Bob, our two friends who need to communicate securely?  Certainly, "Bob" and "Alice" might 
be human user at  two end systems, e.g., a real Alice and a real Bob who really do want to exchange secure email.   (e.
g., a user wanting to enter a credit card in a WWW form for an electronic purchase).  They might also be participants 
in an electronic commerce transaction, e.g., a real Alice might want to securely transfer her credit card number to a 
WWW  server to purchase an item on-line. Similarly, a real Alice might want to interact with her back on-line. As 
noted in [RFC 1636], however, the parties needing secure communication might also themselves be part of the network 
infrastructure. Recall that the domain name system (DNS, see section 2.5), or routing daemons that exchange routing 
tables (see section 4.5) require secure communication between two parties. The same is true for network management 
applications, a topic we examine in the following chapter.  An intruder that could actively interfere with, control, or 
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corrupt DNS lookups and updates, routing computations, or network management functions could wreak havoc in the 
Internet. 

Having now established the framework, a few of the most important definitions, and the need for network security, let 
us next delve into cryptography, a topic of central importance to many  aspects of network security.. 
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7.2 Principles of Cryptography

Although cryptography has a long history dating back to Julius Caesar (we will look at the so-called Caesar 
cipher shortly), modern cryptographic techniques, including many of those used in today's Internet, are based 
on advances made in past twenty years.  The books  [Kahn 1967, Singh 1999] provide a fascinating look at 
this long history. A detailed (but entertaining and readable) technical discussion of cryptography, particularly 
from a network standpoint, is [Kaufman 1995].  [Diffie 1998] provides a compelling and up-to-date 
examination of the political and social (e.g., privacy)  issues that are now inextricably intertwined with 
cryptography.  A complete discussion of cryptography  itself requires a complete book [Kaufman 1995, 
Schneier 1996] and so below we only touch on the essential aspects of cryptography, particularly as they are 
practiced in today's Internet. Two excellent on-line sites are [Kessler 99] and the RSA Labs FAQ page [RSA 
1999c]. 

Cryptographic techniques allow a sender to disguise data so that an intruder can gain no information from the 
intercepted data.  The receiver, of course must be able to recover the original data from the disguised data. 
Figure 7.2-1 illustrates some of the important terminology: 

 
Figure 7.2-1: Cryptographic components

Suppose now that Alice wants to send a message to Bob. Alice's message in its original form (e.g., "Bob, I 
love you.  Alice") is known as plaintext, or cleartext. Alice encrypts her plaintext message using an 
encryption algorithm so that the encrypted message, known as ciphertext, looks unintelligible to any 
intruder. Interestingly, in many modern cryptographic systems, including those used in the Internet, the 
encryption technique itself is known - published, standardized, and available to everyone (e.g., [RFC 1321, 
RFC 2437,RFC 2420), even a potential intruder! Clearly, if everyone knows the method for encoding data, 
then there must be some bit of secret information that prevents an intruder from decrypting the transmitted 
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data.  This is where keys come in. 

In Figure 7.2-1 Alice provides a key, KA, - a string of numbers or characters, as input to the encryption 

algorithm. The encryption algorithm takes the key and the plaintext as input and produces ciphertext as 
output.  Similarly, Bob will provide a key KB, to the decryption algorithm, that takes the ciphertext and 

Bob's key as input and produces the original plaintext as output.  In so-called symmetric key systems, Alice 
and Bob's keys are identical and are secret.  In public key systems, the key that Alice uses is  known to all (!), 
while Bob's key is secret.  In the following two subsections, we consider symmetric key and public key 
systems in more detail. 
  

7.2.1 Symmetric Key Cryptography

All cryptographic algorithms involve substituting one thing for another, e.g., taking a piece of plaintext and 
computing the appropriate ciphertext that forms the encrypted message.  Before studying a modern key-based 
cryptographic system, let us first "get our feet wet" by studying a very old simple symmetric key algorithm 
attributed to Julius Caesar, known as the Caesar cipher (a "cipher" is a method for encrypting data). 

For English text, the Caesar cipher would work by taking each letter in the plaintext message and  
substituting the letter that is k letters later (allowing wraparound, i.e., having the letter "a" follow the letter 
"z") in the alphabet.  For example if k=4, then the letter "a" in plaintext becomes "d" in ciphertext; "b" in 
plaintext becomes "e" in ciphertext, and so on.  Here, the value of k serves as the key. As an example, the 
plaintext message "bob, I love you. alice." becomes "yly, f  ilsb vlr. xifzb." in ciphertext. While the ciphertext 
does indeed look like gibberish, it wouldn't take long to break the code if you knew that the Caesar cipher was 
being used, as there are only 25 possible key values. 

An improvement to the Caesar cipher is the so-called monoalphabetic cipher that also substitutes one letter 
in the alphabet with another letter in the alphabet.  However, rather than substituting according to a regular 
pattern (e.g., substitution with an offset of k for all letters), any letter can be substituted for any other letter, as 
long as each letter has a unique substitute letter and vice versa.  Many newspaers in the US carry 
cryptographic puzzles based on this cipher. The substitution rule in Figure 7.2-2 shows one possible rule for 
encoding plaintext. 

plaintext letter:      a b c d e f g h i f k l m n o p q r s t u v w x y z 
ciphertext letter:   m n b v c x z a s d f g h j k l p o i u y t r e w q 

Figure 7.2-2: a monoalphabetic cipher

The plaintext message "bob, I love you. alice." becomes "nkn, s gktc wky. mgsbc" Thus, as in the case of the 
Caesar cipher, this looks like gibberish. A monoalphabetic cipher would also appear to be better than the 
Caesar cipher in that there are 26!  (on the order of 1026) possible pairings of letters rather than 25 possible 
pairings. A brute force approach of trying all 1026 possible pairings would require far too much work to be a 
feasible way of breaking the encryption algorithm and decoding the message.  However, by statistical analysis 
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of the plaintext language, e.g., knowing that the letters "e" and "t" are the most frequently occurring letters in 
typical text (accounting for 13% and 9% of letter occurrences), and knowing that particular two- and three-
letter occurrences of letters appear quite often  together (e.g., "in", "it", "the" "ion", "ing", etc.) make it 
relatively easy to break this code.  If the intruder has some knowledge about the possible contents of the 
message, then it is even easier to break the code.  For example, if Trudy the intruder is Bob's wife and 
suspects Bob of having an affair with Alice, then she might suspect that the names "bob" and "alice" appear in 
the text."  If Trudy knew for certain that those two names appeared in the ciphertext and had a copy of the 
example ciphertext message above, then she could immediately determine 7 of the 26 letter pairings, since 
"alice" is the only five-letter word in the message, and "bob" is the only three-letter word that has an identical 
first and last letter.  Thus, Trudy requires 109 fewer possibilities to be checked a by brute force method. 
Indeed, if Trudy suspected Bob of having an affair, she might well expect to find some other choice words in 
the message as well. 

When considering how easy it might be for Trudy to break Bob and Alice's encryption scheme, one can 
distinguish three different scenarios, depending on what information the intruder has: 

●     Ciphertext only attack.  In some cases, the intruder may only have access to the intercepted 
ciphertext, with no certain information about the contents of the plaintext message. We have seen how 
statistical analysis can help in a ciphertext only attack on an encryption scheme.

●     Known plaintext attack. We saw above that if Trudy somehow knew for sure that "bob" and "alice" 
appeared in the ciphertext message then she could have determined the (plaintext, ciphertext) pairings 
for the letters a, l, i, c, e, b, and o. Trudy might also have been fortunate enough to have recorded all of 
the ciphertext transmissions and then found Bob's own decrypted version of one of transmissions 
scribbled on a piece of paper.  When an intruder knows some of the (plaintext, ciphertext) pairings, we 
refer to this as a known plaintext attack on the encryption scheme.

●     Chosen plaintext attack.  In a chosen plaintext attack, the intruder is able to choose the plaintext 
message and obtain its corresponding ciphertext form. For the simple encryption algorithms we've seen 
so far, if Trudy could get Alice to send the message, "The quick fox jumps over the lazy brown dog,"  
she can completely break the encryption scheme.  We'll see shortly that for more sophisticated 
encryption techniques, a chosen plaintext attack does not necessarily  mean that the encryption 
technique can be broken.

Five hundred years ago, techniques improving on monoalphabetic encryption, known as polyalphabetic 
encryption were invented. These techniques, incorrectly attributed to Blaise de Vigenere [Kahn 1967] have 
come to be known as Vigenere ciphers.   The idea behind Vigenere ciphers is to use multiple monoalphabetic 
ciphers, with a specific monoalphabetic cipher to encode a letter in a specific position in the plaintext 
message. Thus, the same letter, appearing in different positions in the plaintext message might be encoded 
differently. The Vigenere cipher shown in Figure 7.2-3 has two different Caesar ciphers (with k=6 and k=20), 
shown as rows in Figure 7-2-3.  One might choose to use these two Caesar ciphers, C1 and C2, in the repeating 

pattern C1, C2, C2, C1, C2. That is, the first letter of plaintext is to encoded using C1, the second and third 

using C2, the fourth using C1, and the fifth using C2.  The pattern then repeats, with the sixth letter being 

encoded using C1, the seventh with C2, and so on. The plaintext  message "bob, I love you. alice."  is thus 
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encrypted "ghu, n etox dhz."  Note that the first "b" in the plaintext message is encrypted using C1, while the 

second "b" is encrypted using C2. In this example, the encryption and decryption "key"  is the knowledge of 

the two Caesar keys (k=4, k=20) and the pattern C1, C2, C1, C2, C2. 

plaintext letter:     a b c d e f g h i f k l m n o p q r s t u v w x y z 
       C1(k=6):    f g h i j k l m n o p q r s t u v w x y z a b c d e 

       C2(k=20):    t u v w x y z a b c d e f g h i j k l m n o p q r s 

Figure 7.2-3: A Vigenere cipher using two Caesar ciphers

Data Encryption Standard (DES) 

Let us now fast forward to modern time and examine the Data Encryption Standard (DES) [NIST 1993] , a 
symmetric key encryption standard published in 1977 and updated most recently in 1993 by the US National 
Bureau of Standards for commercial and non-classified US government use. DES encodes plaintext in 64 bit 
chunks using a 64-bit key.  Actually, 8 of these 64 bits are odd parity bits (one bit in each of the 8 bytes is an 
odd partity bit for that byte), so the DES key is effectively 56 bits long. The National Institute of Standards 
(the successor to the National Bureau of Standards) states the goal of DES as follows:  " The goal is to 
completely scramble the data and key so that every bit of the ciphertext depends on every bit of the data and 
every bit of the key  ....  with a good algorithm, there should be no correlation between the ciphertext and 
either the original data or key." [NIST 1999]. 

The basic operation of DES is illustrated in Figure 7.2-4.  In our discussion we will overview DES operation, 
leaving the nitty-gritty bit-level details (there are many!) to those wishing to consult [Kaufman 1995, Schneier 
1995] (with [Schneier 1995] including a C implementation as well).  The DES consists of two permutation 
steps (the first and last steps of the algorithm) in which all 64 bits are permuted, and 16 identical "rounds" of 
operation in between. The operation of each round is identical, taking the output of the previous round as 
input.  During each round, the rightmost 32 bits of the input are moved to the left 32 bits of the output.  The 
entire 64-bit input to the ith round and the 48 bit key for the ith round (derived from the larger DES 56-bit ) 
are taken as input to a function that involves expansion of four-bit input chunks into six-bit chunks, exclusive 
OR-ing with the expanded six bit chunks of the 48-bit key Ki, a substitution operation and further exclusive 
OR-ing with the leftmost 32 bits of the input; see  [Kaufman 1995, Schneier 1995] for details.  The resulting 
32-bit output of the function is then used as the rightmost 32 bits of the rounds 64-bit output, as shown in 
Figure 7.2-4.   Decryption works by reversing the algorithm's operations. 
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Figure 7.2-4: Basic operation of the DES

 How well does DES work?  How secure is it? No one can tell for sure, although recent speculation is that one 
could build a special purpose machine that exhaustively  searched through the 56-bit key space for under a 
million dollars [Kaufman 1995].  In 1997, a network security company, RSA Data Security Inc, launched a 
DES Challenge contest to "crack" (decode) a short phrase it had encrypted using 56-bit DES.  The unencoded 
phrase ( “Strong cryptography makes the world a safer place.”) was determined only 140 days later by a team 
that used volunteers throughout the Internet to systematically explore the key space.  The team claimed the 
$10,000 prize after testing only a quarter of the key space - about 18 quadrillion keys [RSA 1997].  The most 
recent 1999 DES Challenge III was won in a record time of a little over 22 hours, with a network of 
volunteers and a special purpose computer  that was built for less that $250,000 (nick-named "DES Cracker") 
and is documented on-line [EFF 1999]. 

file:///D|/Downloads/Livros/computação/Computer%20Net...wn%20Approach%20Featuring%20the%20Internet/crypto.htm (5 of 12)20/11/2004 15:53:02



Cryptogrpahy

If 56-bit DES is considered too insecure, one can simply run the 56-bit algorithm multiple times, taking the 64-
bit output from one iteration of DES as the input to the next DES iteration, using a different encryption key 
each time.  For example, so-called triple-DES (3DES), is a proposed US government standard [NIST 1999b] 
and has been proposed as the encryption standard for the Point-to-Point protocol [RFC 2420], PPP,  for the 
data link layer (see section 5.7). A detailed discussion of key lengths and the estimated time and budget 
needed to crack DES can be found in [Blaze 1996]. 

We should also note that our description above has only considered the encryption of a 64-bit quantity.  When 
longer messages are encrypted, which is typically the case, DES is often used with a technique known as 
cipher-block chaining, in which the encrypted version of the jth 64-bit quantity of data is XOR'ed with the (j
+1)st unit of data before the  (j+1)st unit of data is encrypted. 
  

7.2.2 Public Key Encryption

For more than 2000 years (since the time of the Caesar cipher and up to the 1970's), encrypted communication 
required that the two communicating parties share a common secret - the symmetric key used for encryption 
and decryption.  One difficulty with this approach is that the two parties must somehow agree on the shared 
key; but to do so requires (presumably secure) communication!  Perhaps the parties could first meet and agree 
on the key in person (e.g., two of Caesar's centurions might meet at the Roman baths) and thereafter 
communicate with encryption.  In a networked world, however, communicating parties may never meet and 
may never converse except over the network.  Is it possible for two parties to communicate with encryption 
without having a shared secret key that is known in advance? In 1976, Diffie and Hellman [Diffie 1976] 
demonstrated an algorithm (known now as Diffie-Hellman Key Exchange) to do just that - a radically 
different and marvelously elegant approach towards secure communication that has led to the development of 
today's public key cryptography systems. We will see shortly that  public key cryptography systems also have 
several wonderful properties that make them useful not only for encryption, but for authentication and digital 
signatures as well. The ideas begun with [Diffie 1976] have evolved, with a significant milestone being [RSA 
1978], into the public key systems in use today. 
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Figure 7.2-5: Public key cryptography

The use of public key cryptography is quite simple. Suppose Alice wants to communicate with Bob. As shown 
in Figure 7.2-5,  rather than Bob and Alice sharing a single secret key (as in the case of  symmetric key 
systems), Bob (the recipient of Alice's messages) instead has two keys - a public key that is available to 
everyone in the world (including Trudy the intruder!) and a private key that is known only to Bob. In order to 
communicate with Bob, Alice first fetches Bob's public key.  Alice then encrypts her message to Bob using  
Bob's public key and a known (e.g., standardized) encryption algorithm.  Bob receives Alice's encrypted 
message and uses his private key and a known (e.g., standardized) decryption algorithm to decrypt Alice's 
message. In this manner, Alice can send a secret message to Bob without either of them having to have to 
distribute any secret keys! 

Using the notation of Figure 7.2-5, for any message m, dB(eB(m)) = m, i.e., applying Bob's public key then 

Bob's private key to the message m gives back m. We will see shortly that we can interchange the public key 
and private key encryption and get the same result, that is, eB(dB(m)) = dB(eB(m)) = m. 

The use of public key cryptography is thus conceptually simple.  But two immediate worries may spring to 
mind.  A first concern is that although an intruder intercepting Alice's encrypted message will only see 
gibberish, the intruder knows both the key (Bob's public key, which is available for all the world to see) and 
the algorithm that Alice used for encryption. Trudy can thus mount a chosen plaintext attack, using the known 
standardized encryption algorithm and Bob's publicly available encryption key to encode any message she 
chooses!  Trudy might well try, for example, to encode messages, or parts of messages, that she suspects that 
Alice might send. Clearly, if public key cryptography is to work, key selection and encryption/decryption 
must be done in such a way that it is impossible (or at least so hard to be impossible for all practical purposes) 
for an intruder to either determine Bob's private key or somehow otherwise decrypt or guess Alice's message 
to Bob. A second concern is that since Bob's encryption key is public, anyone can send an encrypted message 
to Bob, including Alice or someone claiming to be Alice.  In the case of  a single shared secret key, the fact 
that the sender knows the secret key implicitly identifies the sender to the receiver.  In the case of public key 
cryptography, however, this is no longer the case since anyone can send an encrypted message to Bob using 
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Bob's publicly available key.  Certificates, which we will study in section 7.5, are needed to bind an entity 
(such as Bob) to a specific public key. 

While there may be many algorithms and keys that have this property, the RSA algorithm (named after its 
founders,  Ron Rivest, Adi Shamir, and Leonard Adleman) has become almost synonymous with public key 
cryptography.  Let's first see how RSA works and then examine why it works.  Suppose that Bob wants to 
receive encrypted messages, as shown in Figure 7.2-5. The are two inter-related components of RSA: 

●     choice of the public key and the private key
●     the encryption and decryption algorithm

In order to choose the public and private keys, Bob must do the following: 

●     Choose two large prime numbers, p and q. How large should p and q be? The larger the values, the 
more difficult it is to break RSA but the longer it takes to perform the encoding and decoding.  RSA 
Laboratories recommends that the product of p and q be on the order of 768 bits for personal use and 
1024 bits for corporate use [RSA 1999].  (Which leads one to wonder why corporate use is deemed so 
much more important than personal use!).

●     Compute n = pq and z = (p-1)(q-1).
●     Choose a number, e, less than n, which has no common factors (other than 1) with z. (In this case, e 

and z are said to be relatively prime). The letter 'e' is used since this value will be used in encryption.
●     Find a number, d, such that ed -1 is exactly divisible (i.e., with no remainder)  by z. The letter 'd'  is 

used because this value will be used in decryption.  Put another way, given e, we choose d such that the 
integer remainder when ed is divided by z is 1. (The integer remainder when an integer x is divided by 
the integer n, is denoted x mod n).

●     The public key that Bob makes available to the world is the pair of numbers (n,e); his private key is the 
pair of numbers (n,d).

 The encryption by Alice, and the decryption by Bob is done as follows: 

●     Suppose Alice wants to send Bob a bit pattern, or number, m, such that m < n.  To encode, Alice 
performs the exponentiation, me, and then computes the integer remainder when meis divided by n.  
Thus, the encrypted value, c, of the plaintext message, m, that Alice sends is:

c = me mod n

●     To decrypt the received ciphertext message, c,  Bob computes

m = cd mod n

which requires the use of his secret key, (n,d).

As a simple example of RSA, suppose Bob chooses p=5 and q=7 (admittedly, these values are far too small to 
be secure). Then n=35 and z=24.  Bob chooses e=5,  since 5 and 24 have no common factors.  Finally, Bob 
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chooses d=29, since 5*29 - 1 (i.e.,  ed -1 )  is exactly divisible by 24. Bob makes the two values, n=35 and  
e=5, public and keeps the value d=29 secret. Observing these two public values, suppose Alice now wants to 
send the letters 'l' 'o' 'v' and 'e' to Bob.  Interpreting each letter as a number between 1 and 26 (with 'a' being 1, 
and 'z' being 26), Alice and Bob perform the encryption and decryption shown in Figures 7.2-6 and 7.2-7, 
respectively: 
  
  

plaintext  
letter

m: numeric 
representation me

ciphertext 
c = me mod n

l 12  248832 17

o 15  759375  15

v 22  5153632  22

e 5  3125 10

Figure 7.2-6: Alice's RSA encryption, e=5, n = 35

  

ciphertext 
c cd m = cd 

mod n
plaintext 

letter

17  481968572106750915091411825223072000  12 l

 15  12783403948858939111232757568359400  15 o

 22  8.5164331908653770195619449972111e+38 22 v

 10  100000000000000000000000000000 5 e

Figure 7.2-7: Bob's RSA decryption, d=29, n=35

Given that "toy" example in Figures 7-7 and 7-8 has already produced some extremely large numbers, and 
given that we know that we saw earlier that p and q should each be several hundred bits long, several practical 
issues regarding RSA come to mind. How does one choose large prime numbers?  How does one then choose 
e and d? How does one perform exponentiation with large numbers? A discussion of these important issues is 
beyond the scope of this book; see [Kaufman 1995] and the references therein for details. 

We do note here that the exponentiation required by RSA is a rather time consuming process.   RSA Data 
Security [RSA 1999b] says its software toolkit can encrypt/decrypt at a  throughput of 21.6 Kbits per second  
with a 512-bit value for n and 7.4 Kbits per second with a 1024-bit value.  DES is at least one hundred times 
fast in software and between 1000 and 10000 times faster in hardware.  As a result, RSA is often used in 
practice in combination with DES.  For example, if Alice wants to send Bob a large amount of encrypted data 
at high speed, she could do the following.  First Alice chooses a DES key that will be used to encode the data 
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itself; this key is sometimes referred to as a session key, KS.  Alice must inform Bob of the session key, since 

this is the shared secret key they will use for DES.  Alice thus encrypts the session key value using Bob's 
public RSA key, i.e., computes c = (KS)e mod n.  Bob receives the RSA-encrypted session key, c, and 

decrypts to obtain the session key, KS..  Bob now knows the session key that Alice will use for her DES-

encrypted data transfer. 
  

Why does RSA work?

The RSA encryption/decryption above appears rather magical. Why should it be that by applying the 
encryption algorithm and then the decryption algorithm, one recovers the original message?   In order to 
understand why RSA works, we'll need to perform arithmetic operations using so-called modulo-n arithmetic.  
In modular arithmetic, one performs the usual operations of addition, multiplication and exponentiation.  
However, the result of each operation is replaced by the integer remainder that is left when the result is 
divided by n. We will take n = pq, where p and q are the large prime numbers used in the RSA algorithm. 

Recall that under RSA encryption,  a message (represented by an integer), m, is first exponentiated to the 
power e using modulo-n arithmetic to encrypt. Decryption is performed by raising this value to the power d, 
again using modulo n arithmetic.  The result of an encryption step, followed by a decryption step is thus (me)
d.  Let's now see what we can say about this quantity.  We have: 

(me)d  mod n = med mod n
Although we're trying to remove some of the "magic" about why RSA works, we'll need to use a rather 
magical result from number theory here.  Specifically, we'll need the result that says if p and q are prime, and 

n = pq, then xy mod n is the same as x(y mod (p-1)(q-1))  mod n [Kaufman 1995].  Applying this result, we have 

(me)d  mod n  = m (ed mod (p-1)(q-1)) mod n
But remember that we chose e and d such  that ed -1 is exactly divisible (i.e., with no remainder)  by  (p-1)(q-
1), or equivalently that ed is divisible by (p-1)(q-1) with a reminder of 1, and thus ed mod (p-1)(q-1) = 1.  
This gives us 

(me)d  mod n  = m 1mod n = m
i.e., that 

(me)d  mod n  =  m.
This is the result we were hoping for!  By first exponentiating to the power of e (i.e., encrypting) and then 
exponentiating to the power of d (i.e., decrypting), we obtain the original value, m.  Even more remarkable is 
the fact that if we first exponentiate to the power of d and then exponentiate to the power of e, i.e., we reverse 
the order of encryption and decryption, performing the decryption operation first and then applying the 
encryption operation, we also obtain the original value, m!  (The proof for this result follows the exact same 
reasoning as above). We will see shortly that this wonderful property of the RSA algorithm, 

(me)d  mod n  =  m = (md)e mod n
will be of great use. 

The security of RSA relies on the fact that there are no known algorithms for quickly factoring a number, in 
this case the public value n, into the primes p and q. If one knew p and q, then given the public value e, one 
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could then easily compute the secret key, d. On the other hand, it is not know whether or not there exist fast 
algorithms for factoring a number, and in this sense the security of RSA is not "guaranteed." 
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7.3 Authentication: Who are You?

Authentication is the process of proving one's identity to someone else. As humans, we authenticate each other in 
many ways: we recognize each others' faces when we meet; we recognize each others' voices on the telephone; we 
are authenticated by the customs official who checks us against the picture on our passport. 

In this section we consider how one party can authenticate another party when the two are communicating over a 
network. We focus here on authenticating a "live" party, at the point in time when communication is actually 
occurring. We will see that this is a subtly different problem from proving that  a message received at some point in 
the past (e.g., that may have been archived) did indeed come from that claimed sender. This latter problem is referred 
to as the digital signature problem, which we explore in section 7.4. 

When performing authentication over the network,  the communicating parties can not rely on biometric information, 
such as a visual appearance or a voiceprint. Indeed, we will see in our later case studies that it is often network 
elements such as routers and client/server processes that must authenticate each other.  Here, authentication must be 
done solely on the basis of messages and data exchanged as part of an authentication protocol.  Typically, an 
authentication protocol would run before the two communicating parties run some other protocol (e.g., a  reliable 
data transfer protocol, a routing table exchange protocol, or an email protocol).  The authentication protocol first 
establishes the identities of the parties to each others' satisfaction; only after authentication do the parties get down to 
the work at hand. 

As in the case of our development of a reliable data transfer protocol, rdt, in Chapter 3, we will find it instructive 
here to develop various versions of an authentication protocol, which we will call ap ("authentication protocol"), and 
poke holes (i.e., find security flaws)  in each version as we proceed.  Let's begin by assuming that Alice needs to 
authenticate herself to Bob. 
  

Authentication protocol  ap1.0

Perhaps the simplest authentication protocol we can imagine is one where Alice simply sends a message to Bob 
saying she is Alice.  This protocol is shown in Figure 7.3-1.  The flaw here is obvious - there is no way for Bob to 
actually know that the person sending the message, "I am Alice" is indeed Alice.  For example, Trudy (the intruder) 
could just as well send such a message. 
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Figure 7.3-1: Protocol ap1.0 and a failure scenario.

Authentication protocol ap2.0

In the case that Alice has a well-known network address (e.g., IP address) from which she always communicates, 
Bob could attempt to authenticate Alice by verifying that the source address on the IP datagram carrying the 
authentication message  matches Alice's well-known address. If so, then Alice would be authenticated. This might 
stop a very network-naive intruder from impersonating Alice.  But it wouldn't stop the determined student studying 
this book, or many others! 

 
Figure 7.3-2: Protocol ap2.0 and a failure scenario.

Given that we have now studied both the network and data link layers, we know that it is not that hard (e.g., if one 
had access to the operating system code and could build one's own operating system kernel, as is the case with Linux 
and several other freely available operating systems)  to create an IP datagram,  put whatever IP source address we 
want (e.g., including Alice's well-known IP address) into the IP datagram and send the datagram over the link layer 
protocol to the first hop router.  From then on, the incorrectly-source-addressed datagram would be dutifully 
forwarded to Bob. This approach is a form of IP spoofing, a well-known security attack technique [Cert 96].  IP 
spoofing can be avoided if a router is configured to refuse IP datagrams that do not have a given source address. For 
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example,  Trudy's first hop router could be configured to only forward datagrams containing Trudy's IP source 
address.  However, this capability is not universally deployed or enforced. Bob would thus be foolish to assume that 
Trudy's network manager (who might be Trudy herself!)  had configured Trudy's first hop router to only forward 
appropriately-addressed datagrams. 
  

Authentication protocol ap3.0

One classical approach to authentication is to use a secret password. We have PIN numbers to identify ourselves to 
automatic teller machines and login passwords for operating systems. The password is a shared secret between the 
authenticator and the person being authenticated.  We saw in section 2.2.5 that HTTP uses a password-based 
authentication scheme. Telnet and FTP use password authentication as well. In protocol ap3.0, Alice thus sends her 
secret password to Bob, as shown in Figure 7.3-3. 
  

 
Figure 7.3-3: Protocol ap3.0 and a failure scenario.

The security flaw here is clear.  If Trudy eavesdrops on Alice's communication, then she can learn Alice's password.  
Lest you think this is unlikely, consider the fact that when one Telnet's to another machine and logs in, the login 
password is sent unencrypted to the Telnet server .  Someone connected to the Telnet client or server's LAN  can 
possibly "sniff" (read and store) all packets transmitted on the LAN and thus steal the login password.  In fact, this is 
a well-known approach for stealing passwords (see, e.g., [Jimenez 1997].  Such a threat is obviously very real, so 
ap3.0 clearly won't do. 
  

Authentication protocol  ap3.1

Having just studied the previous section on cryptography, our next idea for fixing ap3.0 is naturally to use 
encryption.  By encrypting the password, Trudy will not be able to learn Alice's password!   If we assume that Alice 
and Bob share a symmetric secret key, KA-B, then Alice can encrypt the password, send her identification message, "I 

am Alice," and her encrypted password to Bob.  Bob then decrypts the password and, assuming the password is 
correct, authenticates Alice.  Bob feels comfortable in authenticating Alice since not only does Alice know the 
password, but she also knows the shared secret key value needed to encrypt the password.  Let's call this protocol 
ap3.1. 
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While it is true that ap3.1 prevents Trudy from learning Alice's password, the use of cryptography here does not 
solve the authentication problem!  Bob is again subject to a so-called playback attack: Trudy needs only eavesdrop 
on Alice's communication, record the encrypted version of the password, and then later play back the encrypted 
version of the password to Bob to pretend that she is Alice. The use of an encrypted password doesn't make the 
situation manifestly different from that in Figure 7.3-3. 

Authentication protocol ap4.0

The problem with ap3.1 is that the same password is used over and over again.  One way to solve this problem would 
be to use a different password each time.  Alice and Bob could agree on a sequence of passwords (or on an algorithm 
for generating passwords)  and use each password only once, in sequence.  This idea is used in the S/KEY system 
[RFC 1760], adopting an approach due to Lamport [Lamport 81] for generating a sequence of passwords. 

Rather than just stop here with this solution, however, let us consider a more general approach for combating the 
playback attack. The failure scenario in Figure 7.3-3 resulted from the fact that Bob could not distinguish between 
the original authentication of Alice and the later playback of Alice's original authentication.  That is, Bob could not 
tell if Alice was "live" (i.e., was  currently really on the other end of the connection) or whether the messages he was 
receiving were a recorded playback of a previous authentication of Alice. The very (very!) observant reader will 
recall that the 3-way TCP handshake protocol needed to address the same problem - the server side of a TCP 
connection did not want to accept a connection if the received SYN segment was an old copy (retransmission) of a 
SYN segment from an earlier connection. How did the TCP server side solve the problem of determining if the client 
was really "live"? It chose an initial sequence number (which had not been used in a very long time), sent that 
number to the client, and then waited for the client to respond back with an ACK segment containing that number.  
We can adopt the same idea here for authentication purposes. 

A nonce is a number that a protocol will only ever use once-in-a-lifetime.  That is, once a protocol uses a nonce, it 
will never use that number again.  Our ap4.0 protocol uses a nonce as follows: 

ap4.0: 

●     Alice sends the message, "I am Alice," to Bob
●     Bob chooses a nonce, R,  and sends it to Alice
●     Alice encrypts the nonce using Alice and Bob's symmetric secret key, KA-B. , and sends the encrypted nonce, 

KA-B (R) back to Bob.  As in protocol ap3.1, it is the fact that Alice knows  KA-B  and uses it to encrypt a value 

that lets Bob know that the message he receives was generated by Alice.  The nonce is used to insure that 
Alice is "live."

●     Bob decrypts the received message.  If the decrypted nonce equals the nonce he sent Alice, then Alice is 
authenticated.

 Protocol ap4.0 is illustrated in Figure 7.3-4. By using the once-in-a-lifetime value, R, and then checking the returned 
value, KA-B (R), Bob can be sure that both Alice is who she says she is (since she knows the secret key value needed 

to encrypt R)  and is "live" (since she has encrypted the nonce, R, that Bob just created). 
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Figure 7.3-4: Protocol ap 4.0: no failure scenario.

Authentication protocol ap5.0

The use of a nonce and symmetric key cryptography formed the basis of our successful authentication protocol, 
ap4.0.  A natural question is whether we can use a nonce and  public key cryptography (rather than symmetric key 
cryptography) to solve the authentication problem. The use of a public key approach would obviate a difficulty in 
any shared key system - worrying about how the two parties learn the secret shared key value in the first place.  A 
protocol that uses public key cryptography in a manner analogous to the use of symmetric key cryptography in 
protocol ap4.0 is protocol ap5.0: 

ap5.0: 

●     Alice sends the message, "I am Alice," to Bob
●     Bob chooses a nonce, R,  and sends it to Alice.  Once again, the nonce will be used to insure that Alice is 

"live."
●     Alice uses her decryption algorithm with her private key, dA, to the nonce and sends the resulting value dA(R) 

to Bob. Since only Alice knows  her decryption key, no one except Alice can generate dA(R).

●     Bob applies Alice's public encryption algorithm, eA to the received message, i.e., Bob computes eA(dA(R)). 

Recall from our discussion of RSA public key cryptography in section 7.2 that eA(dA(R)) = R = dA(eA(R)). 

Thus Bob computes R and authenticates Alice.
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Figure 7.3-5: Protocol ap 5.0 working correctly.

The operation of protocol ap5.0 is illustrated in Figure 7.3-5. 

Is protocol ap5.0 as secure as protocol ap4.0?  Both use nonces. Since ap5.0 uses public key techniques, it requires 
that Bob retrieve Alice's public key.  This leads to an interesting scenario, shown in Figure 7.3-6,  in which Trudy 
may be able to impersonate Alice to Bob: 

●     Trudy sends the message, "I am Alice" to Bob
●     Bob chooses a nonce, R,  and sends it to Alice, but the message is intercepted by Trudy.
●     Trudy applies her decryption algorithm with her private key, dT, to the nonce and sends the resulting value, dT

(R), to Bob. To Bob, dT(R) is just a bunch of bits and he doesn't know whether the bits represent dT(R) or  dA

(R).
●     Bob must now get Alice's public key in order to apply eA to the value he just received.  He sends a message to 

Alice asking her for eA.  Trudy intercepts this message as well, and replies back to Bob with eT, that is Trudy's 

public key.  Bob computes eT(dT(R)) = R, and thus authenticates Trudy as Alice!

From the above scenario, it is clear that protocol  ap5.0 is only as "secure" as is the distribution of public keys. There 
are secure ways of distributing public keys, a topic we will examine soon in section 7.5. 
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Figure 7.3-6: A security hole in protocol ap5.0

In the scenario in Figure 7.3-6, Bob and Alice might together eventually discover that something is amiss, as Bob 
will claim to have interacted with Alice, but Alice knows that she has never interacted with Bob.  There is an even 
more insidious attack that would avoid this detection.  In the scenario in Figure 7.3-7, both Alice and Bob are talking 
to each other, but by exploiting the same hole in the authentication protocol, Trudy is able to transparently interpose 
herself between Alice and Bob.  In particular, if Bob begins sending encrypted data to Alice using the encryption key 
he receives from Trudy, Trudy can recover the plaintext of the communication from Bob to Alice.  At the same time, 
Trudy can forward Bob's data to Alice (after re-encrypting data using Alice's real public key). 
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Figure 7.3-7: A "man-in-the-middle" attack

Bob is happy to be sending encrypted data, and Alice is happy to be receiving data encrypted using her own public 
key; both are unaware of Trudy's presence.  Should Bob and Alice meet later and discuss their interaction, Alice will 
have received exactly what Bob sent, so nothing will be detected as being amiss. This is one example of the so-called 
man-in-the-middle attack (more appropriately here, a "woman-in-the-middle" attack).  It is also sometimes known 
as a bucket-brigade attack, since Trudy's passing of data between Alice and Bob resembles the passing of buckets 
of water along  a chain of people (a so-called "bucket brigade") who are putting out a fire using a remote source of 
water. 
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 7.4 Integrity

Think of the number of the times you've signed your name to a piece of paper during the last week.  You 
sign checks, credit card statements, legal documents, and letters.  Your signature attests to the fact that 
you (as opposed to someone else) have acknowledged and/or agreed with the document's contents. In a 
digital world, one often want to indicate the owner or creator of a document, or to signify one's 
agreement with a document's content.  A digital signature is a cryptographic technique for achieving 
these goals in a digital world. 

Just as with human signatures, digital signing should be done in such a way that a digital signatures are 
verifiable, non-forgible, and non-repudiable. That is, it must be possible to "prove" that a document 
signed by an individual was indeed signed by that individual (the signature must be verifiable) and that 
only that individual could have signed the document  (the signature can not be forged, and a signer can 
not later repudiate or deny having signed the document).  This is easily accomplished with public key 
cryptography. 
  

7.4.1 Generating Digital Signatures

Suppose that Bob wants to digitally sign a "document,"  m. We can think of the document as a file or a 
message that Bob is going to sign and send. As shown in Figure 7.4-1, to sign this document, Bob 
simply uses his private decryption key, dB, to compute dB(m).  At first, it might seem odd that Bob is 

running  a decryption algorithm over a document that hasn't been encrypted.  But recall that "decryption" 
is nothing more than a mathematical operation (exponentiation to the power of d in RSA; see section 
7.2) and recall  that Bob's goal is not to scramble or obscure the contents of the document, but rather to 
sign the document in a manner that is verifiable, non-forgible, and non-repudiable.  Bob has the 
document, m, and his digital signature of the document, dB(m). 
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Figure 7.4-1: Creating a digital signature for a document.

Does the digital signature, dB(m), meet our requirements of being verifiable, non-forgible, and non-

repudiable? Suppose Alice has m and dB(m).  She wants to prove in court (being litigious) that Bob had 

indeed signed the document and was the only person who could have possibly signed the document.  
Alice takes Bob's public key, eB, and applies it to the digital signature, dB(m), associated with the 

document, m.  That is, she computes eB(dB(m)), and voila, with a dramatic flurry, she produces m, which 

exactly matches the original document! Alice then argues that only Bob could have signed the document 
because: 

●     Whoever signed the message must have used the private encryption key, dB in computing the 

signature dB(m), such that eB(dB(m)) = m.

●     The only person who could known the private key, dB  , is Bob. Recall from our discussion of 

RSA in section 7.2 that knowing the public key eB is of no help in learning the private key dB.  

Therefore, the only person who could know dB is the person who generated the pair of keys, (eB,

dB) in the firstplace, Bob.

It is also important to note that if the original document, m, is ever modified to some alternate form, m', 
the signature that Bob created for m will not be valid for m', since eB(dB(m)) does not equal m'. 

Thus we see that public key cryptography techniques provide a simple and elegant way to digitally sign 
documents that is verifiable, non-forgible, and non-repudiable, and that protects against later 
modification of the document. 

7.4.2 Message Digests

We have seen above that public key  encryption technology can be used to create a digital signature.  
One concern with signing data by encryption, however, is that encryption and decryption are 
computationally expensive.  When  digitally signing a really important document, say a merger between 
two large multinational corporations or an agreement with a child to have him/her clean her room 
weekly, computational cost may not may be important.  However, many network devices and processes 
(e.g., routers exchanging routing table information and email user agents exchanging email) routinely 
exchange data that may not need to be encrypted.  Nonetheless, they do want to ensure that: 

●     the sender of the data is as claimed, i.e., that the sender has signed the data and this 
signature can be checked

●     the transmitted data has not been changed since the sender created and signed the 
data.

Given the overheads of encryption and decryption, signing data via complete encryption/decryption can 
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be overkill.  A more efficient approach using so-called message digests can accomplish these two goals 
without full message encryption. 

A message digest is in many ways like a checksum.  Message digest algorithms take a message, m,  of 
arbitrary length and compute a fixed length  "fingerprint"  of the data known as a message digest, H(m).  
The message digest protects the data in the sense that if m is changed to m' (either maliciously or by 
accident)  then H(m), computed for the original data (and transmitted with that data), will not match the 
H(m) computed over the changed data. While the message digest provides for data integrity,  how does it 
help with signing the message m?  The goal here is that  rather than having Bob digitally sign (encrypt) 
the entire message by computing dB(m), he should be able to sign just the message digest by compting dB

(H(m)).  That is, having m and dB(H(m)) together (note that m is not typically encrypted) should be "just 

as good as" having a signed complete message,  dB(m);  this means that m and dB(H(m)) together should 

be non-forgible, verifiable, and non-repudiable. Nonforgible will require that the message digest 
algorithm that computes the message digest have some special properties, as we will see below. 

 
Figure 7.4-2: Hash functions are used to create message digests.

Our definition of a message digest may seem quite similar to the definition of a checksum (e.g., the 
Internet checksum, see section 4.4) or a more powerful error detection code such as a cyclic redundancy 
check (see section 5.1). Is it really any different?  Checksums, cyclic redundancy checks, and message 
digests are all examples of so-called hash functions. As shown in Figure 7.4-2, a hash function takes an 
input, m, and computes a fixed-size string known as a hash. The Internet checksum, CRC's and message 
digests all meet this definition.  If signing a message digest is going to be "just as good as" signing the 
entire message, in particular if it is going to satisfy the non-forgibility requirement, then a  message 
digest algorithm must have the following additional properties: 

1.  Given a message digest value, x,  it is computationally infeasible to find a message, y, such that H
(y) = x;

2.   It is computationally infeasible to find any two messages x and y such that H(x) = H(y).

Informally, these two properties mean that it is computationally infeasible for an intruder to substitute 
one message for another message that is protected by a message digest.   That is, if (m,H(m)) are the 
message and message digest pair created by the sender, then an intruder can not forge the contents of 
another message, y, that has the same message digest value as the original message. When Bob signs m 
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by computing dB(H(m)),  we know that no other message can be substituted for m.  Furthermore, Bob's 

digital signature of H(m) uniquely identifies Bob as the verifiable, non-repudiable signer of H(m) (and as 
a consequence, m as well) as discussed above in section 7.4.1. 

 
Figure 7.4-3: Sending a digitally signed message.

In the context of Bob sending a message to Alice, Figure 7.4-3 provides a summary of the operational 
procedure of creating a digital signature. Bob puts his original long message through a hash function to 
create a messge digest. He then encrypts the message digest with his own private key. The original 
message (in clear text) along with the digitally signed message digest (henceforth referred to as the 
digital signature) is then sent to Alice. Figure 7.4-4 provides a summary of the operational procedure of 
verifying message integrity. Alice applies the Bob's public key to the message to recover the message 
digest. Alice also applies the hash function to the clear text message to obtain a second message digest. 
If the two message digests match, then the recipientAlice can be sure about the integrity of the message, 
and sure that Bob sent the message. 
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Figure 7.4-4: Verifying the integrity of a signed message.

7.4.3 Hash Function Algorithms

Let's convince ourselves that a simple checksum, such as the Internet checksum, would make a poor 
message digest algorithm. Rather than performing 1 complement's arithmetic (as in the Internet 
checksum), let us compute a checksum by treating each character as a byte and adding the bytes together 
using 4-byte chunks at a time.  Suppose Bob owes Alice $100.99" and  sends an IOU to Alice consisting 
of the text string "IOU100.99BOB".  The ASCII representation (in hexadecimal notation) for these 
letters is 49, 4F, 55, 31, 30, 30, 2E, 39, 39, 42, 4F, 42. 

Figure 7.4-5 (top) shows that the 4-byte checksum for this message is B2 C1 D2 AC.  A slightly 
different message (and a much more costly one for Bob) is shown in the bottom half of Figure 7.5-1.  
The message "IOU100.99BOB" and "IOU900.19BOB" have the same checksum!   Thus, this simple 
checksum algorithm violates the two required requirements above.  Given the original data, it is simple 
to find another set of data with the same checksum.  Clearly, for security purposes. we are going to need 
a more powerful hash function than a checksum. 
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Figure 7.4-5: Initial message and fraudulent message have the same checksum!

The MD5 message digest algorithm by Ron Rivest [RFC 1321] is in wide use today. It computes a 128-
bit message digest in a four-step process consisting of a padding step (adding a 1 followed by enough 
zero's so that the length of the message satisfies certain conditions), an append step (appending a 64-bit 
representation of the message length before padding), an initialization of  an accumulator, and a final 
looping step in which the message's 16-word blocks are processed (mangled) in four rounds of 
processing.  It is not known whether MD5 actually satisfies the requirements listed above.  The author of 
MD5 claims "It is conjectured that the difficulty of coming up with two messages  having the same 
message digest is on the order of 264 operations,  and that the difficulty of coming up with any message 
having a given message digest is on the order of 2128 operations. "[RFC 1321].  No one has argued with 
this claim. For a description of MD5 (including a C source code implementation) see [RFC 1321].  
Computational aspects of MD5 are discussed in [RFC 1810]. 

The second major message digest algorithm in use today is SHA-1, the Secure Hash Algorithm [FIPS 
1995].  This algorithm is based on principles similar to those used in the design of MD4 [RFC 1320], the 
predecessor to MD5. The Secure Hash Algorithm (SHA-1), a US federal standard, is required for use 
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whenever a secure message digest algorithm is required for federal applications. It produces a 160-bit  
message digest. 
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7.5 Key Distribution and Certification

In section 7.2 we saw that a drawback of symmetric key cryptography was the need for the two 
communicating parties to have agreed upon their secret key ahead of time.  With public key 
cryptography, this a priori agreement on a secret value is not needed. However, as we saw in our 
discussion of authentication protocol ap5.0 in Section 7.3, public key encryption has its own difficulties, 
in particular the problem of  obtaining someone's true public key.  Both of these problems - determining 
a shared key for symmetric key cryptography, and securely obtaining the public key for public key 
cryptography - can be solved using a trusted intermediary. For symmetric key cryptograghy , the 
trusted intermediary is called a Key Distribution Center (KDC), which is a single, trusted network 
entity with whom one has established a shared secret key. We will see that one can use the KDC to 
obtain the shared keys  needed to communicate securely with all other  network entities. For  public key 
cryptography, the trusted intermediary is called a Certification Authority (CA). A certification 
authority certifies that a public key belongs to a particular entity (a person or a network entity). For a 
certified public key, if one can safely trust the CA that the certified the key, then one can be sure about 
to whom the public key belongs.  Once a public key is certified, then it can be distributed from just 
about anywhere, including a public key server, a personal Web page or a diskette. 

7.5.1 The Key Distribution Center

Suppose once again that Bob and Alice want to communicate using symmetric key cryptography.  They 
have never met (perhaps they just met in an on-line chat room) and thus have not established a shared 
secret key in advance.  How can they now agree on a secret key, given that they can only communicate 
with each other over the network? A solution often adopted in practice is to use a trusted Key 
Distribution Center (KDC). 

The KDC is a server that shares a different secret symmetric key with each registered user.  This key 
might be manually installed at the server when a user first registers. The KDC knows the secret key of 
each user and each user  can communicate securely with the KDC using this key. Let's see how 
knowledge of this one key allows a user to securely obtain a key for communicating with any other 
registered user. Suppose that Alice and Bob are users of the KDC; they only know their individual key, 
KA-KDC and KB-KDC, respectively, for communicating securely with the KDC.  Alice takes the first step, 

and they proceed  as illustrated in Figure 7.5-1. 
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Figure 7.5-1: Setting up a one-time session key using a Key Distribution Center

●     Using KA-KDC  to encrypt her communication with the KDC, Alice sends a message to the KDC 

saying she (A) wants to communicate with Bob (B). We denote this message, KA-KDC (A,B).  As 

part of this exchange, Alice should authenticate the KDC (see homework problems), e.g., using 
an authentication protocol (e.g., our protocol ap4.0) and the shared key KA-KDC .

●     The KDC, knowing KA-KDC , decrypts KA-KDC (A,B).  The KDC then authenticates Alice.  The 

KDC then generates a random number, R1.  This is the shared key value that Alice and Bob will 
use to perform symmetric encryption when they communicate with each other. This key is 
referred to as a one-time session key (see section 7.5.3 below), as Alice and Bob will use this 
key for only this one session that they are currently setting up.  The KDC now needs to inform 
Alice and Bob of the value of R1.  The KDC thus sends back an encrypted  message to Alice 
containing the following:

❍     R1, the one-time session key that Alice and Bob will use to communicate;
❍     a pair of values: A, and R1,  encrypted by the KDC using Bob's key, KB-KDC . We denote 

this KB-KDC(A,R1). It is important to note that KDC is sending Alice not only the value of 

R1 for her own use, but also an encrypted version of R1 and Alice's name encrypted using 
Bob's key.  Alice can't decrypt this pair of values in the message (she doesn't know Bob's 
encryption key), but then she doesn't really need to. We'll see shortly that Alice will 
simply forward this encrypted pair of  values to Bob (who can decrypt them).

These items are put into a message and encrypted using Alice's shared key. The message from the 
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KDC to Alice is thus KA-KDC(R1,KB-KDC(R1)).

●     Alice receives the message from the KDC, verifies the nonce, extracts R1 from the message and 
saves it.  Alice now knows the one-time session key, R1. Alice also extracts KB-KDC(A,R1) and 

forwards this to Bob.
●     Bob decrypts the received message, KB-KDC(A,R1), using KB-KDC  and extracts A and R1.  Bob 

now knows the one-time session key, R1, and the person with whom he is sharing this key, A. Of 
course, he takes care to authenticate Alice using R1 before proceeding any further.

7.5.2 Kerberos

Kerberos [RFC 1510, Neuman 1994] is an authentication service developed at MIT that uses symmetric 
key encryption techniques and a Key Distribution Center. Although it is conceptually the same as the 
generic KDC we described in section 7.5.1, its vocabulary is slightly different.  Kerberos also contains 
several nice variations and extensions of the basic KDC mechanisms. Kerberos was designed to 
authenticate users accessing network servers and was initially targeted for use within a single 
administrative domain such as a campus or company.  Thus, Kerberos is framed in the language of users 
who want to access network services (servers) using application-level network programs such as Telnet 
(for remote login) and NFS (for access to remote files), rather than than human-to-human conversants 
who want to authenticate themselves to each other, as in our examples above.  Nonetheless, the key (pun 
intended) underlying techniques remains the same. 

The Kerberos Authentication Server (AS) plays the role of the KDC. The AS is the repository of not 
only the secret keys of all users (so that each user can communicate securely with the AS) but also 
information about which users have access privileges to which services on which network servers. When 
Alice wants to access a service on Bob (who we now think of as a server), the protocol closely follows 
our example in Figure 7.5-1: 

●     Alice contacts the Kerberos AS, indicating that she wants to use Bob.  All communication 
between Alice and the AS is encrypted using a secret key that is shared between Alice and the 
AS.  In Kerberos, Alice first provides her name and password to her local host. Alice's local host 
and the AS  then determine the one-time secret session key for encrypting communication 
between Alice and the AS.

●     The AS authenticates Alice, checks that she has access privileges to Bob, and generates a one-
time symmetric session key, R1, for communication between Alice and Bob. The Authentication 
Server (in Kerberos parlance, now referred to as the Ticket Granting Server)  sends Alice the 
value of R1, and also a ticket to Bob's services.  The ticket contains Alice's name, the one-time 
session key, R1,  and an expiration time, all encrypted using Bob's secret key (known only by 
Bob and the AS), as in Figure 7.5-1.  Alice's ticket is  valid only until its expiration time, and will 
be rejected by Bob is presented after that time.  For Kerberos V4, the maximum lifetime of a 
ticket is about 21 hours.  In Kerberos V5, the lifetime must expire before the end of year 9999 - a 
definite Y10K problem!

●     Alice then sends her ticket to Bob.  She also sends along an R1-encrypted timestamp that is used 
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as a nonce. Bob decrypts the ticket using his secret key, obtains the session key, decrypts the 
timestamp using the just-learned session key.  Bob sends back the timestamp value plus one (in 
Kerberos V5) or simply the timestamp itself (in Kerberos V5).

The most recent version of Kerberos (V5) provides support for multiple Authentication Servers, 
delegation of access rights, and renewable tickets.  [Kaufman 95] [RFC 1510] provide ample details. 

7.5.3 Public Key Certification

One of the principle features of public key encryption is that it is possible for two entities to exchange 
secret messages without having to exchange secret keys. For example, when Alice wants to send a secret 
message to Bob, she simply encrypts the message with Bob's public key and sends the encrypted 
message to Bob; she doesn't need to know Bob's secret (i.e., private) key, nor does Bob need to know 
her secrect key. Thus, public key cryptography obviates the need for KDC infrastructure, such as 
Kerberos. 

Of course, with public key encryption, the communicating entities still have to exchange public keys. A 
user can make its public key pubicly available in many ways, e.g., by posting the key on the user's 
personal Web page, placing the key in a public key server, or by sending the key to a correspondent by e-
mail. A Web commerce site can place its public key on its server in a manner that browsers 
automatically download the public key when connecting to the site. Routers can place their public keys 
on public key servers, thereby allowing other browsers and network entities to retrieve them. 

There is, however, a subtle, yet critical, problem with public key cryptography. To gain insight to this 
problem, let's consider an Internet commerce example. Suppose that Alice is in the pizza delivery 
business and she accepts orders over the Internet. Bob, a pizza lover, sends Alice a plaintext message 
which includes his home address and the type of pizza he wants. In this message, Bob also includes a 
digital signature (e.g.,, an encrypted message digest for the original plaintext message). As discussed in 
Section 7.4, Alice can obtain Bob's public key (from his personal Web page, a public key server, or from 
an e-mail message) and verify the digital signature. In this manner Alice makes sure that Bob (rather 
than some adolescent prankster) indeed made the order. 

This all sounds fine until clever Trudy comes along. As shown in Figure 7.5-2, Trudy decides to play a 
prank. Trudy sends a message to Alice in which she says she is Bob, gives Bob's home address, and 
orders a pizza. She also attaches a digital signature, but she attaches the signature by signing the 
message digest with her (i.e., Trudy's) private key. Trudy also masquerades as Bob by sending Alice 
Trudy's public key but saying that it belongs to Bob. In this example, also will apply Trudy's public key 
(thinking that it is Bob's) to the digital signature and conclude that the plaintext message was indeed 
created by Bob. Bob will be very surprised when the delivery person brings to his home a pizza with 
everything on it!  Here, as in the flawed authentication scenario in Figure 7.3-7, the man-in-the-middle 
attack is the room cause of our difficulties. 
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Figure 7.5-2: Trudy masquerades as Bob using public key cryptography.

We see from this example that in order for public key cryptography to be useful, entities (users, 
browsers, routers, etc.) need to know for sure that they have the public key of the entity with which they 
are communicating. For example, when Alice is communicating with Bob using public key 
cryptography, she needs to know for sure that the public key that is supposed to be Bob's is indeed 
Bob's. 

Binding a public key to a particular entity is typically done by a certification authority (CA), which 
validates identities and issue certificates. A CA has the following roles: 

●     First to verify that entity (a person, a router, etc) is who it says it is.  There are no mandated 
procedures for how certification is done.  When dealing with a CA, one must trust the CA to have 
performed a suitably rigorous identity verification. For example, if Trudy were able to walk into 
Fly-by-Night Certificate Authority and simply announce "I am Alice" and receive keys 
associated with the identity of "Alice," then one shouldn't put much faith in public keys offered 
by the Fly-by-Night Certificate Authority. On the other hand, one might (or might not!) be more 
willing to trust a CA that is part of a federal- or state-sponsored program (e.g., [Utah 1999]). One 
can trust the "identify" associated with a public key only to the extent that one can trust a CA and 
its identity verification techniques.  What a tangled web of trust we spin!

●     Once the CA verifies the entity of the entity, the CA creates a certificate that binds the public 
key of the identiy to the identity. The certificate contains the public key and identifying 
information about the owner of the public key (for example a human name or an IP address). The 
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certificate is digitally signed by the CA. These steps are shown in Figure 7.5-3.

 
Figure 7.5-3: Bob obtains a certificate from the certification authority.

Let us now see how certificates can be used to combat pizza-ordering pranksters, like Trudy, and other 
undesirables. When Alice recieves Bob's order, she gets Bob's certificate, which may be on his Web 
page, in an e-mail message or in a certificate server. Alice uses the CA's public key to verify that the 
public key in the certificate is indeed Bob's.  If we assume that the public key of the CA itself is known 
to all (for example, it could published in a trusted, public, and well-known place, such as The New York 
Times, so that it is known to all and can not be spoofed), then Alice can be sure that she is indeed 
dealing with Bob. 

Both the International Telecommunication Union and the IETF have developed standards for  
Certification Authorities. ITU X.509 [ITU 1993]  specifies an authentication service as well as a specific 
syntax for certificates. RFC 1422 [RFC 1422] describes CA-based key management for use with secure 
Internet e-mail. It is compatible with  X.509 but goes beyond X.509 by establishing procedures and 
conventions for a key management architecture. Figure 7.5-4 describes some of the important field in a 
certificate. 
  

Field name Description

version version number  of X.509 specification

serial number CA-issued unique identifier  for a certificate
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signature specifies the algorithm used by Ca to "sign" this certificate

issuer name
identity of CA issuing this certificate, in so-called  
Distinguished Name(DN)  [RFC 1779]  format

validity period start and end of period of validity for certificate

subject name
identity of entity whose public key is associated with this  
certificate, in DN format

subject public key
the subject's public key as well as an indication of the public 
key  
algorithm (and algorithm parameters) to be used with this key

Figure 7.5-4: Selected fields in a X.509 and RFC 1422 public key certificate

With the recent boom in electronic commerce and the consequent widespread need for secure 
transactions, there has been increased interest in Certification Authorities.  Among the companies 
providing CA services are Cybertrust [Cybertrust 1990] Verisign [Verisign 1999] and Netscape 
[Netscape 1999]. 

A certificate issued by the US Postal Service, as viewed through a Netscape browser, is shown in Figure 
7.5-5. 
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Figure 7.5-5: A US Postal Service issued certificate

7.5.4 One-Time Session Keys

We have seen above that a one-time session key is generated by a KDC for use in symmetric key 
encryption of a single session between two parties.  By using the one-time session keys from the KDC, a 
user is freed from having to establish a priori its own shared key for each and every network entity with 
whom it wishes to communicate.  Instead, a user need only have one shared secret key for 
communicating with the KDC, and will receive one-time session keys from the KDC for all of its 
communication with other network entities. 

One time session keys are also used in public key cryptography.  Recall from our discussion in section 
7.2.2, that a public key encryption technique such as RSA is orders of magnitude more computationally 
expensive that a symmetric key system such as DES.   Thus,  public key systems are often used for 
authentication purposes.  Once two parties have authenticated each other, they then use public-key-
encrypted communication to agree on a shared one-time symmetric session key. This symmetric session 
key is then used to encrypt the remainder of the communication using a more efficient symmetric 
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encryption technique, such as DES. 
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Secure e-mail

7.6 Secure E-Mail

In previous sections of this chapter, we have examined fundamental issues in network security, including symmetric 
key and public key encryption, authentication, key distribution, message integrity and digital signatures. In this section 
and the following two sections, we'll next examine how these techniques are being used to provide security in the 
Internet.  Being consistent with the general structure of this book, we begin at the top of the protocol stack and discuss 
application-layer security. Our approach here is use a specific application, namely, e-mail, as a case study for 
application-layer security. We then move down the protocol stack. In Section 7.7 we examine the SSL protocol, which 
provides security at the transport layer for TCP. And in Section 7.8, we'll consider IPsec, which provides security at 
the network layer. 

Interestingly, it is possible to provide security services in any of the top four layers of the Internet protocol stack 
[Molva 1999]. When security is provided for a specific application-layer protocol, then the application using the 
protocol will enjoy one or more security services, such as secrecy, authentication or integrity. When security is 
provided for a transport-layer protocol, then all applications that use that protocol enjoy the security services of the 
transport protocol. When security is provided at the network layer on a host-to-host basis,  then all transport layer 
segments (and hence all application-layer data) enjoy the security services of the network layer. When security is 
provided on a link basis, then all IP datagrams traveling over the link receive security services of the link. 

One might wonder why security functionality is being provided at multiple layers in the Internet? Wouldn't it suffice to 
simply provide the security functionality at the network layer, and be done with it? There are two answers to this 
question. First, although security at the network layer can offer "blanket coverage" by encrypting all the data in the 
datagrams (i.e., all the transport-layer segments) and by authenticating all source IP addresses, it can't provide user-
level security. For example, a commerce site can not rely on IP-layer security to authenticate a customer who is 
purchasing goods at the commerce site. Thus, there is a need for security functionality at higher layers as well as 
blanket coverage at lower layers. Second, in the Internet it is generally easier to deploy new services, including 
security services, at the higher-layers of the protocol stack. While waiting for security to be broadly deployed at the 
network layer (which is arguably still many years in the future) many application developers "just do it" and introduce 
security functionality into to their favorite applications. A classic example is PGP, which provides for encryption of e-
mail (and will be discussed later in this section). Requiring only client and server application code, PGP was one the 
first security technologies to be broadly used in the Internet. Similarly, transport-layer security with SSL was broadly 
introduced into the Internet, as it too only required new code in the end systems. However, IP-layer security -- so-
called IPsec -- is taking much longer to broadly deploy, as it requires significant changes in the routers in the network 
core. 

7.6.1 Principle of Secure E-Mail

In this section we use many of the tools introduced in the previous section to create a high-level design of a secure e-
mail system.  We create this high-level design in an incremental manner, at each step introducing new security 
services. When designing a secure e-mail system, let us keep in mind the racy example introduced in Section 7.1 -- the 
illicit love affair between Alice and Bob. In the context of e-mail, Alice wants to send an e-mail message to Bob, and 
Trudy wants to intrude. 

Before plowing ahead and designing a secure e-mail system for Alice and Bob, we should first consider which security 
features would be most desirable for them. First and foremost is secrecy. As discussed in Section 7.1, neither Alice nor 
Bob wants Trudy to read Alice's e-mail message. The second feature that Alice and Bob would most likely want to see 
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in the secure e-mail system is sender authentication. In particular, when Bob receives the message from Alice, "I don't 
love you anymore. I never want to see you again. Formerly yours, Alice" , Bob would naturally want to be sure that the 
message came from Alice and not from Trudy.  Another feature that the two lovers would appreciate is message 
integrity, i.e., assurance that the message Alice sends is not modified while enroute to Bob. Finally, the e-mail system 
should provide receiver authentication, i.e., Alice wants to make sure that she is indeed sending the letter to Bob and 
not to someone else (e.g., Trudy) who is impersonating as Bob. 

So let's begin by addressing the foremost concern of Alice and Bob, namely, secrecy. The most straightforward way to 
provide secrecy is for Alice to encrypt the message with symmetric key technology (such as DES) and for Bob to 
decrypt the message upon message receipt. As discussed in Section 7.2, if the symmetric key is long enough, and if 
only Alice and Bob have the key,  then it is extremely difficult for anyone else (including Trudy) to read the message. 
Although this approach is straightforward,  it has a fundamental problem as we discussed in Section 7.2 -- it is difficult 
to distribute a symmetric key so that only Alice and Bob have copies of the key. So we naturally consider an 
alternative approach, namely, public key cryptography (using, for example, RSA). In the public-key approach, Bob 
makes his public key publicly available (for example, in a public-key server or on his personal Web page), Alice 
encrypts her message with Bob's public key, and sends the encrypted message to Bob's e-mail address. (The encrypted 
message is encapsulated with MIME headers and sent over ordinary SMTP, as discussed in Section 2.4.) When Bob 
receives the message, he simply decrypts it with his private key. Assuming that Alice knows for sure that the public 
key is Bob's public key (and that the key is long enough), then this approach is an excellent means to provide the 
desired secrecy. One problem, however, is that public-key encryption is relatively inefficient, particularly for long 
messages. (Long e-mail messages are now commonplace in the Internet, due to increasing use of attachments, images, 
audio and video.) To overcome the efficiency problem, let's make use of a session key (discussed in Section 7.4). In 
particular, Alice (1) selects a symmetric key, KS, at random, (2) encrypts her message, m, with the symmetric key, KS,

(3)  encrypts the symmetric key with Bob's public key, eB, (4) concatenates the encrypted message and the encrypted 

symmetric key to form a "package", and (5)  sends the package to Bob's e-mail address. The steps are illustrated in 
Figure 7.6-1. (In this and the subsequent figures, the "+" represents concatenation and the "-" represents de-
concatenation.) When Bob receives the package, he (1) uses his private key dB to obtain the symmetric key, S, and (2) 

uses the symmetric key S to decrypt the message m. 

 

Figure 7.6-1: Alice uses a symmetric session key, KS, to send a secret e-mail to Bob.

Having designed a secure e-mail system that provides secrecy, let's now design another system that provides both 
sender authentication and integrity. We'll suppose, for the moment, that Alice and Bob are no longer concerned with 
secrecy (they what to share their feelings with everyone!), and are only concerned about sender authentication and 
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message integrity. To accomplish this task, we use digital signatures and message digests, as described in Section 7.4. 
Specifically, Alice (1) applies a hash function, H (e.g., MD5), to her message m to obtain a message digest, (2) 
encrypts the result of the hash function with her private key, dA, to create a digital signature, (3) concatenates the 

original (unencrypted message) with the signature to create a package, (4) and sends the package to Bob's e-mail 
address. When Bob receives the package,  he (1) he applies Alice's public key, eA, to the electronic signature and (2) 

compares the result of this operation to his own hash, H, of the message. The steps are illustrated in Figure 7.6-2. As 
discussed in Section 7.4, if the two results are the same, Bob can be pretty confident that message came from Alice and 
is unaltered. 

 
Figure 7.6-2: Using hash functions and digital signatures to provide sender authentication and message integrity.

Now lets consider designing an e-mail system that provides secrecy, sender authentication and message integrity. This 
can be done by combining the procedures in Figure 7.6-1 and 7.6-2. Alice first creates a preliminary package, exactly 
as in Figure 7.6-2, which consists of her original message along with a digitally-signed hash of the message. She then 
treats this preliminary package as a message in itself, and sends this new message through the sender steps in Figure 
7.6-1, creating a new package that is sent to Bob. The steps applied by Alice are shown in Figure 7.6-3. When Bob 
receives the package, he first applies his side of Figure 7.6-1 and then his side of Figure 7.6-2. It should be clear that 
this design achieves the goal of providing secrecy, sender authentication and message integrity. Note in this scheme 
that Alice applies public key encryption twice: once with her own private key and once with Bob's public key. 
Similarly, Bob applies public key encryption twice - once with his private key and once with Alice's public key. 
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 Figure 7.6-3: Alice uses symmetric-key cryptography, public-key cryptography, a hash function and a digital 

signature to provide secrecy, sender authentication and message integrity.

The secure e-mail design outlined in Figure 7.6-3 probably provides satisfactory security for most e-mail users for 
most occasions. But there is still one important issue that remains to be addressed. The design in Figure 7.6-3 requires 
Alice to obtain Bob's public key, and requires Bob to obtain Alice's public key. The distribution of these public keys is 
a non-trivial problem. For example, Trudy might masquerade as Bob and give Alice her own public key while saying 
that it is Bob's public key. As we learned in Section 7.5, a popular approach for securely distributing public keys is to 
certify the public keys. 

7.6.2 PGP

Originally written by Phil Zimmerman in 1991, pretty good privacy (PGP) is e-mail an encryption scheme that has 
become a de-facto standard, with thousands of users all over the globe. Versions of PGP are available in the public 
domain; for example, you can find the PGP software for your favorite platform as well as lots of interesting reading at 
the International PGP Home Page [PGPI 1999]. (A particularly interesting essay by the author of PGP is [Zimmerman 
1999]). PGP is also commercially available [Network Associates 1999], and is also available as a plug-in for many e-
mail user agents, including Microsoft's Exchange and Outlook, and Qualcomm's Eudora. 

The PGP design is, in essence, the same as the design shown in Figure 7.6-3. Depending on the version, the PGP 
software uses MD5 or SHA for calculating the message digest; CAST, Triple-DES or IDEA for symmetric key 
encryption; and RSA for the public key encryption. In addition, PGP provides data compression. 

When PGP is installed, the software creates a public key pair for the user. The public key can be posted on the user's 
Web site or placed in a public key server. The private key is protected by the use of a password. The password has to 
be entered every time the user accesses the private key. PGP gives the user the option of digitally signing the message, 
encrypting the message, or both digitally signing and encrypting. Figure 7.6-4 shows a PGP signed message. This 
message appears after the MIME header. The encoded data in the message is dA(H(m)), i.e., the digitally signed 

message digest. As we discussed above, in order for Bob to verify the integrity of the message, he needs to have access 
to Alice's public key. 
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-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Bob: 

My husband is out of town tonight. 

Passionately yours, Alice 

-----BEGIN PGP SIGNATURE----- 
Version: PGP for Personal Privacy 5.0 
Charset: noconv 

yhHJRHhGJGhgg/12EpJ+lo8gE4vB3mqJhFEvZP9t6n7G6m5Gw2 
-----END PGP SIGNATURE-----

Figure 7.6-4: A PGP signed message.

Figure 7.6-5: shows a PGP secret message. This message also appears after the MIME header. Of course, the plaintext 
message is not included within the secret e-mail message. When a sender (such as Alice) wants both secrecy and 
integrity, the PGP would contain a message like that of Figure 7.6-5 contained within the message of Figure 7.6-4. 
  

-----BEGIN PGP MESSAGE-----
Version: PGP for Personal Privacy 5.0

u2R4d+/jKmn8Bc5+hgDsqAewsDfrGdszX68liKm5F6Gc4sDfcXyt 
RfdSlOjuHgbcfDssWe7/K=lKhnMikLo0+l/BvcX4t==Ujk9PbcD4 
Thdf2awQfgHbnmKlok8iy6gThlp 
-----END PGP MESSAGE 
  

Figure 7.6-5:A secrect PGP message.

PGP also provides a mechanism for public key certification, but the mechanism is quite different from the 
conventional certification authority tath we examined in section 7.5. PGP public keys are certified by a web of trust. 
Alice can certify any pair of key and user name  for which she believes the pair really belongs together.  In addition, 
PGP permits Alice to say that she trusts another user to vouch for the authenticiy of more keys. Some PGP users sign 
each other's keys is by holding key signing parties. Users physically gather, exchange floppy disks containing public 
keys, and certify each other's keys by signing them with their private keys. PGP public keys are also distributed by  
PGP public key servers on the Internet. When a user submits a public key to such a server,  the server stores a copy of 
the key, sends a copy of the key to all the other public-key servers, and serves the key to anyone who requests it. 
Although key signing parties and PGP public key servers actually exist, by far the most common way for users to 
distribute their public keys is posting them on their personal Web pages. Of course, keys on personal Web pages are 
not certified by anyone, but they are easy to access. 
  

file:///D|/Downloads/Livros/computação/Computer%20Net...-Down%20Approach%20Featuring%20the%20Internet/pgp.htm (5 of 6)20/11/2004 15:53:08



Secure e-mail

References 

[Molva 1999] R. Molva, Internet Security Architecture, Computer Networks, 1999 
[PGPI 1999] The International PGP Home Page, http://www.pgpi.com . 
[Network Associates 1999] Network Associates, http://www.nai.com/default_pgp.asp . 
[Zimmerman 1999] P. Zimmerman, "Why do you need PGP?" http://www.pgpi.org/doc/whypgp/en/ 

Copyright Keith W. Ross and James F. Kurose 1996-2000. 

file:///D|/Downloads/Livros/computação/Computer%20Net...-Down%20Approach%20Featuring%20the%20Internet/pgp.htm (6 of 6)20/11/2004 15:53:08

file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-386.htm
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/default_pgp.asp
file:///D|/Downloads/Livros/computa��o/Computer%20Networking/Computer%20Networking%20A%20Top-Down%20Approach%20Featuring%20the%20Internet/index-387.htm


Internet Commerce

7.7 Internet Commerce

In the previous section, we considered the application-layer use (in secure e-mail) of the various security 
technologies that we studied earlier in this chapter: encryption, authentication, key distribution, message 
integrity and digital signatures.  In this section we'll continue our case study of  various security 
mechanisms by dropping down a layer in the protocol stack an covering secure sockets and a secure 
transport layer.   We'll take Internet commerce as a motivating application, since business and financial 
transactions are an important driver for Internet security. 

We consider Internet commerce to be the purchasing of "goods" over the Internet.  Here we'll use the 
term "goods" in a very broad sense to include books, CDs, hardware, software, airline tickets, stocks and 
bonds, consulting services, etc.  In the 1990s many schemes were designed for Internet commerce, some 
providing minimal levels of security and others providing a high-level of security along with customer 
anonymity (similar to the anonymity provided by ordinary person-to-person cash transactions [Loshin 
1997].) In the late 1990s, however, there was a major shake out, as only a few of these schemes were 
widely implemented in Web browsers and servers. As of this writing, two schemes have taken hold: 
SSL, which is currently used by the vast majority of Internet transactions; and SET, which is to expected 
to fiercely compete with SSL in the upcoming years. 

There are three major players in this infrastructure: the customer who is purchasing a good, the merchant 
who is selling the good,  and the merchant's bank, which authorizes the purchase. We shall see in our 
discussion below that Internet commerce with SSL provides  security for communication  between the 
first two of these three players (i.e., the customer and the merchant), whereas SET provides security for 
communication among all three players. 

7.7.1 Internet Commerce Using SSL

Let's walk through a typical Internet commerce scenario. Bob is surfing the Web and arrives at the Alice 
Incorporated site which is selling some durable good. The Alice Incorporated site displays a form in 
which Bob is supposed to enter the quantity desired, his address and his payment card number. Bob 
enters this information, clicks on "submit", and then expects to receive (say, from, ordinary mail) the 
good; he also expects to receive a charge for the good in his next payment card statement. This all 
sounds good, but if no security measures are taken -- such as encryption or authentication -- Bob could 
be in for a few surprises: 

●     An intruder could intercept the order and obtain Bob's payment card information. The intruder 
could then make purchases at Bob's expense.

●     The site could display Alice Incorporated famous logo, but actually be a site maintained by 
Trudy, who is masquerading as Alice Incorporated.  Trudy could take Bob's money and run. Or 
Trudy could make her own purchases and have them billed to Bob's account.
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Many other surprises are possible, and we will discuss a few of these in the next subsection. But the two 
problems listed above are among the most serious. Internet commerce using the SSL protocol can 
address both these problems. 

Secure sockets layer (SSL), originally developed by Netscape, is a protocol designed to provide data 
encryption and authentication between a Web client and a Web server. The protocol begins with a 
handshake phase that negotiates an encryption algorithm (e.g., DES or RSA) and keys, and authenticates 
the server to the client. Optionally, the client can also be authenticated to the server. Once the handshake 
is complete and the transmission of application data begins, and all data is encrypted using session keys 
negotiated during the handshake phase. SSL is widely used in Internet commerce, being implemented in 
almost all popular browsers and Web servers. Furthermore, it is also the basis of the Transport Layer 
Security (TLS) protocol [RFC 2246]. 

 
Figure 7.7-1: Secure socket layer

SSL and TLS are not limited to the Web application; for example, they are also used for authentication 
and data encryption for IMAP mail access. SSL can be viewed as a layer that sits between the 
application layer and the transport layer, as shown in Figure 7.7-1.  On the sending side, SSL receives 
from the application raw application data (such as an HTTP or IMAP message), encrypts the data and 
directs the encrypted data to a TCP socket. On the receiving side, SSL reads from the TCP socket, 
decrypts the data, and directs the data to the application. Although SSL can be used  with many Internet 
applications, we shall discuss it in the context of the Web, where it is principally being used today for 
Internet commerce. 

SSL provides the following features: 

●     SSL server authentication, allowing a user to confirm a server's identity. An SSL-enabled 
browser maintains a list of trusted certifying authorities (CAs) along with the public keys of the 
CAs. When the browser wants to do business with an SSL-enabled Web server, the browser 
obtains from the server a certificate containing the server's public key. The certificate is issued (i.
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e., digitally signed) by a certificate authority (CA) listed in the client's list of trusted CAs. This 
feature allows the browser to authenticate the server before the user submits a payment card 
number. In the context of  the earlier example, this server authentication enables Bob to verify 
that he is indeed sending his payment card number to Alice Incorporated, and not to someone 
else who might be masquerading as Alice Incorporated.

●     An encrypted SSL session, in which all information sent between browser and server is encrypted 
by sending software (browser or Web server) and decrypted by the receiving software (browser 
or Web server). This confidentially may be important to both the customer and the merchant. 
Also, SSL provides a mechanism for detecting tampering of the information by an intruder.

●     SSL client authentication, allowing a server to confirm a user's identity. Analogous to server 
authentication, client authentication makes use of client certificates, which have also been issued 
by CAs. This authentication is important if the server, for example, is a bank sending confidential 
financial information to a customer and wants to check the recipient's identity. Client 
authentication, although supported by SSL, is optional. To keep our discussion focused, we will 
henceforth ignore it.

How SSL Works

A user, say Bob, surfs the Web and clicks on a link that takes him to a secure page housed by Alice's 
SSL-enabled server. The protocol part of the URL for this page is "https" rather than the ordinary "http". 
The browser and server then run the SSL handshake protocol, which (1) authenticates the server and (2) 
generates a shared symmetric key. Both of these tasks make use of the RSA public-key technology. The 
main flow of events in the handshake phase is shown in Figure 7.7-2. During this phase,  Alice sends 
Bob her certificate, from which Bob obtains Alice's public key. Bob then creates a random symmetric 
key, encrypts it with Alice's public key, and sends the encrypted key to Alice. Bob and Alice now share 
a symmetric session key. Once this handshake protocol is complete, all data sent between the browser 
and server (over TCP connections) is encrypted using the symmetric session key. 
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Figure 7.7-2: High-level overview of the handshake phase of SSL.

Having given a high-level overview of SSL, let's take a closer look at some of more important details. 
The SSL handshake performs the following steps: 

1.  The browser sends the server the browser's SSL version number and cryptography preferences. 
The browser sends its cryptography preferences because the browser and server negotiate which 
symmetric key algorithm they are going to use.

2.  The server sends the browser the server's SSL version number, cryptography preferences and its 
certificate. Recall that the certificate includes the server's RSA public key and is certified by 
some CA, that is, the certificate has been encrypted by a CA's private key.

3.  The browser has an entrusted list of CAs and a public key for each CA on the list. When the 
browser receives the certificate from the server, it checks to see if the CA is on the list. If no, the 
user is warned of the problem and informed that an encrypted and authenticated connection 
cannot be established. If yes, the browser uses the CA's public key to decrypt the certificate and 
obtain the server's public key.

4.  The browser generates a symmetric session key, encrypts it with the server's public key, and 
sends the encrypted session key to the server.
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5.  The browser sends a message to the server informing it that future messages from the client will 
be encrypted with the session key. It then sends a separate (encrypted) message indicating that 
the browser portion of the handshake is finished.

6.  The server sends a message to the browser informing it that future messages from the server will 
be encrypted with the session key. It then sends a separate (encrypted) message indicating that 
the server portion of the handshake is finished.

7.  The SSL handshake is now complete, and the SSL session has begun. The browser and the server 
use the session keys to encrypt and decrypt the data they send to each other and to validate its 
integrity.

SSL handshake actually has many more steps than listed above. You can find more information about 
SSL at Netscape's Security Developer Central [NetscapeSecurity 1999]. In addition to payment card 
purchases, we point out here that SSL can (and is) used for other financial transactions including online 
banking and stock trading. 

SSL in Action

We recommend that you visit a secure Web site, such as a Quebec maple syrup site [Quebec 1999]. 
When you enter a secure section of such a site, SSL will perform the handshake protocol. Assuming that 
the server's certificate checks out, the browser will notify you, for example by displaying a special icon.. 
All information sent between you and the server will now be encrypted. Your browser should let you 
actually see the certificate for the merchant. (For example, with Internet Explorer, go to File, Properties, 
Certificates.) In April 1999, the maple syrup site's certificate included the following information: 

Company: Netfarmers Enterprises Inc. 
Certification Authority:Thawte Certification 
Public Key (in hexadecimal): 88:79:85:D5:D0:7D:60:39:10:51:31:EC:17:DE:E7:80

If your browser lets you do secure transactions with the merchant, then you should also be able to see 
the certificate for CA, i.e., Thawte Certification. (For example, with Internet Explorer, go to View, 
Internet Options, Content, Certificate Authorities.) 

The Limitations of SSL in Internet Commerce

Due to its simplicity and early development, SSL is widely implemented in browsers, servers and 
Internet commerce products. These SSL-enabled servers and browsers provide a popular platform for  
payment card transactions. Nevertheless, we should keep in mind that SSL was not specifically tailored 
for payment card transactions, but instead for generic secure communication between a client and server. 
Because of this generic design, SSL lacks many features that payment-card industry would like to see in 
an Internet commerce protocol. 

Consider once again what happens when Bob makes a purchase from Alice Incorporated over SSL. The 
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signed certificate that Bob receives from Alice assures Bob that he is really dealing with Alice 
Incorporated, and that Alice Incorporated is a bona fide company. However, the generic certificate does 
not indicate whether Alice Incorporated is authorized to accept payment-card purchases nor if the 
company is a reliable merchant. This opens the door for merchant fraud. And there is a similar problem 
for client authorization. Even if SSL client authentication is used, the client certificate does not tie Bob 
to a specific authorized payment card; thus, Alice Incorporated has no assurance about whether Bob is 
authorized to make a payment-card purchase. This opens the door to all kinds of fraud, including 
purchases with stolen credit cards and customer repudiation of purchased goods [Abbott 1999]. 

Of course, this kind of fraud is already rampant in mail order and telephone order (MOTO) purchases. 
With MOTO transactions, the law dictates that the merchant accepts liability for fraudulent transactions. 
Thus, if a customer makes a MOTO purchase with a payment card and claims to have never made the 
purchase, then the merchant is liable, that is, the merchant is legally bound to return the money to the 
customer (unless the merchant can prove that the customer actually ordered and received the goods). 
Similarly, if a MOTO purchase is made with a stolen payment card, the merchant is again liable. On the 
other hand, with physically-present transactions, the merchant's bank accepts the liability; as you might 
expect, it is more difficult for a customer to repudiate a physcially-present purchase which involves a 
hand-written signature or a PIN (personal identification number). 

SSL purchases are similar to MOTO purchases, and naturally the merchant is liable for a fraudulent SSL 
purchase. It would be preferable, of course, to use a protocol that provides superior authentication of the 
customer and of the merchant, something that is as good or better than a physically-present transaction. 
Authentication involving payment-card authorization would reduce fraud and merchant liability. 

7.7.2 Internet Commerce Using SET

SET (Secure Electronic Transactions) is a protocol specifically designed to secure payment-card  
transactions over the Internet. It was originally developed by Visa International and  MasterCard 
International in February 1996 with participation from leading  technology companies around the world. 
SET Secure Electronic  Transaction LLC (commonly referred to as SETCo) was established in 
December 1997 as a legal entity to manage and  promote the global adoption of SET [SETCo 1999]. 
Some of the principle characteristics of SET include: 

●     SET is designed to encrypt specific kinds of payment-related messages; it cannot be used to 
encrypt arbitrary data (such as text and images) as can SSL.

●     The SET protocol involves all three players mentioned at the beginning of this section, namely, 
the customer, the merchant and the merchant's bank. All sensitive information sent between the 
three parties is encrypted.

●     SET requires all three players to have certificates. The customer's and merchant's certificates are 
issued by their banks, thereby assuring that these players are permitted to make and receive 
payment-card purchases. The customer certificate provides merchants with assurance that 
transactions will not be fraudulently charged back. It is an electronic representation of the 
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customer's payment card. It basically contains information about the account, the issuing 
financial institution, and other cryptographic information. The merchant certificate assures the 
consumer that merchant is authorized to accept payment-card purchases. It contains information 
about the merchant, the merchant's bank, and the financial institution issuing the certificate.

●     SET specifies the legal meaning of the certificates held by each party and the apportionment of 
liabilities connected with a transaction [Abbott 1999].

●     In a SET transaction, the customer's payment-card number is passed to the merchant's bank 
without the merchant ever seeing the number in plain text. This feature prevents fraudulent or 
careless merchants from stealing or accidentally leaking the payment-card number.

A SET transaction uses three software components: 

●     Browser wallet: The browser wallet application is integrated with the browser and provides the 
customer with storage and management of payment cards and certificates while shopping. It 
responds to SET messages from the merchant, prompting the customer to select a payment card 
for payment.

●     Merchant server: The merchant server is the merchandizing and fulfillment engine for 
merchants selling on the Web. For payments, it processes cardholder transactions and 
communicates with the merchant's bank or approval and subsequent payment capture.

●     Acquirer gateway: The acquirer gateway is the software component at the merchant's bank. It 
processes the merchant's payment card transaction for authorization and payment.

In what follows, we give a highly simplified overview of the SET protocol. In reality, the protocol is 
substantially more complex. 

Steps in Making a Purchase

Suppose Bob wants to purchase a good over the Internet from Alice Incorporated. 

1.  Bob indicates to Alice that he is interested in making a credit card purchase.
2.  Alice sends the customer an invoice and a unique transaction identifier.
3.  Alice sends Bob the merchant's certificate which includes the merchant's public key. Alice also 

sends the certificate for her bank, which includes the bank's public key. Both of these certificates 
are encrypted with the private key of a certifying authority.

4.  Bob uses the certifying authority's public key to decrypt the two certificates. Bob now has Alice's 
public key and the bank's public key.

5.  Bob generates two packages of information: the order information (OI) package and the 
purchase instructions (PI) package. The OI, destined for Alice, contains the transaction identifier 
and brand of card being used; it does not include Bob's card number. The PI, destined for Alice's 
bank, contains the transaction identifier, the card number and the purchase amount agreed to Bob. 
The OI and PI are dual encrypted: the OI is encrypted with Alice's public key; the PI is 
encrypted with Alice's bank's public key. (We are bending the truth here in order to see the big 
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picture. In reality, the OI and PI are encrypted with a customer-merchant session key and a 
customer-bank session key.) Bob sends the OI and the PI to Alice.

6.  Alice generates an authorization request for the card payment request, which includes the 
transaction identifier.

7.  Alice sends to her bank a message encrypted with the bank's public key. (Actually, a session key 
is used.) This message includes the authorization request, the PI package received from Bob, and 
Alice's certificate.

8.  Alice's bank receives the message and unravels it. The bank checks for tampering. It also makes 
sure that the transaction identifier in the authorization request matches the one in Bob's PI 
package.

9.  Alice's bank then sends a request for payment authorization to Bob's payment-card bank through 
traditional bank-card channels -- just as Alice's bank would request authorization for any normal 
payment-card transaction.

10.  Once Bob's bank authorizes the payment, Alice's bank sends a response to the Alice, which is (of 
course) encrypted. The response includes the transaction identifier.

11.  If the transaction is approved, Alice sends its own response message to Bob. This message serves 
as a receipt and informs Bob that the payment was accepted and that the goods will be delivered.

One of the key features of SET is the non-exposure of the credit number to the merchant. This feature is 
provided in Step 5, in which the customer encrypts the credit card number with the bank's key. 
Encrypting the number with the bank's key prevents the merchant from seeing the credit card. Note that 
the SET protocol closely parallels the steps taken in a standard payment-card transaction.  To handle all 
the SET tasks, the customer will have a so-called digital wallet that runs the client-side of the SET 
protocol and stores customer payment-card information (card number, expiration date, etc.). Readers 
interested in learning more about SET are encouraged to see SETCo page [SETCo 1999] or the SET 
documentation at the MasterCard site [Master 1999]. There are also several good books on SET 
[Merkow 1998] [Loeb 1998]. 
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What is Network Security?

7.8 Network Layer Security: IPsec

Having examined case studies of the use of various security mechanisms at the application, socket, and 
transport layers, our final case study naturally takes us down to the network layer. Here, we'll examine the 
the IP Security protocol, more commonly known as IPsec -  a suite of protocols that provides security at 
the network layer. IPsec is a rather complex animal, and different parts of it are described in more than a 
dozen RFCs. In this section, we'll discuss IPsec in a specific context, namely, in the context that  all hosts 
in the Internet support IPsec. Although this context is many years away, the context will simplify the 
discussion and help us understand the key features of IPsec. Two key RFCs are [RFC 2401], which 
describes the overall IP security architecture and [RFC 2411], which provides an overview of the IPsec 
protocol suite and the documents describing it. A nice introduction to IPsec is given in [Kessler]. 

Before getting into the specifics of IPsec, let's step back and consider what it means to provide security at 
the network layer. Consider first what it means to provide network layer secrecy. The network layer 
would provide secrecy if all  data carried by all IP datagrams were encrypted. This means that whenever  
a host wants to send a datagram, it encrypts the data field of the datagram before shipping it out into the 
network. In principle, the encryption could be done with symmetric key encryption, public key encryption 
or with session keys that have are negotiated using public key encryption. The data field could be a TCP 
segment, a UDP segment, an ICMP message, etc.  If such a network layer service were in place, all data 
sent by hosts -- including  e-mail, Web pages, control and management messages (such as ICMP and 
SNMP) -- would be hidden from any third party that is "wire tapping" the network. (However, the 
unencrypted data could be snooped at points in the source or destination hosts.) Thus, such a service 
would provide a certain "blanket coverage" for all Internet traffic, thereby giving all of us a certain sense 
of security. 

In addition to secrecy, one might want the network layer to also provide source authentication. When a 
destination host receives an IP datagram with a particular IP source address, it might authenticate the 
source by making sure that the IP datagram was indeed generated by the host with that IP source address. 
Such a service prevents attackers from spoofing IP addresses. 

In the IPsec protocol suite there are two principal protocols: the Authentication Header (AH) protocol 
and the Encapsulation Security Payload (ESP) protocol. When a source host sends secure datagrams to 
a destination host, it does so with either the AH protocol or with the ESP protocol.The AH protocol 
provides source authentication and data integrity but does not provide secrecy. The ESP protocol provides 
data integrity and secrecy. Providing more services, the ESP protocol is naturally more complicated and 
requires more processing than the AH protocol. We'll discuss both of these protocols below. 

For both the AH and the ESP protocols, before sending secured datagrams from a source host to a 
destination host, the source and network hosts handshake and create a network layer logical connection. 
This logical channel is called a security agreement (SA). Thus, IPsec transforms the traditional 
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connectionless network layer of the Internet to a layer with logical connections! The logical connection 
defined by a SA is a simplex connection, that is, it is unidirectional. If both hosts want to send secure 
datagrams to each other, then two SAs (i.e., logical connections) need to be established, one in each 
direction. A SA is uniquely identified by a 3-tuple consisting of: 

●     a security protocol (AH or ESP) identifier;
●     the source IP address for the simplex connection;
●     a 32-bit connection identifier called the Security Paramter Index (SPI).

For a given SA (that is, a given logical connection from source host to destination host), each IPsec 
datagram will have a special field for the SPI. All of the datagrams in the SA will use the same SPI value 
in this field. 

Authentication Header (AH) Protocol

As mentioned above, the AH protocol provides source host identification and data integrity but not 
secrecy. When a particular source host wants to send one or more datagrams to a particular destination, it 
first establishes an SA with the  destination. After having established the SA, the source can send secured 
datagrams to the destination host. The secured datagrams include the AH header, which is inserted 
between the original IP datagram data (e.g., a TCP or UDP segment) and the IP header, as shown in 
Figure 7.8-1. Thus the AH header augments the original data field, and this augmented data field is 
encapsulated as a standard IP datagram. For the protocol field in the IP header, the value 51 is used to 
indicate that the datagram includes an AH header. When the destination host recieves the IP datagram, it 
takes note of the 51 in the protocol field, and processes the datagram using the AH protocol. (Recall that 
the protocol field in the IP datagram is traditionally used to distinguish between UDP, TCP, ICMP, etc.) 
Intermediate routers process the datagrams just as they always have -- they examine the destination IP 
address and route the datagrams accordingly. 

 
Figure 7.8-1: Position of the AH header in the IP datagram.

The AH header includes several fields, including: 

●     Next Header field, which has the role that the protocol field has for an ordinary datagram. It 
indicates if the data following the AH header is a TCP segment, UDP segment, ICMP segment, 
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etc. (Recall that protocol field in the datagram is now being used to indicate the AH protocol, so it 
can no longer be used to indicate the transport-layer protocol.)

●     Security Parameter Index (SPI) field, an arbitrary 32-bit value that, in combination with the 
destination IP address and the security protocol, uniquely identifies the SA for the datagram.

●     Sequence Number field, a 32-bit field containing a sequence number for each datagram. It is 
initally set to 0 at the establishment of an SA. The AH protocol uses the sequence numbers to 
prevent playback and man-in-the-middle attacks (see Section 7.3).

●     Authentication Data field, a variable-length field containing signed message digest (i.e., a digital 
signature) for this packet. The message digist is calculated over the original IP datagram, thereby 
providing source host authentication and IP datagram integrity. The digital signature is computed 
using the authentication algorithm specified by the SA, such as DES, MD5 or SHA.

When the destination host receives an IP datagram with an AH header, it determines the SA for the packet 
and then authenticates the integrity of the datagram by processing the authentication data field. The IPsec 
authentication scheme (for both the AH and ESP protocols) uses a scheme called HMAC, which is an 
encrypted message digest described in [RFC 2104]. HMAC uses a shared secret key between two parties 
rather than public key methods for message authentication. Further details about the AH protocol can be 
found in [RFC 2402]. 

The ESP Protocol

The ESP protocol provides network layer secrecy as well as source host authentication. Once again, it all 
begins with a source host establishing a SA with a destination host. Then the source host can send secured 
datagrams to the destination host. As shown in Figure 7.8-2, a secured datagram is created by surrounding 
the original IP datagram data with header and trailer fields, and then inserting this encapsulated data into 
the data field of an IP datagram. For the protocol field in the header of the IP datagram, the value 50 is 
used to indicate that the datagram includes an ESP header and trailer. When the destination host recieves 
the IP datagram, it takes note of the 50 in the protocol field, and processes the datagram using the ESP 
protocol. As shown in Figure 7.8-2, the original IP datagram data along with the ESP Trailer field are 
encrypted. Secrecy is provided with DES-CBC encryption [RFC 2405]. The ESP header consists of a 32-
bit field for the SPI and 32-bit field for the sequence number, which have exactly the same role as in the 
AH protocol. The trailer includes the Next Header field, which also has exactly the same role. Note that 
because the Next Header field is encrypted along with the original data, an intruder will not be able to 
determine the transport protocol that is being used. Following the trailer there is the Authentication Data 
field, which again serves the same role as in the AH protocol. Further details about the AH protocol can 
be found in [RFC 2406]. 
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Figure 7.8-2: The ESP fields in the IP datagram.

  

SA and Key Management

For sucessful deployment of IPsec, a scalable and automated SA and key management scheme is 
necessary. Several protocols have been defined for these tasks, including: 

●     The Internet Key Exchange (IKE) algorithm [RFC 2409] is the default key management protocol 
for IPsec.

●     The Internet Security Assoication and Key Management Protocol (ISKMP) defines procedures for 
establishing and tearing down SAs [RFC 2407] [RFC 2408]. ISKMP's security association is 
completely separate from IKE key exchange.

This wraps up our summary of IPsec. We have discussed IPsec in the context of IPv4 and the "transport 
mode". IPsec also defines a "tunnel mode," in which routers introduce the security functionality rather 
than the hosts. Finally, IPsec describes encryption procedures for IPv6 as well as IPv4. 
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Chapter 7 summary

7.9 Summary

In this chapter, we've examined the various mechanisms that our secret lovers, Bob and Alice, can use to 
communicate "securely."  We've seen that Bob and Alice are interested in secrecy (so that they alone are 
able to understand the contents of a transmitted message), authentication (so that they are sure that they 
are talking with each other), and message integrity (so that they are sure that their messages are not 
altered in transit). Of course, the need for secure communication is not confined to secret lovers. Indeed, 
we saw in section 7.1 that security is needed at various layers in a network architecture to protect against 
"bad guys" who may sniff packets, remove packets from the network, or inject falsely addressed packets 
into the network. 

The first part of this chapter presented  various principles underlying secure communication.  We 
covered cryptographic techniques for coding and decoding data in Section 7.2, including both symmetric 
key cryptography and public key cryptography.  DES and RSA were examined as specific case studies 
of these two major classes of cryptographic techniques in use in today's networks.  In section 7.3 we 
turned our attention to authentication, and developed a series of  increasingly sophisticated 
authentication protocols to ensure that a conversant is indeed who he/she claims to be, and is "live."  We 
saw that both symmetric key cryptography and public key cryptography can play an important role not 
only in disguising data (encryption/decryption), but also in performing authentication.  Techniques for 
"signing" a digital document in a manner that is verifiable, non-forgible, and non-repudiable were 
covered in Section 7.4.  Once again, the application of cryptographic techniques proved essential.  We 
examined both digital signatures and message digests - a shorthand way of signing a digital document.  
In section 7.5 we examined key distribution protocols.  We saw that for symmetric key encryption, a  
key distribution center - a single trusted network entity - can be used to distribute a shared symmetric 
key among communicating parties.  For public key encryption, a certification authority distributes 
certificates to validate public keys. 

Armed with the techniques covered in sections 7.2 through 7.5, Bob and Alice can communicate 
securely (one can only hope that they are networking students who have learned this material and can 
thus avoid having their tryst uncovered by Trudy!).  In the second part of this chapter we thus turned our 
attention to the use of various security techniques in networks.  In section 7.6, we used e-mail as a case 
study for application-layer security, designing  an e-mail system that provided secrecy, sender 
authentication and message integrity.  We also examined the use of pgp as a public-key e-mail 
encryption scheme.  Our cases studies continued as we headed down the protocol stack and examined 
the secure sockets layer (SSL) and secure electronic transactions, the two primary protocols in use today 
for secure electronic commerce.  Both are based on public key techniques.  Finally, in section 7.8 we 
examined a suite of security protocols for the IP layer of the Internet - the so-called IPsec protocols.  
These can be used to provide secrecy, authentication and message integrity between two communication 
IP devices. 
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Homework Problems and Discussion Questions

Review Questions

1.)  What are the differences between message secrecy and message integrity?  Can you have one 
without the other?  Justify your answer. 

2.) What is the difference between an active and a passive intruder? 

3.)  What is an important difference between a symmetric key system and a public key system? 

4.) Suppose that an intruder has an encrypted message as well as the decrypted version of that message.  
Can the intruder mount a cipher-text only attack, a known-plaintext or a chosen-plaintext attack? 

5.)  Suppose N people want to communicate with each of the N-1 other people using symmetric key 
encryption.  All communication between any to people, i and j, is visible to all other people, and no 
other person should be able to decode their communication.  How many keys are required in the system 
as a whole?  Now suppose that public key encryption is used.  How many keys are required in this case? 

6.)  What is the purpose of a nonce in an authentication protocol? 

7.)  What does it mean to say that a nonce is a once-in-a-lifetime value?  In whose lifetime? 

8.)  What is the man-in-the-middle attack?  Can this attack occur when symmetric keys are used? 

9.)  What does it mean for a signed document to be verifiable, non-forgible, and non-repudiable? 

10.) In what way does a message digest provide a better message integrity check than a checksum such 
as the Internet checksum? 

11.) In what way does a message digest provide a "better" digital signature than using a public key 
digital signature? 

12.)  Is the message associated with a message digested encrypted?  Since either "yes" or "no" are 
acceptable answers here, you should explain your answer. 

13.)  What is a key distribution center?  What is a certification authority? 

14.)  Summarize the key differences in the services provided by the Authentication Header protocol and 
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the Encapsulation Security Payload (ESP) protocol in IPsec. 

Problems

1.) Using the monoalphabetic cipher in Figure 7-3.  Encode the message "This is an easy problem."  
Decode the message "rmij'u uamu xyj." 

2.) Show that Eve's known plaintext attack in which she knows the (ciphertext, plaintext) translation 
pairs for  seven letters reduces the number of possible substitutions to be checked by approximately 109. 

3.) Consider the Vigenere system shown in Figure 7-4.  Will a chosen plaintext attack that is able to get 
the plaintext encoding of the message, "The quick fox jumps over the lazy brown dog" be sufficient to 
decode all messages?  Why? 

4.) Using RSA, choose p = 3 and q = 11, and encode the phrase "hello".  Apply the decryption 
algorithm, to the encrypted version to recover the original plaintext message. 

5.) In the man-in-the-middle attack in Figure 7.3-7, Alice has not authenticated Bob.  If Alice were to 
require Bob to authenticate himself using ap5.0, would the man-in-the-middle attack be avoided?  
Explain your reasoning. 

6.) The Internet BGP routing protocol uses the MD5 message digest rather than public key encryption to 
sign BGP messages.  Why do you think MD5 was chosen over public key encryption? 

7.) Compute a third message, different than the two messages in Figure 7.4-5, that has the same 
checksum as the messages in Figure 7.4-5. 

8.) Augment the KDC protocol shown in Figure 7.5-1 to include the necessary authentication messages.  
Be sure to show the use of nonces and indicate which key values are used to encrypt which messages 

9.) In the protocol and discussion of Figure 7.5-1, why doesn't Alice have to explicitly authenticate Bob? 

10.) In the protocol in Figure 7.5-2, Alice did not include her own identity in the message to the CA. 
Anyone could thus spoof a message from Alice to the CA.  Does this compromise the integrity of the 
CA's public key distribution?  Justify your answer. 

11.) Why is there no explicit authentication in the protocol in Figure 7.5-2 ?  Is authentication needed?  
Why? 

12.) Consider the KDC and the CA servers. Suppose a KDC goes down?  What is the impact on the 
ability of parties to communicate securely, i.e., who can, and can not, communicate? Justify your 
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answer.  Suppose now that a CA goes down.  What is the impact of this failure? 
  

Discussion Questions

1.) Suppose that an intruder could both insert and remove DNS messages into the network.  Give three 
scenarios showing the problems that such an intruder could cause. 

2.) No one has formally "proven" that 3-DES or RSA are "secure."   Given this, what evidence do we 
have they are indeed secure? 

3.)  If IPsec provides security at the network layer, why is it that security mechanisms are still needed at 
layers above IP? 

4.)  Go to the International PGP homepage (http://www.pgpi.org/).  What version of pgp are you legally 
allowed to download, given the country you are in? 
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8.1 What is Network Management?

Having made our way through the first seven chapters of this text, we're now well aware that a network 
consists of many complex, interacting pieces of hardware and software - from the links, bridges, routers, 
hosts and other devices that comprise the physical components of the network to the many protocols (in 
both hardware and software) that control and coordinate these devices.  When hundreds or thousands of 
such components are cobbled together by an organization to form a network, it is not surprising that 
components will occasionally malfunction, that network elements will be misconfigured, that network 
resources will be overutilized, or that network components will simply "break" (e.g., a cable will be cut, 
a can of soda will be spilled on top of router).  The network administrator, whose job it is to keep the 
network "up and running," must be able to respond to (and better yet, avoid) such mishaps.   With 
potentially thousands of network components spread out over a wide area, the network administrator in a 
network operations center (NOC) clearly needs tools to help monitor, manage, and control the network.  
In this chapter, we'll examine the architecture, protocols, and information base used by a network 
administrator in this task. 

Before diving in to network management itself, let's first consider a few illustrative "real-world" non-
networking scenarios in which a complex system with many interacting components must monitored, 
managed, and controlled by an administrator. Electrical power-generation plants (at least as portrayed in 
the popular media, e.g., movies such as the China Syndrome) have a control room where dials, gauges, 
and lights  monitor the status (temperature, pressure, flow) of remote valves, pipes, vessels, and other 
plant components. These devices allow the operator to monitor  the plant's many components, and may 
alert the operator (the famous flashing red warning light) when trouble is imminent. Actions are taken by 
the plant operator to control these components.  Similarly, an airplane cockpit is instrumented to allow a 
pilot to monitor and control the many components that make up an airplane.   In these two examples, the 
"administrator" monitors remote devices and analyzes their data to ensure that they are operational and 
operating within prescribed limits (e.g., that a core meltdown of a nuclear power plant is not imminent, 
or that the plane is not about to run out of fuel), reactively controls the system by making adjustments in 
response the changes within the system or its environment, and proactively manages the system, e.g., by 
detecting trends or anomalous behavior that allows action to be taken before serious problems arise.  In a 
similar sense,  the network administrator will actively monitor, manage and control the system with 
which s/he is entrusted. 

In the early days of networking, when computer networks were research artifacts rather than a critical 
infrastructure used by millions of people a day, "network management" was an unheard of thing.  If one 
encountered a network problem, one might run a few pings to locate the source of the problem and then 
modify system settings, reboot hardware or software, or call a remote colleague to do so. (A very 
readable discussion of the first major "crash" of the ARPAnet on October 27, 1980, long before network 
management tools were available, and the efforts taken to recover from and understand the crash is 
[RFC 789]).  As the public Internet and private intranets have grown from small networks into a large 
global infrastructure,  the need to more systematically manage the huge number of hardware and 
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software components within these networks has grown more important as well. 

Figure 8.1-1: A simple scenario illustrating the uses of network management

In order to motivate our study of network management, let's begin with a simple example.  Figure 8.1-1 
illustrates a small network consisting of three routers, and a number of hosts and servers.  Even in such a 
simple network, there are many scenarios in which a network administrator might benefit tremendously 
from having appropriate network management tools: 

●     Failure of an interface card at a host (e.g., H1) or a router (e.g., A). With appropriate network 
management tools, a network entity (e.g. router A) may report to the network administrator that 
one of its interfaces has gone down (which is certainly preferable than a phone call to the NOC 
from an irate user who says the network connection is down). A network administrator who 
actively monitors and analyzes network traffic may be able to really impress the would-be irate 
user by actually detecting problems in the interface ahead of time and replacing the interface card 
before it fails.  This could be done, for example, if the administrator noted an increase in 
checksum errors in frames being sent by the soon-to-die interface.

●     Monitoring traffic to aid in resource deployment. A network administrator might monitor source-
to-destination traffic patterns and notice, for example, that by switching servers between LAN 
segments, the amount of traffic that crosses multiple LANs could be significantly decreased.  
Imagine the happiness all around (especially in higher administration) when better performance is 
achieved with no new equipment costs. Similarly, by monitoring link utilization, a network 
administrator might determine that a LAN segment, or the external link to the outside world is 
overloaded and a higher-bandwidth link should thus be provisioned (alas, at an increased cost).  
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The network administrator might also want to be notified automatically when congestion levels 
on a link exceed a given threshold value in order to address a provisioning problem before it 
becomes serious.

●     Detecting rapid changes in routing tables. Route flapping - frequent changes in the routing tables 
- may indicate instabilities in the routing or a misconfigured router.  Certainly, the network 
administrator who has improperly configured a  router would prefer to discover the error his/
herself, before the network goes down.

●     Monitoring for SLAs.  With the advent of  Service Level Agreements (SLA) - contracts that 
define specific performance metrics and acceptable levels of network provider performance with 
respect to these metrics - interest in traffic monitoring has increased significantly over the past 
few years  [Larsen 1997].   UUnet  and AT&T are just two of many  many network providers that 
guarantee SLAs [UUNet 1999, AT&T 1998] to their customers.  These SLAs include service 
availability (outage), latency, throughput and outage notification requirements.  Clearly, if 
performance criteria are to be part of a service agreement between a network provider and its 
users, then measuring and managing performance will be of great importance to the network 
administrator.

●     Intrusion detection.  A network administrator may want to be notified when network traffic 
arrives from, or is destined to, a suspicious source (e.g., host or port number).  Similarly, a 
network administrator may want to detect (and in many cases filter) the existence of certain types 
of traffic (e.g., source-routed packets, or a  large number of SYN packets directed to a given host) 
that are known to be characteristic of certain attacks.

The ISO, the organization that gave us  the well-known 7-layer ISO reference model (see Chapter 1), has 
also created a network management model, that is useful for placing the above anecdotal scenarios in a 
more structured framework. Five areas of network management are defined: 

●     Performance management.  The goal of performance management is to quantify, measure, 
report, analyze and control the performance (e.g., utilization, throughput) of different network 
components.  These components include individual devices (e.g., links, routers, and hosts) as 
well as end-end abstractions such as a path through the network. We will see shortly that protocol 
standards such as the Simple Network Management Protocol (SNMP) [RFC 2570] play a central 
role in performance management.

●     Fault management.  The goal of fault management is to log, detect, and respond to fault 
conditions in the network. The line between fault management and performance management is 
rather blurred. We can think of fault management as the immediate handling of transient network 
failures (e.g., link, host or router hardware or software outages), while performance management 
takes the longer term view of providing acceptable levels of performance in the face of varying 
traffic demands and (hopefully rare) network device failures. As with performance management, 
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the SNMP protocol plays a central role in fault management of IP networks.

●     Configuration management. Configuration management allows a network manager to track 
which devices are on the managed network and the hardware and software configurations of 
these devices.

●     Accounting management.  Accounting management allows the network manager to specify, log, 
and control user and device access to network resources. Usage quotas, usage-based charging, 
and the allocation of resource access privileges all fall under accounting management.

●     Security management. The goal of security management is to control access to network 
resources according to some well-defined policy.  The key distribution centers and certificate 
authorities that we studied in section 7.4 are components of security management.  The use of 
firewalls to monitor and control external access points to one's network, a topic we will study in 
section 8.4, is another crucial component.

In this chapter, we'll cover only the rudiments of network management.  Our focus will  be purposefully 
narrow - we'll examine only the  infrastructure for network management - the overall architecture, 
network management protocols, and information base through which a network administrator "keeps the 
network up and running." We'll  not cover the decision making processes of the network administrator, 
who must plan, analyze, and respond to the management information that is conveyed to the NOC.  In 
this area, topics such as fault identification and management [Katzela 1995, Mehdi 1997], proactive 
anomaly detection [Thottan 1998], alarm correlation [Jakobson 1993], and more come into 
consideration.  Nor will we cover the broader topic of service management [Saydam 1996] - the 
provisioning of resources such as bandwidth, server capacity and the other computational/
communication resources needed to meet the mission-specific service requirements of an enterprise. In 
this latter area, standards such as TMN [Glitho 1995, Sidor 98] and TINA [Hamada 1997] are larger, 
more encompassing (and arguably much more cumbersome) standards that address this larger issue.  
TINA, for example, is described as "a set of common goals, principles, and concepts cover the 
management of services, resources, and parts of the Distributed Processing Environment" [Hamada 
1997].  Clearly, all of these topics are enough for a separate text, and would take us a bit far afield from 
the more technical aspects of  computer networking.  So, as noted above, our more modest goal here will 
be cover the important "nuts and bolts" of  the infrastructure through which the network administrator 
keeps the bits flowing smoothly 
  
An often-asked question is "What is network management?" Our discussion above has motivated the 
need for, and illustrated a few of the uses of, network management.  We'll conclude this section with a 
single-sentence (albeit a rather long, run-on sentence) definition of network management from [Saydam 
1996]: 

"Network management includes the deployment, integration and coordination of the hardware, 
software and human elements to monitor, test, poll, configure, analyze, evaluate and control the 
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network and element resources to meet the real-time, operational performance, and Quality of 
Service requirements at a reasonable cost."

It's a mouthful, but it's a good workable definition.  In the following sections, we'll add some meat to 
this rather bare-bones definition of network management. 
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8.2 The Infrastructure for Network Management

We've seen in the previous section that network management  requires the ability to "monitor, test, poll, 
configure, ... and control" the hardware and software and components in a network.  Because the 
network devices are distributed, this will minimally require that the network administrator be able to 
gather data (e.g., for monitoring purposes) from a remote entity and be able to affect changes (e.g., 
control) at that remote entity.   A human analogy will prove useful here for understanding the 
infrastructure needed for network management. 

Imagine that you're the head of a large organization that has branch offices around the world. It's your 
job to make sure that the pieces of your organization are operating smoothly.  How would you do so?  At 
a minimum, you'll periodically gather data from your branch offices in the form of reports and various 
quantitative measures of activity, productivity, and budget. You'll  occasionally (but not always) be 
explicitly notified when there's a problem in one of the branch offices; the branch manager who wants to 
climb the corporate ladder (perhaps to get your job) may send you unsolicited reports indicating how 
smoothly things are running at his/her branch.  You'll sift through the reports you receive, hoping to find 
smooth operations everywhere, but no doubt finding problems in need of your attention.  You might 
initiate a one-on-one dialogue with one of your problem branch offices, gather more data in order to 
understand the problem, and then pass down an executive order ("Make this change!") to the branch 
office manager.  Implicit in this very common human scenario is an infrastructure for controlling the 
organization - the boss (you), the remotes sites being controlled (the branch offices), your remote agents 
(the branch office managers), communication protocols (for transmitting standard reports and data, and 
for one-on-one dialogues), and data (the report contents and the quantitative measures of activity, 
productivity, and budget). Each of these components in human organizational management has an exact 
counterpart in network management. 

The architecture of a network management system is  conceptually identical to this simple human 
organizational analogy.  The network management field has its own specific terminology  for the various 
components of a network management  architecture, and so we adopt that terminology here. As shown 
in Figure 8.2-1, there are three principle components of a network management architecture: a managing 
entity (e.g., the boss in our above analogy - you), the managed devices (the branch office), and a 
network management protocol. 
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Figure 8.2-1: principal components of a network management architecture
  

●      The managing entity is an application, typically with a human-in-the-loop, running in a 
centralized network management station in the network operations center (NOC).  The managing 
entity is the central locus of activity for network management -  it controls the collection, 
processing, analysis, and/or display of network management information.  It is here that actions 
are initiated to control network behavior and here that  the human network administrator interacts 
with the network devices.

●     A managed device is a piece of network equipment (including its software) that resides on a 
managed network.  This is the branch office in our human analogy. A managed device might be a 
host, router, bridge, hub, printer, or modem device. Within a managed device, there may be 
several so-called managed objects. These managed objects are the actual pieces of hardware 
within the managed device (e.g., a network interface card),  and the sets of configuration 
parameters for the pieces of hardware and software (e.g., an intradomain routing protocol such as 
RIP). In our human analogy, the managed objects might be the departments within the branch 
office.  These managed objects have pieces information associated with them that are collected 
into a management information base (MIB);  we'll see that the values of these pieces of 
information are available to (and in many cases setable by) the managing entity.  In our human 
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analogy, the MIB corresponds to quantitative data  (measures of activity, productivity, and 
budget, with the latter being setable by the managing entity!) exchanged between the branch 
office and the main office. We'll study MIBs in detail in section 8.3.  Finally, also resident in 
each managed device is a network management agent,   a  process running in the managed 
device that communicates with the managing entity, taking local actions on the managed device 
under the command and control of the managing entity. The network management agent is the 
branch manager in our human analogy.

●     The third piece of a network management architecture is the network management protocol.  
The protocol  runs between the managing entity and the managed devices, allowing the managing 
entity to query the status of managed devices and indirectly effect actions in these devices via its 
agents.  Agents can use the the network management protocol to inform the managing entity of 
exceptional events (e.g., component failures or violation of  performance thresholds).

Although the infrastructure for network management is conceptually simple, one can often get bogged 
down with the network-management-speak  vocabulary of "managing entity," "managed device," 
"managing agent," and "management information base." Hopefully, keeping the human organizational 
analogy and its obvious parallels with network management in  mind will be of help as we continue 
through this chapter. 

Our discussion of network management architecture above has been generic, and broadly applied to a 
number of the network management standards and efforts that have been proposed over the years.  
Network management standards began maturing in the late 1980's, with OSI CMISE/CMIP (the 
Common Management Service Element/Common Management Information Protocol) [Piscatello 
1993,  Stallings 1993, Glitho 1998] and the Internet SNMP (Simple Network Management Protocol) 
[Stallings 1993, RFC 2570, Stallings 1999, Rose 1996] emerging as the two most important standards. 
Both are designed to be independent of vendor-specific products or networks. Because SNMP was 
quickly designed and deployed at a time when the need for network management was becoming 
painfully clear, SNMP found widespread use and acceptance. Today, SNMP has emerged as the most 
widely used and deployed network management framework.  We cover SNMP in detail in the following 
section 
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8.3 The Internet Network Management Framework

Contrary to what the name SNMP (Simple Network Management Protocol) might suggest, network 
management in the Internet  is much more than just a protocol for moving management data between a 
management entity and its agents, and has grown to be more complex than the word "simple" might suggest. 
The current Internet Standard Management Framework traces it roots back to the Simple Gateway Monitoring 
Protocol , SGMP [RFC 1028]. that was designed by a group of university network researchers, users, and 
manager; their experience with SGMP allowed them to design, implement, and deploy SNMP in just a few 
months [Lynch 1993] - a far cry from today's rather drawn out standardization process.  Since then, SNMP 
has evolved from SNMPv1 through SNMPv2 to the most recent version, SNMPv3 [RFC2570], released in 
April 1999. 

When describing any framework for network management, certain questions must inevitably be addressed: 

●     What (from a semantic viewpoint) is being monitored? And what form of control can be exercised by 
the network administrator?

●     What is the specific form of the information that will be reported and/or exchanged?
●     What is the protocol for communication protocol for exchanging this information?

Recall our human organizational analogy from the previous section.  The boss and the branch managers will 
need to agree on the measures of activity, productivity and budget used to report the branch office's status.  
Similarly, they'll need to agree on the actions the boss can take (e.g., cut budget, order the branch manager to 
change some aspect of the office's operation).  At a lower level of detail, they'll need to agree on the form in 
which this data is reported (e.g., In what currency (dollars, euros?) will the budget be reported? In what units 
will productivity be measured?).  While these are trivial details, but they be agreed upon, nonetheless.  
Finally, the manner in which information is conveyed between the main office and the branch offices (i.e., 
their communication protocol) must be specified. 

The Internet Network Management Framework exactly addresses the the questions posed above. The 
framework consists of four parts: 

●     definitions of network management objects known as MIB objects.  In the Internet network 
management framework, management information is represented a collection of managed objects that 
together form a virtual information store, known as the Management Information Base (MIB).  A MIB 
object might be a counter, such as the number of IP datagrams discarded at a router due to errors in an 
IP datagram header or the number of carrier sense errors in an Ethernet interface, descriptive 
information such as the server software running on a DNS server;  status information such as whether 
a particular device is functioning correctly or not, or protocol-specific information such as a routing 
path to a destination.  MIB objects thus define the management information maintained by a managed 
node. Related MIB objects are gathered into so-called MIB modules. In our human organization 
analogy, the MIB defines the information conveyed  between the branch office and the main office.

●     a data definition language, known as SMI (Structure of Management Information) that defines the 
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data types, an object model, and rules for writing and revising management information;  MIB objects 
are specified in this data definition language.  In our human organizational analogy, the SMI is used to 
define the details of the format of the information to be exchanged.

●     a protocol, SNMP,  for conveying information and commands between a managing entity and an agent 
executing on behalf of that entity within a managed network device;

●     security and administration capabilities. The addition of these capabilities represents the major 
enhancement in SNMPv3 over SNMPv2.

The Internet network management architecture is thus modular by design, with a protocol-independent data 
definition language and MIB, and a MIB-independent protocol. Interestingly, this modular architecture was 
first put in place to ease the transition from an SNMP-based network management to a network management 
framework being developed by the International Organization for Standardization (ISO), the competing 
network management architecture when SNMP was first conceived - a transition that never occurred. Over 
time,  however, SNMP's design  modularity has allowed it to evolve through three major revisions, with each 
of the four majors parts of SNMP discussed above evolving independently.  Clearly, the right decision about 
modularity was made, if even for the wrong reason! 

In the following four sections, we cover the four major components of the Internet network management 
framework in more detail. 
  

8.3.1 Structure of Management Information: SMI

The Structure of Management Information, SMI, (a rather oddly named component of the network 
management  framework whose name gives no hint of its functionality) is the language used to define the 
management information residing in a managed network entity. Such a definition language is needed to 
ensure that the syntax and semantics of the defined network management data are well-defined and 
unambiguous. Note that the SMI does not define a specific instance the data in a managed network entity, but 
rather the language in which such information is specified. The documents describing the SMI for SNMPv3 
(which rather confusingly, is called SMIv2) are [RFC 2578, RFC 2579, RFC 2580]. Let us examine the SMI 
in a bottom-up manner, starting with the base data types in the SMI.  We'll then  look at how managed objects 
are described in SMI, and then how related managed  managed objects are grouped into modules. 

SMI Base Data Types 

RFC 2578 [RFC 2578] specifies the basic data types in the SMI MIB module-definition language.   Although 
the SMI is based on the ASN.1 (Abstract Syntax Notation One) [ISO 1987, ISO X.680] object definition 
language (see section 8.4) developed by the ISO in the 1980, enough  SMI-specific data types have been 
added that SMI should be considered a data definition language in its own right. The eleven basic data types 
defined in RFC 2578 are shown in Table 8.3-1.  In addition to these scalar objects, it is also possible to 
impose a tabular structure on an ordered collection of MIB objects using the SEQUENCE OF construct;  see 
[RFC 2578] for details.  Most of the data types in Table 8.3-1 will be familiar (or self-explanatory) to most 
readers.  The one data type we will discuss in more detail shortly is the OBJECT IDENTIFIER data type, 
which is used to name an object. 
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Data type Description

INTEGER
32 bit integer, as defined in ASN.1, with a value between  -2^31 and 2^31-1 
inclusive, or a value from a list of possible named constant values

Integer32 32 bit integer with a value between -2^31 and 2^31-1 inclusive

Unsigned32 Unsigned 32 bit integer in the range 0 to 2^23-1 inclusive

OCTET STRING
ASN.1-format byte string representing arbitrary binary or textual data, up to 65535 
bytes long

OBJECT IDENTIFIER ASN.1-format administratively assigned (structured name); see section 8.3

IPaddress 32-bit Internet address, in network byte order

Counter32 32-bit counter that increases from 0 to 2^32-1 and then wraps around to 0.

Counter64 64-bit counter

Gauge32
32-bit integer that will not count above 2^31-2 nor decrease beyond 0 when 
increased or decreased

TimeTicks time, measured in 1/100ths of seconds since some event

Opaque uninterpreted ASN.1 string, needed for backward compatibility

Table 8.3-1: Basic data types of the SMI

SMI Higher Level Constructs 

In addition to the basic data types, the SMI  data definition language also provides higher level language 
constructs: 

●     The OBJECT-TYPE construct is used to specify the data type, status, and semantics of a managed 
object. Collectively, these managed objects contain the management data that lies at the heart of 
network management. There are nearly 10,000 defined objects in various Internet RFC's [RFC 2570].  
The OBJECT-TYPE construct has four clauses. The SYNTAX clause of an OBJECT-TYPE definition 
specifies the basic data type associated with the object. The MAX-ACCESS clause specifies whether 
the managed object can be read, be written, be created, or have its value included in a notification.  
The STATUS clause indicates whether object definition is current and valid, obsolete (in which case it 
should not be implemented, as its definition is included for historical purposes only) or deprecated 
(obsolete, but implementable for interoperability with older implementations).   The DESCRIPTION 
clause contains a human-readable textual definition of the object; this "documents" the purpose of the 
managed object and should provide all the semantic information needed to implement the managed 
object

As an example of the OBJECT-TYPE construct, consider the ipInDeliversobject type definition 
from [RFC 2011]. This object defines a 32-bit counter which keeps track of the number of IP 
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datagrams that were received at the managed node and were successfully delivered to an upper layer 
protocol. The final line of this definition is concerned with the name of this object, a topic we will 
consider in the following section. 

ipInDelivers OBJECT-TYPE 
    SYNTAX      Counter32 
    MAX-ACCESS  read-only 
    STATUS      current 
    DESCRIPTION 
            "The total number of input datagrams 
successfully delivered 
            to IP user-protocols (including ICMP)." 
    ::= { ip 9 }

●     The MODULE-IDENTITY  construct allows related objects to grouped together within a "module". 
For example, [RFC 2011] specifies the MIB module that defines managed objects (including 
ipInDelivers) for managing implementations of the Internet Protocol (IP)  and its associated 
Internet Control Message Protocol (ICMP). [RFC 2012] specifies the MIB module for TCP and [RFC 
2013] specifies the MIB module for UDP.  [RFC 2021] defines the MIB module for RMON remote 
monitoring.  In addition to containing the OBJECT-TYPE definitions of the managed objects within 
the module, the MODULE-IDENTITY construct contains clauses to document contact information of 
the author of the module, the date of the last update, a revision history, and a textual description of the 
module.  As an example, consider the module definition for management of the IP protocol:

ipMIB MODULE-IDENTITY
    LAST-UPDATED "9411010000Z"
    ORGANIZATION "IETF SNMPv2 Working Group"
    CONTACT-INFO
            "        Keith McCloghrie

             Postal: Cisco Systems, Inc. 
                     170 West Tasman Drive 
                     San Jose, CA  95134-1706 
                     US 

             Phone:  +1 408 526 5260 
             Email:  kzm@cisco.com" 

    DESCRIPTION 
            "The MIB module for managing IP and ICMP 
implementations, 
            but excluding their management of IP routes." 
    REVISION      "9103310000Z" 
    DESCRIPTION 
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            "The initial revision of this MIB module was part 
of MIB- 
            II." 
    ::= { mib-2 48} 
  
 

●     the NOTIFICATION-TYPE construct is used to specify information regarding "SNMPv2-Trap" and 
"InformationRequest" messages generated by an agent, or a managing entity, see section 8.3. This 
information includes a textual DESCRIPTION of when such messages are to be sent, as well as list of 
values to be included in the message generated; see [RFC 2578] for details.

●     The MODULE-COMPLIANCE construct defines the set managed objects within a module that an 
agent must implement.

●     The AGENT-CAPABILITIES construct specifies the capabilities of agents with respect to object and 
event notification definitions.

8.3.2 Management Information Base: MIB 

As noted above, the Management Information Base, MIB,  can be thought of as a virtual information store, 
holding managed objects whose values collectively reflect the current "state" of the network. These values 
may be queried and/or set by a managing entity by sending SNMP messages to the agent that is executing in a 
managed node on behalf of the managing entity.  Managed objects are specified using the OBJECT-TYPE 
SMI construct discussed above and gathered into MIB modules using the MODULE-IDENTITY construct. 

The IETF has been busy standardizing the MIB modules (i.e., the management information) associated with 
routers, hosts and other network equipment.  This includes basic identification data about a particular piece of 
hardware, and management information about the device's network interfaces and protocols. As of the release 
of SNMPv3 (mid-1999), there were nearly 100 standards-based MIB modules and an even larger number of 
vendor-specific (private) MIB modules. With all of these standards, the IETF needed a way to identify and 
name the standardized modules, as well as the specific managed objects within a module.  Rather than start 
from scratch, the IETF adopted a standardized object identification (naming) framework that had already 
been put in place by the International Organization for Standardization (ISO).  As is the case with many 
standards bodies, the ISO had "grand plans" for their standardized object identification framework - to 
identify every possible standardized object (e.g., data format, protocol, or piece of information) in any 
network, regardless of the network standards organization  (e.g., Interne IETFt, ISO, IEEE, or ANSI), 
equipment manufacturer, or network owner. A lofty goal indeed! The object identification framework 
adopted by ISO is part of the ASN.1 (Abstract Syntax Notation One) [ISO 1987, ISO X.680] object definition 
language (see section 8.4). Standardized MIB modules have their own cozy corner in the all encompassing 
naming framework, as discussed below. 

As shown in Figure 8.3-1, objects are identified in the ISO naming framework in a hierarchical manner.  Note 
that each branch point in the tree has both a name and a number (shown in parenthesis); any point in the tree 
is thus identifiable by the sequence of names or numbers that specify the path from the root to that point in 
the identifier tree. A fun, but incomplete and unofficial, WWW-based utility for traversing part of the object 
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identifier tree (using branch information contributed by volunteers) is http://www.alvestrand.no/harald/
objectid/top.html. 

Figure 8.3-1: ASN.1 Object Identifier Tree
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At the top of the hierarchy are the International Organization for Standardization (ISO)  and the 
Telecommunication Standardization Sector of the International Telecommunication Union (ITU-T), the two 
main standards organizations dealing with ASN.1, as well as a brach for joint efforts by these two 
organizations.  Under the ISO branch of the tree, we find entries for all ISO standards (1.0) and for standards 
issued by standards bodies of various ISO-member countries (1.2). Although not shown in Figure 8.3-1, 
under (ISO ISO-Member-Body, a.k.a. 1.2) we would find USA (1.2.840), under which we would find a 
number of IEEE, ANSI, and company-specific standards. These include RSA (1.2.840.11359) and Microsoft 
(1.2.840.113556), under which we find the Microsoft File Formats (1.2.840.112556.4) for various Microsoft 
products, such as Word (1.2.840.11356.4.2).  But we are interested here in networking (not Microsoft Word 
files), so let us turn our attention to the branch labeled 1.3 - the standards issued by bodies recognized by the 
ISO. These include the US  Department of Defense (6) (under which we will find the Internet standards), the 
Open Software Foundation (22), the airline association SITA (69) and NATO-identified bodies (57), as well 
as many other organizations. 

Under the Internet branch of the tree (1.3.6.1), there are seven categories. Under the private (1.3.6.1.4) 
branch, we will find a list [IANA 1999b] of the names and private enterprise codes of more than 4000 private 
companies that have registered with the Internet Assigned Numbers Authority (IANA) [IANA 99].  Under the 
management (1.3.6.1.2) and MIB-2 branch (1.3.6.1.2.1) of the object identifier tree, we find the definitions 
of the standardized MIB modules. 

Standardized MIB modules 

The lowest level of the tree in Figure 8.3-1 shows some of the important hardware-oriented MIB modules 
(system and interface) as well as modules associated with some of the most important Internet 
protocols.  [RFC 2400] lists all of the standardized MIB modules.  While MIB-related RFC's make for rather 
tedious and dry reading, it is instructive (i.e., line eating vegetables, it is "good for you") to consider a few 
MIB module definitions to get a flavor for the type of information  in a module. 

The managed objects falling under system contain general information about the device being managed; all 
managed devices must support the system MIB objects. Table 8.3-2 defines the objects in the system group, 
as defined in [RFC 1213]. 
  
  

Object Identifier Name Type Description (from RFC 1213)

1.3.6.1.2.1.1.1 sysDescr OCTET STRING
"full name and version identification of the 
system's hardware type, software operating-
system, and networking software"
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1.3.6.1.2.1.1.2 sysObjectID OBJECT IDENTIFIER
Vendor assigned object ID that "provides an easy 
and unambiguous means for determining `what 
kind of box' is being managed."

1.3.6.1.2.1.1.3 sysUpTime TimeTicks
"The time (in hundredths of a second) since the 
network management portion of the system was 
last re-initialized."

1.3.6.1.2.1.1.4 sysContact OCTET STRING
"The contact person for this managed node, 
together with information on how to contact this 
person."

1.3.6.1.2.1.1.5 sysName OCTET STRING
"An administratively-assigned name for this 
managed node.  By convention, this is the node's 
fully-qualified domain name"

 1.3.6.1.2.1.1.6 sysLocation OCTET STRING "The physical location of this node."

1.3.6.1.2.1.1.7 sysServices Integer32

A coded value that indicates the set of services 
available at this node: physical (e.g., a repeater), 
datalinkl/subnet (e.g., bridge), internet (e.g., IP 
gateway), end-end (e.g., host), applications.

Table 8.3-2: Managed Objects in the MIB-2 system group

 Table 8.3-3 defines the managed objects in the MIB module for the UDP protocol at a managed entity. 
  
  

Object Identifier Name Type Description (from RFC 2013)

1.3.6.1.2.1.7.1 udpInDatagrams Counter32
"total number of UDP datagrams 
delivered to UDP users"

1.3.6.1.2.1.7.2 udpNoPorts Counter32
"total number of received UDP datagrams 
for which there was no application at the 
destination port"

1.3.6.1.2.1.7.3 udpInErrors Counter32

"number of received UDP datagrams that 
could not be delivered for reasons other 
than the lack of an application at the 
destination port"

1.3.6.1.2.1.7.4 udpOutDatagrams Counter32
"total number of UDP datagrams sent 
from this entity"

1.3.6.1.2.1.7.5 udpTable SEQUENCE of UdpEntry

a sequence of UdpEntry objects, one for 
each port that is currently open by an 
application, giving the IP address and the 
port number used by application

Table 8.3-3: Managed Objects in the MIB-2 udp module
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8.3.3 SNMP Protocol Operations and Transport Mappings

The Simple Network Management Protocol Version 2 (SNMPv2) [RFC 1905] is used to convey MIB 
information that has been specified in the SMI among managing entities and agents executing on behalf of 
managing entities. The most common usage of SNMP is in a request-response mode -  an SNMPv2 
managing entity sends a request to an SNMPv2 agent, who receives the request, performs some action and 
sends a reply to the request. Typically, a request will be used to query (retrieve) or modify (set)  MIB object 
values associated with a managed device. A second common usage of SNMP is for an agent to send an 
unsolicited message, known as a trap message, to a managing entity. Trap messages are used to notify a 
managing entity of an exceptional situation that has resulted in changes to MIB object values. We saw earlier 
in section 8.1 that the network administrator might want to receive a trap message, for example, when an 
interface goes down, congestion reaches a predefined level on a link, or some other noteworthy event occurs.  
Note that there are a number of important tradeoffs between polling (request-response interaction) and 
trapping; see the homework problems. 
  
  

SNMPv2 PDU Type sender-reciever Description

GetRequest manager-to-agent get value of one or more MIB object instances 

GetNextRequest manager-to-agent get value of next MIB object instance in list or table

GetBulkRequest manager-to-agent get values in large block of data, e.g. values in a large table

InformRequest manager-to-manager
inform remote managing entity of MIB values remote to its 
access

SetRequest manager-to-agent set value of one or more MIB object instances

Response
agent-to-manager  
or  
manager-to-manager

generated in response to GetRequest, GetNextRequest, 
GetBulkRequest, SetRequestPDU, or InformRequest,

SNMPv2-Trap agent-to-manager  inform manager of an exceptional event

Table 8.3-4: SNMPv2 PDU types
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Figure 8.3-2: SNMP PDU format

SNMPv2 defines seven types of messages, known generically as Protocol Data Units - PDUs, as shown in 
Table 8.3-4. The format of  the PDU is shown in Figure 8.3-2.  The GetRequest, GetNextRequest, and 
GetBulkRequest PDUs are all sent from a managing entity to an agent to request the value of one or more 
MIB objects at the agent's managed device. The object identifiers of the MIB objects whose values are being 
requested are specified in the variable binding portion of the PDU.  GetRequest, GetNextRequest, and 
GetBulkRequest differ in the granularity of their data requests. GetRequest can request an arbitrary 
set of MIB values; multiple GetNextRequests can be used to sequence through a list or table of MIB 
objects; GetBulkRequest allows a large block of data to be returned, avoiding the overhead  incurred if 
multiple GetRequest or GetNextRequest messages were to be sent.  In all three cases, the agent 
responds  with a Response PDU containing the object identifiers and their associated values. 

The SetRequest PDU is used by a managing entity to set the value of one or more MIB objects in a 
managed device. An agent replies with a Response PDU with the 'noError' Error Status to confirm that the 
value has indeed been set. 
The InformRequest PDU is used by a managing entity to notify another managing entity of  MIB 
information that is  remote to the receiving entity.  The receiving entity replies with a Response PDU with 
the 'noError' Error Status to acknowledge receipt of the InformRequest PDU. 

Given the request-response nature of SNMPv2, it is worth noting here that although SNMP PDU's can be 
carried via many different transport protocols, the SNMP PDU is typically carried in the payload of  a UDP 
datagram.  Indeed, [RFC 1906] states that UDP is "the preferred transport mapping."  Since UDP is an 
unreliable transport protocol, there is no guarantee that a request, or its response will be received at the 
intended destination.  The Request ID field of the PDU is used by the managing entity to number its requests 
to an agent; an agent's response takes its Request ID from that of the received request.  Thus, the Request ID 
field can be used by the managing entity to detect lost requests or replies. It is up to the managing entity to 
decide whether to retransmit a request if no corresponding response is received after a given amount of time.  
In particular, the SNMP standard does not mandate any particular procedure for retransmission, or even if 
retransmission is to be done in the first place.  It only requires that the managing entity "needs to act 
responsibly in respect to the frequency and duration of re-transmissions." Which, of course, leads one to 
wonder how a "responsible" protocol should behave! 
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The final type of SNMPv2 PDU is the trap message.  Trap message are generated asynchronously, i.e., not in 
response to a received request but rather in response to an event for which the managing entity requires 
notification.  [RFC 1907] defines well-known trap types that include a cold or warm start by a device, a link 
going up or down, the loss of a neighbor, or an authentication failure event.  A received trap request has no 
required response from a managing entity. 
  

8.3.4 Security and Administration.

The designers of SNMPv3 have said that "SNMPv3 can be thought of as SNMPv2 with additional security 
and administration capabilities." [RFC2570]  Certainly, there are changes in SNMPv3 over SNMPv2, but 
nowhere are those changes more evident than in the area of administration and security. 

As SNMP has matured through three versions, its functionality has grown but so too, alas, has the number of 
SNMP-related standards documents. This is evidenced by the fact that there is even now an RFC [RFC 2571] 
that " describes an architecture for describing SNMP Management Frameworks"!  While the notion of an 
"architecture" for "describing a framework" might be a bit much to wrap one's mind around, the goal of RFC 
2571 is an admirable one -  to introduce a common language for describing the functionality and actions taken 
by an SNMPv3 agent or managing entity. The architecture of an SNMPv3 entity is straightforward, and tour 
through the architecture will serve to solidify our understanding of SNMP. 

The so-called SNMP applications consist of a command generator, notification receiver and proxy forwarder 
(all of which are typically found in a managing entity); a command responder and notification originator 
(both of which are typically found in an agent); and the possibility of other applications.  The command 
generator generates the GetRequest, GetNextRequest, GetBulkRequest and SetRequest PDUs 
that we examined above in section 8.3.3 and handles the received responses to these PDUs.  The command 
responder executes in an agent and receives, processes and replies (using the Response message) to 
received GetRequest, GetNextRequest, GetBulkRequest and SetRequest PDUs. The 
notification originator application in an agent generates Trap PDUs; these PDUs are eventually received an 
processed in a notification receiver application at a managing entity.  The proxy forwarder application 
forwards request, notification, and response PDUs. 

A PDU sent by an SNMP application next passes through the SNMP "engine" before it is sent via the 
appropriate transport protocol.  Figure 8.3-3 shows how a PDU generated by the command generator 
application first enters the dispatch module, where the SNMP version is determined.  The PDU is then 
processed in the message processing system, where the PDU is wrapped in a message header containing the 
SNMP version number, a message ID and message size information.  If encryption or authentication is 
needed then the appropriate header fields for this information is included as well; see [RFC 2571] for details.  
Finally, the SNMP message (the application-generated PDU plus the message header information) is passed 
to the appropriate transport protocol.  The preferred transport protocol for carrying SNMP messages is UDP (i.
e., SNMP messages  are carried as the payload in a UDP datagram), and the preferred port number for the 
SNMP is port 161. 
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Figure 8.3-3: SNMPv3 engine and applications

We have seen above that SNMP messages are used to not just monitor, but also to control (e.g., through the 
SetRequest command) network elements.  Clearly, an intruder that could intercept SNMP messages and/
or generate its own SNMP packets into the management infrastructure could wreak havoc in the network. 
Thus, it is crucial that SNMP messages be transmitted securely.  Surprisingly, it is only in the most recent 
version of SNMP that security has received the attention that it deserves.  SNMPv3 provides for encryption, 
authentication, protection against playback attacks (see sections 7.2 and 7.3), and access control. SNMPv3 
security is known as  user-based security [RFC 2574] in that there is the traditional concept of a user, 
identified by a user name, with which security information such as a password, key value, or access privileges 
are associated. 
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●     Encryption.  SNMP PDUs can be encrypted  using the Data Encryption Standard (DES) in cipher 
block chaining mode; see section 7.2 for a discussion of DES. Note that since DES is a shared key 
system, the secret key of the user encrypting data must be known at the receiving entity that must 
decrypt the data.

●     Authentication. SNMP combines the use of a hash function, such as the MD5 algorithm we studied in 
section 7.5, with a secret key value to provide both authentication and protection against tampering.  
The approach, known as HMAC (Hashed Message Authentication Codes) [RFC 2104] is conceptually 
simple. Suppose the sender has an SNMP PDU, m, that it wants to send to the receiver.  This PDU 
may have already been encrypted.  Suppose also that both the sender and receiver know a shared 
secret key, K, which need not be the same key used for encryption.  The sender will send m to the 
receiver. However, rather than sending along a simple Message Integrity Code (MIC), MIC(m),  that 
has been computed over m (see section 7.5.2) to protect against tampering, the sender appends the 
shared secret key to m and computes a MIC, MIC(m,K) over the combined  PDU and key.  The value 
MIC(m,K) (but not the secret key!)  is then transmitted along with m.  When the receiver receives m, it 
appends the secret key K and computes MIC(m,K).  If this computed value matches the transmitted 
value of MIC(m,K) then the receiver knows not only that the message has not been tampered with, but 
also that the message was sent by someone who knows the value of K, i.e., by a trusted, and now 
authenticated, sender.  In operation, HMAC actually performs the append-and-hash operation twice, 
using a slightly modified key value each time; see [RFC 2104] for details.

●     Protection against playback. Recall from our discussion in Chapter 7that nonces can be used to guard 
against playback attacks. SNMPv3 adopts a related approach. In the SNMP scenario, the message 
receiver wants to insure that a received message is not a replay of some earlier message.  In order to 
assure this, the receiver requires that the sender include a value in each message that is based on a 
counter in the receiver. This counter, which functions as a nonce, reflects the amount of time since the 
last reboot of the receiver's network management software and the total number of reboots since the 
receiver's network management software was last configured.  As  long as the counter in a received 
message is within some margin of error from the receiver's actual value, the message is accepted as a 
non-replay message, at which point is may be authenticated and/or decrypted. See [RFC 2574] for 
details.

●     Access control. SNMPv3 provides a view based access control [RFC 2575] which controls which 
network management information can be queried and/or set by which users. An SNMP entity retains 
information about access rights and policies in a Local Configuration Datastore (LCD). Portions of the 
LCD are themselves accessible as managed objects, defined in the View-based Access Control Model 
Configuration MIB [RFC 2575], and thus can be managed and manipulated remotely via SNMP.
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8.4 ASN.1

In this book we have covered a number of interesting topics in computer networking. This section on 
ASN.1, however, may not make the top-10 list of interesting topics.  Like vegetables, knowledge about 
ASN.1 and the broader issue of presentation services is something that is "good for you."   ASN.1 is an 
ISO-originated standard that is used in a number of Internet related protocols, particularly in the area of 
network management.  For example, we saw in section 8.2 that MIB variables in SNMP were 
inextricably tied to ASN.1.  So while the material on ASN.1 in this section may be rather dry, the reader 
will hopefully take it on faith that the material is important. 

In order to motivate our discussion here, consider the following thought experiment.  Suppose one could 
reliably copy data from one computer's memory directly into another remote computer's memory.  If one 
could do this, would the communication problem be "solved?"  The answer to the question depends on 
one's definition of  "the communication problem".  Certainly, a perfect memory-to-memory copy would 
exactly communicate the bits and bytes from one machine to another.  But does such an exact copy of 
the bits and bytes mean that when software running on the receiving computer accesses this data, it will 
see the same values that were stored into the sending computer's memory?   The answer to this question 
is "not necessarily"!  The crux of the problem is that different computer architectures, different operating 
systems and compilers have different conventions for storing and representing data.  If data is to be 
communicated and stored among multiple computers (as it is in every communication network!), this 
problem of data representation must clearly  solved. 

As an example of this problem, consider the simple C code fragment below. How might this structure be 
laid out in memory? 

struct { 
  char code; 
  int x; 
  } test; 
  test.x = 259; 
  text.c =  'a';
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Figure 8.4-1: Two different data layouts on two different architectures

The left side of Figure 8.4-1 shows a possible layout of this data on one hypothetical architecture: there 
is a single byte of memory containing the character 'a', followed by a 16-bit word containing the integer 
value 259, stored with the most significant byte first.  The layout in memory on another computer is 
shown in the right half of Figure 8.4-1: the character 'a' is followed by the integer value stored with the 
least significant byte stored first and with the 16-bit integer aligned to start on a 16-bit  word boundary. 
Certainly, if one were to perform a verbatim copy between these two computers' memories and use the 
same structure definition to access the stored values, one would see very different results on the two 
computers! 

The problem of different architectures having a different internal data format is a real and pervasive 
problem. The particular problem of integer storage in different formats in different architectures is so 
common that it has a name. "Big-endian" order for storing integers has the most significant bytes of the 
integer stored first (at the lowest storage address). "Little-endian" order stores the least significant bytes 
first. Sun SPARC and Motorola processors are big-endian, while Intel and DEC Alpha processors are 
little endian. As an aside, the terms "big-endian" and "little-endian" come from the book, "Gullivers 
Travel's" by Jonathan Smith, in which two groups of people dogmatically insist on doing a simple thing 
is two different ways (hopefully, the analogy to the computer architecture community is clear).  One 
group in the land of Lilliput insists on breaking their eggs at the larger end ("the big endians"), while 
other insists on breaking them at the smaller end.  The difference was the cause of great civil strife and 
rebellion. 

Given that different computers store and represent data in different ways, how should networking 
protocols deal with this? For example, if an SNMP agent is about to send a Response message 
containing the integer count of the number of received UDP datagrams, how should the represent the 
integer value to be sent to the managing entity - in big endian or little endian order?  One option would 
be for the agent to send the bytes of the integer in the same order in which they would be stored in the 
managing entity. Another option would be for the agent to send in its own storage order and have the 
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receiving entity reorder the bytes, as needed.  Either option would require the sender or receiver to learn 
the other's format for integer representation. 

A third option is to have a machine-, OS-, language-independent method for describing  integers and 
other data types  (i.e., a data description language) and rules that state the manner in which each of the 
data types are to be transmitted over the network. When data of a given type is received, it is received in 
an known format and can then be stored in whatever machine-specific format is required. Both the SMI 
that we studied in section 8.3 and ASN.1 adopt this third option.  In ISO parlance, these two standards 
describe a presentation service - the service of transmitting and translating information from one 
machine-specific format to another. Figures 8.4-2 illustrates a real-world presentation problem; neither 
receiver understands the essential idea being communicated - that the speaker likes something.  As 
shown in Figure 8.4-3, a presentation service can solve this problem by translating the idea into a 
commonly understood (by the presentation service), person-independent language, sending that 
information to the receiver, and then translating into a language understood by the receiver. 
  
  

Figure 8.4-2: The presentation problem
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Figure 8.4-3: The presentation problem solved
  
  

Table 8.4-1 shows a few of the ASN.1 defined data types. Recall that we encountered the INTEGER, 
OCTET STRING and OBJECT IDENTIFIER data types in our earlier study of the SMI. Since our goal 
here is (mercifully) not to provide a complete introduction to ASN.1, we refer the reader to the standards 
or to the printed and on-line book [Larmouth 1996] 
for a description of ASN.1 types and constructors such as SEQUENCE and SET that allow for the 
definition of more structures. 
  

Tag Type Description

1 BOOLEAN value is "true" or "false"

2 INTEGER can be arbitrarily large

3 BITSTRING list of one or more bits

4 OCTET STRING list of one or more bytes

5 NULL no value

6 OBJECT IDENTIFIER name, in the ASN.1 standard naming tree, see section 8.2.2

9 REAL floating point

Table 8.4-1: selected ASN.1 Data Types
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In addition to providing a data description language, ASN.1 also provides Basic Encoding Rules 
(BER)  that specify how instances of objects that have been defined using the ASN.1 data description 
language are to be sent over the network.  The BER adopts a so-called TLV (Type, Length, Value) 
approach to encoding data for transmission.  For each data item to be sent,  the data type, the length of 
the data item, and then the actual value of the data item are sent, in that order.  With this simple 
convention, the received data is essentially self identifying. 

Figure 8.4.4 shows how the two data items in our simple C-language example above would be sent.  In 
this example, the sender wants to send the letter 'a' followed by the value 259 decimal (which equals 
00000001 00000011 in binary, or a byte value of 1 followed by a byte value of 3) assuming big-endian 
order. The first byte in the transmitted stream has the value 4, indicating that the type of  the following 
data item is an OCTET STRING; this is the 'T' in the TLV encoding.  The second byte in the stream 
contains the length of the OCTET STRING, in this case 1.  The third byte in the transmitted stream 
begins (and ends) the OCTET STRING of length one; it contains the ASCII representation of the letter 
'a'.  The T, L, and V values of the next data item are 2 (the INTEGER  type tag value), 2 (i.e., an Integer 
of length 2 bytes), and the two-byte big-endian representation of the value 259 decimal). 
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Figure 8.4-4: BER encoding example
  
  

In our discussion above, we have only touched on a small and simple subset of ASN.1. Resources for 
learning more about ASN.1 include the ASN.1 standards document [ISO 1987, ISOX.680], Philipp 
Hoschka's ASN.1 homepage [Hoschka 1997], and [Larmouth 1996]. 
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8.5 Firewalls

In motivating the need for security  in Chapter 7, we noted that the Internet is not a very "safe" place -  
ne'er-do wells are "out there" breaking into networks at an alarming rate (For a summary of reported 
attacks, see the CERT Coordination Center [CERT 1999]; for a discussion of nearly 300 known attacks, 
that firewalls, the topic we consider here, are designed to thwart, see [Newman 1998]).  As a result, 
network administrators must not only be concerned with keeping the bits flowing smoothly through their 
network, but also with securing their network infrastructure from outside threats. 

We've seen that SNMPv3 provides authentication, encryption and  access control in order to secure 
network management functions.  While this is important (certainly, the network administrator does not 
want others to gain access to network management functionality), it is only a small part of the network 
administrator's security concerns. In addition to monitoring and controlling the components of one's 
network, a network administrator also wants to exclude unwanted traffic (i.e., intruders) from the 
managed network.  This is where firewalls come in.  A firewall is a combination of hardware and 
software that isolates an organization's internal network from the Internet at large, allowing specific 
connections to pass and blocking others.  Organizations employ firewalls for one or more of the 
following reasons: 

●     To prevent intruders from interfering with the daily operation of the internal network. An 
organization's competitor -- or just some Internet prankster looking for a good time -- can reek 
havoc on an unsecured network. In the denial-of-service attack, an intruder monopolizes a critical 
network resource, bring the internal network (at its network administrator) to its knees. An 
example of a denial of service attack is so-called SYN flooding, in which a the attacker sends 
forged TCP connection-establishment segments to a particular host. The host sets aside buffer for 
each connection, and within minutes there is no TCP buffer space left for "honest" TCP 
connections.

●     To prevent intruders from deleting or modifying information stored within the internal network. 
For example, an attacker can attempt to meddle with an organization's public presence on a Web 
server --  a successful attack may be seen by thousands of people in a matter of minutes.  
Attackers may also be able to obtain customer purchase card information from Web servers that 
provide Internet commerce (see Section 7.7).

●     To prevent intruders from obtaining secret information. Most organizations have secret 
information that is stored on computers. This information includes trade secrets, product 
development plans, marketing strategies, personal employee records, and financial analysis.

The simplest firewall consists of a packet filter. More sophisticated firewalls consist of combinations of 
packet filters and application gateways. 

8.5.1  Packet Filtering
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An organization typically has a router that connects its internal network to its ISP (and hence to the 
Internet). All traffic leaving and entering the internal network passes through this router. Most router 
manufacturers provide options for filtering; when these options are turned on, the router becomes a filter 
in addition to a router. As the name implies, a filter lets some datagrams pass through the router and 
filters out other datagrams. Filtering decisions are typically based on: 

●     The IP address the data is (supposedly) coming from.
●     IP destination address.
●     TCP or UDP source and destination port.
●     ICMP message type.
●     Connection initialization datagrams using the TCP ACK bit.

As a simple example, a filter can be set to block all UDP segments and all Telnet connections. Such a 
configuration prevents outsiders from logging onto internal hosts using Telnet, insiders from logging 
onto external hosts using Telnet, and "weird" UDP traffic from entering or leaving the internal network. 
The router filters the UDP traffic by blocking all datagrams whose IP protocol field is set to 17 
(corresponding to UDP); it filters all Telnet connections by blocking all TCP segments (each 
encapsulated in a datagram) whose source or destination port number is 23 (corresponding to Telnet). 
Filtering of UDP traffic is a  popular policy for corporations -- causing much chagrin to leading audio 
and video streaming vendors, whose products stream over UDP in the default mode.  Filtering Telnet 
connections is also popular, as it prevents outside intruders from logging onto internal machines. 

A filtering policy can also be based on the combination of addresses and port numbers. For example, the 
router can forward all Telnet packets (port 23) except those going to and coming from a list of specific 
IP addresses. This policy permits Telnet connections to and from hosts on the list.  It is highly 
recommended to reject all datagrams that have internal source IP addresses -- i.e., packets that claim to 
be coming from internal hosts but are actually coming in from the outside. These packets are part of 
address spoofing attacks, whereby the attacker is pretending to be coming from an internal machine. 
Unfortunately, basing the policy on external addresses provides no protection from an external host 
claiming to be a different external host. 

Filtering can also be based on whether or not the TCP ACK bit is set. This trick is quite useful if an 
organization wants to let its internal clients connect to external servers, but wants to prevent external 
clients from connecting to internal servers. Recall from Section 3.4 that the first segment in every TCP 
connection has the ACK bit set to 0 whereas all the other segments in the connection have the ACK bit 
set to 1. Thus, if an organization wants to prevent external clients from initiating connections to internal 
servers, it simply filters all incoming segments with the ACK bit set to 0. This policy kills all TCP 
connections originating from the outside, but permits connections originating internally. 

Now suppose an organization doesn't want to block all connections originating from outside; instead it 
just wants to block only the Telnet connections originating from outside. How can filtering accomplish 
this task? To see how filters handle this, let's look at how the fields are set for Telnet connections 
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originating internally and Telnet connections originating externally (Table 8.5.1): 
  

Connection 
Origination

Packet Direction
Source  IP 

Address
Destination 
IP Address

Source 
Port

Destination 
Port

Internal Outbound Internal External p 23

Internal Inbound External Internal 23 p

External Inbound External Internal q 23

External Outbound Internal External 23 q

Table 8.5-1: Header fields for inbound and outbound Telnet connections

The p and q in the above table are the port numbers (> 1023) assigned to the client machines (see 
Section 3.1). From this chart we see that the filter can block Telnet connections originating from outside 
by blocking inbound packets (external source address and internal destination address) with destination 
port 23; or by blocking outbound packets (internal source address and external destination address) with 
source port 23. 

8.5.2 Application Gateways

Filters allow an organization to perform coarse-grain filtering on IP and TCP/UDP headers, including IP 
addresses, port numbers and acknowledgment bits. For example, filtering based on a combination of IP 
addresses and port numbers can allow internal clients to Telnet outside while preventing external clients 
from Telneting inside. But what if an organization wants to provide the Telnet service to a restricted set 
of internal users? Such a task is beyond the capabilities of a filter. Indeed, information about the identity 
of the internal users is not included in the IP/TCP/UDP headers, but is instead in the application-layer 
data. 

In order to have a finer level security, firewalls must combine packet filters with application gateways. 
Application gateways look beyond the IP/TCP/UDP headers and actually make policy decisions based 
on application data. An application gateway is an application-specific server through which all 
application data (inbound and outbound) must pass. Multiple application gateways can run on the same 
host, but each gateway is a separate server with its own processes. 

To get some insight into application gateways, let us design a firewall that allows only a restricted set of 
internal users to Telnet outside and prevents all external clients from Telneting inside. Such a policy can 
be accomplished by implementing a combination of a packet filter (in a router) and a Telnet application 
gateway, as shown in Figure 8.5-1. The filter is configured to block all Telnet connections except those 
that originate form the IP address of the application gateway. Such a filter configuration forces all 
outbound Telnet connections to pass through the application gateway. When a internal user wants to 
Telnet to the the outside world, it first sets up a Telnet session with the gateway. The gateway prompts 
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the user for its user id and password; when the user supplies this information, the gateway checks to see 
if the user has permission to Telnet to the outside world. If not, the gateway terminates the Telnet 
session. If the user has permission, then the gateway (1)  prompts the user for the hostname of the 
external host to which the user wants to connect, (2) sets up a Telnet session between the gateway and 
the external host, (3) relays to the external host all data arriving from the user, and relays to the user all 
data arriving from the external host. Thus the Telnet application gateway not only performs user 
authorization but also acts as a Telnet server and a Telnet client. Note that the filter will permit step (2) 
because the application gateway initiates the Telnet connection. 

Figure 8.5-1: Firewall consisting of an application gateway and a filter.

Internal networks often have multiple application gateways, for example, gateways for Telnet, HTTP, 
FTP and e-mail. In fact, an organization's mail server (see Section 2.4) and Web cache (see Section 2.9) 
are application gateways. 

Application gateways do not come without their disadvantages. First, you  need a different application 
gateway for each application, which requires installing and configuring a new server for each 
application. Second, either: 

●     the client software must know how to contact the gateway instead of the external server when the 
user makes a request, and must know how to tell the gateway what external server to connect to;

●     or the user must explicitly connect to the external server through the gateway.
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We conclude this section by mentioning that firewalls are by no means a panacea for all security 
problems. They introduce a tradeoff between the degree of communication with the outside world and 
level of security. Because filters can't stop spoofing of  IP addresses and port numbers, filters often use 
an all or nothing policy (for example, banning all UDP traffic). Gateways can have software bugs, 
allowing attackers to penetrate them. Also, firewalls or even less effective if the internal users have 
wireless communication with the external world. For these reasons and others, firewalls remain 
controversial, with many security experts and network administrators being reluctant to use them. 
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Chapter 8: Summary

8.6 Summary

Our study of network management, and indeed of all of networking, is now complete! 

In this final chapter on network management, we began by motivating the need for providing 
appropriate tools for the network administrator - the person whose job it is to keep the network "up and 
running - for monitoring, testing, polling, configuring, analyzing, evaluating and controlling the 
operation of the network.  Our analogies with the management of complex systems such as power 
plants, airplanes, and human organization helped motivate this need.  We saw that the architecture of  
network management systems revolve around five key components - (i) a network manager, (ii) a set of 
managed remote (from the network manager) devices, (iii) the management information bases (MIBs) at 
these devices, containing data about the device's status and operation, and (iv) remote agents that report 
MIB  information and  take action under the control of the network manager, and (v) a protocol for 
communicating between the network manager and the remote devices. 

We then delved into the details of the Internet Network Management Framework, and the SNMP 
protocol in particular.  We saw how SNMP instantiates the five key components of a network 
management architecture, and spent considerable time examining MIB objects, the SMI - the data 
definition language for specifying MIB's, and the SNMP protocol itself.  Noting that the SMI and ASN.1 
are inextricably tied together, and that ASN.1 plays a key role in the presentation layer in the ISO/OSI 
seven layer reference model, we then briefly examined ASN.1.  Perhaps more important than the details 
of ASN.1 itself, was the noted need to provide for translation between machine-specific data formats in 
a network.  While the ISO/OSI reference model explicitly acknowledges the important of this service by 
the existence of the presentation layer, we noted that this layer is absent in the Internet protocol stack.  
Finally, we concluded this chapter with a discussion of firewalls - a topic that falls within the realms of 
both security and network management.  We saw how packet filtering and application-level gateways 
can be used to provide the network with some level of protection against unwanted intruders, perhaps 
allow the network manager to sleep better at night, knowing the network is relatively safe from these 
intruders. 

It is also worth noting that there are many topics in network management that we chose not to cover -  
topics such as fault identification and management, proactive anomaly detection , alarm correlation, and 
the larger issues of service management (e.g., as opposed to network management).  While important, 
these topics would form a text in their own right and we refer the reader to the references noted in 
section 8.1. 
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Chapter 8: Homework Problems

  

Review Questions

1.) Give five scenarios why a network manager would benefit from having network management tools. 
2.) What are the five areas of network management defined by the ISO? 
3.) What is the difference between network management and service management? 
4.) Define the following terms: managing entity, managed device, management agent, MIB, network 
management protocol. 
5.) What is the role of the the SMI in network management? 
6.) What is the purpose of the ASN.1 Object Identifier tree? 
7.) What is an important difference between a request-response message, and a trap message in SNMP? 
8.) What are the seven message types used in SNMP? 
9.) What is meant by an "SNMP engine"? 
10.) What is the role of  ASN.1 in the ISO/OSI reference model's presentation layer? 
11.) Does the Internet have a presentation layer?  If not, how are concerns about differences in machine 
architectures, e.g., the different representation of integers on different machines, addressed? 
12.) What is meant by TLV encoding? 
13.) What is the difference between using a filter, and using an application-level gateway approach in a 
firewall? 

  

Problems

1) Consider the two ways in which communication occurs between a managing entity and a managed 
device: request-response mode and trapping.  What are the pros and cons of these two approaches, in 
terms of (i) overhead, (ii) notification time when exceptional events occur (iii) robustness with respect to 
lost messages between the managing entity and the device? 

2)  In section 8.3 we saw that it was preferable to transport SNMP messages in unreliable UDP 
datagrams.  Why do you think the designers of SNMP chose UDP rather than TCP as the transport 
protocol of choice for SNMP? 
  
3) What is the ASN.1 object identifier for the ICMP protocol (see Figure 8.3.1)? 

4) Consider Figure 8.4-4.  What would be the BER encoding of {weight, 271} {lastname, "Jackson"}? 
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 Discussion Questions

1) In addition to the power plan and airplane cockpit analogies, what is another analogy of a complex 
distributed system that needs to be controlled? 

2.) Consider the motivating scenario in Figure 8.1-1.  What other activities do you think a network 
administrator might want to monitor?  Why? 

3.) Read RFC 789. How might the ARPAnet crash of 1980 been  avoided (or its recovery simplified) if 
the ARPAnet's managers had today's network management tools? 
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Multi-Threaded Web Server in Java

In this lab we will develop a Web server in two steps. In the end, you will have built a multi-threaded 
Web server that is capable of processing multiple simultaneous service requests in parallel. You should 
be able to demonstrate that your Web server is capable of delivering your home page to a Web browser. 

We are going to implement version 1.0 of HTTP, as defined in RFC 1945, where separate HTTP 
requests are sent for each component of the Web page. The server will be able to handle multiple 
simultaneous service requests in parallel. This means that the Web server is multi-threaded. In the main 
thread, the server listens to a fixed port. When it receives a TCP connection request, it sets up a TCP 
connection through another port and services the request in a separate thread. To simplify this 
programming task, we will develop the code in two stages. In the first stage, you will write a multi-
threaded server that simply displays the contents of the HTTP request message that it receives. After this 
program is running properly, you will add the code required to generate an appropriate response. 

As you are developing the code, you can test your server from a Web browser. But remember that you 
are not serving through the standard port 80, so you need to specify the port number within the URL that 
you give to your browser. For example, if your machine's name is host.someschool.edu, your server is 
listening to port 6789, and you want to retrieve the file index.html, then you would specify the following 
URL within the browser: 

        http://host.someschool.edu:6789/index.html

If you omit ":6789", the browser will assume port 80 which most likely will not have a server listening 
on it.

When the server encounters an error, it sends a response message with the appropriate HTML source so 
that the error information is displayed in the browser window. 

Web Server in Java: Part A

In the following steps, we will go through the code for the first implementation of our Web Server. 
Wherever you see "?", you will need to supply a missing detail. 

Our first implementation of the Web server will be multi-threaded, where the processing of each 
incoming request will take place inside a separate thread of execution. This allows the server to service 
multiple clients in parallel, or to perform multiple file transfers to a single client in parallel. When we 
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create a new thread of execution, we need to pass to the Thread's constructor an instance of some class 
that implements the Runnable interface. This is the reason that we define a separate class called 
HttpRequest. The structure of the Web server is shown below: 

        import java.io.* ;
        import java.net.* ;
        import java.util.* ;

        public final class WebServer
        {
                public static void main(String argv[]) throws 
Exception
                {
                        . . .
                }
        }

        final class HttpRequest implements Runnable
        {
                . . .
        }

Normally, Web servers process service requests that they receive through well-known port number 80. 
You can choose any port higher than 1024, but remember to use the same port number when making 
requests to your Web server from your browser. 

        public static void main(String argv[]) throws Exception
        {
                // Set the port number.
                int port = 6789;

                . . .
        }

Next, we open a socket and wait for a TCP connection request. Because we will be servicing request 
messages indefinitely, we place the listen operation inside of an infinite loop. This means we will have 
to terminate the Web server by pressing ^C on the keyboard. 

        // Establish the listen socket.
        ?

        // Process HTTP service requests in an infinite loop.
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        while (true) {
                // Listen for a TCP connection request.
                ?

                . . .
        }

When a connection request is received, we create an HttpRequest object, passing to its constructor a 
reference to the Socket object that represents our established connection with the client. 

        // Construct an object to process the HTTP request message.
        HttpRequest request = new HttpRequest( ? );

        // Create a new thread to process the request.
        Thread thread = new Thread(request);

        // Start the thread.
        thread.start();

In order to have the HttpRequest object handle the incoming HTTP service request in a separate 
thread, we first create a new Thread object, passing to its constructor a reference to the 
HttpRequest object, and then call the thread's start() method. 

After the new thread has been created and started, execution in the main thread returns to the top of the 
message processing loop. The main thread will then block, waiting for another TCP connection request, 
while the new thread continues running. When another TCP connection request is received, the main 
thread goes through the same process of thread creation regardless of whether the previous thread has 
finished execution or is still running. 

This completes the code in main(). For the remainder of the lab, it remains to develop the 
HttpRequest class. 

We declare two variables for the HttpRequest class: CRLF and socket. According to the HTTP 
specification, we need to terminate each line of the server's response message with a carriage return 
(CR) and a line feed (LF), so we have defined CRLF as a convenience. The variable socket will be 
used to store a reference to the connection socket, which is passed to the constructor of this class. The 
structure of the HttpRequest class is shown below: 

        final class HttpRequest implements Runnable
        {
                final static String CRLF = "\r\n";
                Socket socket;
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                // Constructor
                public HttpRequest(Socket socket) throws Exception 
                {
                        this.socket = socket;
                }

                // Implement the run() method of the Runnable 
interface.
                public void run()
                {
                        . . .
                }

                private void processRequest() throws Exception
                {
                        . . .
                }
        }

In order to pass an instance of the HttpRequest class to the Thread's constructor, HttpRequest 
must implement the Runnable interface, which simply means that we must define a public method 
called run() that returns void. Most of the processing will take place within processRequest(), 
which is called from within run(). 

Up until this point, we have been throwing exceptions, rather than catching them. However, we can not 
throw exceptions from run(), because we must strictly adhere to the declaration of run() in the 
Runnable interface, which does not throw any exceptions. We will place all the processing code in 
processRequest(), and from there, throw exceptions to run(). Within run(), we explicitly 
catch and handle exceptions with a try/catch block. 

        // Implement the run() method of the Runnable interface.
        public void run()
        {
                try {
                        processRequest();
                } catch (Exception e) {
                        System.out.println(e);
                }
        }

Now, let's develop the code within processRequest(). We first obtain references to the socket's 
input and output streams. Then we wrap InputStreamReader and BufferedReader filters 
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around the input stream. However, we won't wrap any filters around the output stream, because we will 
be writing bytes directly into the output stream. 

        private void processRequest() throws Exception
        {
                // Get a reference to the socket's input and output 
streams.
                InputStream is = ?;
                DataOutputStream os = ?;

                // Set up input stream filters.
                ? 
                BufferedReader br = ?;

                . . .
        }

Now we are prepared to get the client's request message, which we do by reading from the socket's input 
stream. The readLine() method of the BufferedReader class will extract characters from the 
input stream until it reaches an end-of-line character, or in our case, the end-of-line character sequence 
CRLF. 

The first item available in the input stream will be the HTTP request line. (See Hypertext Transfer 
Protocol for a description of this and the following fields.) 

        // Get the request line of the HTTP request message.
        String requestLine = ?;

        // Display the request line.
        System.out.println();
        System.out.println(requestLine);

After obtaining the request line of the message header, we obtain the header lines. Since we don't know 
ahead of time how many header lines the client will send, we must get these lines within a looping 
operation. 

        // Get and display the header lines.
        String headerLine = null;
        while ((headerLine = br.readLine()).length() != 0) {
                System.out.println(headerLine);
        }
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We don't need the header lines, other than to print them to the screen, so we use a temporary String 
variable, headerLine, to hold a reference to their values. The loop terminates when the expression 

        (headerLine = br.readLine()).length()

evaluates to zero, which will occur when headerLine has zero length. This will happen when the 
empty line terminating the header lines is read. (See the HTTP Request Message diagram in Hypertext 
Transfer Protocol) 

In the next step of this lab, we will add code to analyze the client's request message and send a response. 
But before we do this, let's try compiling our program and testing it with a browser. Add the following 
lines of code to close the streams and socket connection. 

        // Close streams and socket.
        os.close();
        br.close();
        socket.close();

After your program successfully compiles, run it with an available port number, and try contacting it 
from a browser. To do this, you should enter into the browser's address text box the IP address of your 
running server. For example, if your machine name is host.someschool.edu, and you ran the server with 
port number 6789, then you would specify the following URL: 

        http://host.someschool.edu:6789/

The server should display the contents of the HTTP request message. Check that it matches the message 
format shown in the HTTP Request Message diagram in Hypertext Transfer Protocol. 

Web Server in Java: Part B

Instead of simply terminating the thread after displaying the browser's HTTP request message, we will 
analyze the request and send an appropriate response. We are going to ignore the information in the 
header lines, and use only the file name contained in the request line. In fact, we are going to assume 
that the request line always specifies the GET method, and ignore the fact that the client may be sending 
some other type of request, such as HEAD or POST. 

We extract the file name from the request line with the aid of the StringTokenizer class. First, we 
create a StringTokenizer object that contains the string of characters from the request line. Second, 
we skip over the method specification, which we have assumed to be "GET". Third, we extract the file 
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name. 

        // Extract the filename from the request line.
        StringTokenizer tokens = new StringTokenizer(requestLine);
        tokens.nextToken();  // skip over the method, which should be 
"GET"
        String fileName = tokens.nextToken();

        // Prepend a "." so that file request is within the current 
directory.
        fileName = "." + fileName;

Because the browser precedes the filename with a slash, we prefix a dot so that the resulting pathname 
starts within the current directory.

Now that we have the file name, we can open the file as the first step in sending it to the client. If the file 
does not exist, the FileInputStream() constructor will throw the FileNotFoundException. 
Instead of throwing this possible exception and terminating the thread, we will use a try/catch 
construction to set the boolean variable fileExists to false. Later in the code, we will use this flag to 
construct an error response message, rather than try to send a nonexistent file. 

        // Open the requested file.
        FileInputStream fis = null;
        boolean fileExists = true;
        try {
                fis = new FileInputStream(fileName);
        } catch (FileNotFoundException e) {
                fileExists = false;
        }

There are three parts to the response message: the status line, the response headers, and the entity body. 
The status line and response headers are terminated by the character sequence CRLF. We are going to 
respond with a status line, which we store in the variable statusLine, and a single response header, 
which we store in the variable contentTypeLine. In the case of a request for a nonexistent file, we 
return 404 Not Found in the status line of the response message, and include an error message in the 
form of an HTML document in the entity body. 

        // Construct the response message.
        String statusLine = null;
        String contentTypeLine = null;
        String entityBody = null;
        if (fileExists) {
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                statusLine = ?;
                contentTypeLine = "Content-type: " + 
                        contentType( fileName ) + CRLF;
        } else {
                statusLine = ?;
                contentTypeLine = ?;
                entityBody = "<HTML>" + 
                        "<HEAD><TITLE>Not Found</TITLE></HEAD>" +
                        "<BODY>Not Found</BODY></HTML>";
        }

When the file exists, we need to determine the file's MIME type and send the appropriate MIME-type 
specifier. We make this determination in a separate private method called contentType(), which 
returns a string that we can include in the content type line that we are constructing. 

Now we can send the status line and our single header line to the browser by writing into the socket's 
output stream. 

        // Send the status line.
        os.writeBytes(statusLine);

        // Send the content type line.
        os.writeBytes(?);

        // Send a blank line to indicate the end of the header lines.
        os.writeBytes(CRLF);

Now that the status line and header line with delimiting CRLF have been placed into the output stream 
on their way to the browser, it is time to do the same with the entity body. If the requested file exists, we 
call a separate method to send the file. If the requested file does not exist, we send the HTML-encoded 
error message that we have prepared. 

        // Send the entity body.
        if (fileExists) {
                sendBytes(fis, os);
                fis.close();
        } else {
                os.writeBytes(?);
        }

After sending the entity body, the work in this thread has finished, so we close the streams and socket 
before terminating.
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We still need to code the two methods that we have referenced in the above code, namely, the method 
that determines the MIME type, contentType(), and the method that writes the requested file onto 
the socket's output stream. Let's first take a look at the code for sending the file to the client. 

        private static void sendBytes(FileInputStream fis, 
OutputStream os) throws Exception
        {
                // Construct a 1K buffer to hold bytes on their way 
to the socket.
                byte[] buffer = new byte[1024];
                int bytes = 0;

                // Copy requested file into the socket's output 
stream.
                while((bytes = fis.read(buffer)) != -1 ) {
                        os.write(buffer, 0, bytes);
                }
        }

Both read() and write() throw exceptions. Instead of catching these exceptions and handling them 
in our code, we throw them to be handled by the calling method. 

The variable, buffer, is our intermediate storage space for bytes on their way from the file to the 
output stream. When we read the bytes from the FileInputStream, we check to see if read() 
returns minus one, indicating that the end of the file has been reached. If the end of the file has not been 
reached, read() returns the number of bytes that have been placed into buffer. We use the write
() method of the OutputStream class to place these bytes into the output stream, passing to it the 
name of the byte array, buffer, the starting point in the array, 0, and the number of bytes in the array 
to write, bytes. 

The final piece of code needed to complete the Web server is a method that will examine the extension 
of a file name and return a string that represents it's MIME type. If the file extension is unknown, we 
return the type application/octet-stream. 

        private static String contentType(String fileName)
        {
                if(fileName.endsWith(".htm") || fileName.endsWith(".
html")) {
                        return "text/html";
                }
                if(?) {
                        ?;
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                }
                if(?) {
                        ?;
                }
                return "application/octet-stream";
        }

There is a lot missing from this method. For instance, nothing is returned for GIF or JPEG files. You 
may want to add the missing file types yourself, so that the components of your home page are sent with 
the content type correctly specified in the content type header line. For GIFs the MIME type is image/
gif and for JPEGs it is image/jpeg. 

This completes the code for the second phase of development of your Web server. Try running the 
server from the directory where your home page is located, and try viewing your home page files with a 
browser. Remember to include a port specifier in the URL of your home page, so that your browser 
doesn't try to connect to the default port 80. When you connect to the running web server with the 
browser, examine the GET message requests that the web server receives from the browser. 
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A Mail User Agent in Java

In this lab you will implement a mail user agent that sends mail to remote hosts. Your task is to program 
the SMTP interaction between the MUA and the remote SMTP server. The client provides a graphical 
user interface containing fields for entering the sender and recipient addresses, the subject of the 
message and the message itself. Here's what the user interface looks like:

 

With this interface, when you want to send a mail, you must fill in complete addresses for both the 
sender and the recipient, i.e., user@someschool.edu, not just simply user. You can send mail to 
only one recipient. Furthermore, the domain part of the recipient's address must be the name of the 
SMTP server handling incoming mail at the recipient's site. For example, if you are sending mail to 
address user@someschool.edu and the SMTP server of someschool.edu is smtp.
somechool.edu, you will have to use the address user@smtp.someschool.edu in the To-field. 
This is because Java doesn't support DNS lookups except for simple name-to-address queries. See 
Querying the DNS below for more information on how to obtain the address of the SMTP-server. 

When you have finished composing your mail, press Send to send it. 

The Code
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The program consists of four classes: 

MailClient The user interface 

Message Mail message

Envelope SMTP envelope around the Message

SMTPConnection Connection to the SMTP server

You will need to complete the code in the SMTPConnection class so that in the end you will have a 
program that is capable of sending mail to any recipient. The code for the SMTPConnection class is 
at the end of this page. The code for the other three classes is provided in ... 

The places where you need to complete the code have been marked with the comments /* Fill in 
*/. Each of the places requires one or more lines of code. 

The MailClient class provides the user interface and calls the other classes as needed. When you 
press Send, the MailClient class constructs a Message class object to hold the mail message. The 
Message object holds the actual message headers and body. Then the MailClient object builds the 
SMTP envelope using the Envelope class. This class holds the SMTP sender and recipient 
information, the SMTP server of the recipient's domain, and the Message object. Then the 
MailClient object creates the SMTPConnection object which opens a connection to the SMTP 
server and the MailClient object sends the message over the connection. The sending of the mail 
happens in three phases: 

1.  The MailClient object creates the SMTPConnection object and opens the connection to 
the SMTP server. 

2.  The MailClient object sends the message using the function SMTPConnection.send(). 
3.  The MailClient object closes the SMTP connection. 

The Message class contains the function isValid() which is used to check the addresses of the 
sender and recipient to make sure that there is only one address and that the address contains the @-sign. 
The provided code does not do any other error checking. 

Reply Codes

For the basic interaction of sending one message, you will only need to implement a part of SMTP. 
Section Electronic Mail in the Internet provides a more complete description of SMTP, but in this lab 
you need only to implement the commands in the following table. 
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Command Reply Code

DATA 354

HELO 250

MAIL 
FROM 

250

QUIT 221

RCPT TO 250

The above table also lists the accepted reply codes for each of the SMTP commands you need to 
implement. For simplicity, you can assume that any other reply from the server indicates a fatal error 
and abort the sending of the message. In reality, SMTP distinguishes between transient (reply codes 4xx) 
and permanent (reply codes 5xx) errors, and the sender is allowed to repeat commands that yielded in a 
transient error. See Appendix E of RFC 821 for more details. 

In addition, when you open a connection to the server, it will reply with the code 220. 

Note: RFC 821 allows the code 251 as a response to a RCPT TO-command to indicate that the recipient 
is not a local user. You may want to verify manually with the telnet command what your local SMTP 
server replies. 

Hints

Most of the code you will need to fill in is similar to the code you wrote in the WebServer lab. You may 
want to use the code you have written there to help you. 

To make it easier to debug your program, do not, at first, include the code that opens the socket, but use 
the following definitions for fromServer and toServer. This way, your program sends the 
commands to the terminal. Acting as the SMTP server, you will need to give the correct reply codes. 
When your program works, add the code to open the socket to the server. 

       fromServer = new BufferedReader(new InputStreamReader(System.
in));
       toServer = System.out;

The lines for opening and closing the socket, i.e., the lines connection = ... in the constructor 
and the line connection.close() in function close(), have been commented out by default. 

Start by completing the function parseReply(). You will need this function in many places. In the 
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function parseReply(), you should use the StringTokenizer-class for parsing the reply strings. 
You can convert a string to an integer as follows: 

           int i = Integer.parseInt(argv[0]);

In the function sendCommand(), you should use the function writeBytes() to write the 
commands to the server. The advantage of using writeBytes() instead of write() is that the 
former automatically converts the strings to bytes which is what the server expects. Do not forget to 
terminate each command with the string CRLF. 

You can throw exceptions like this: 

           throw new Exception();

You do not need to worry about details, since the exceptions in this lab are only used to signal an error, 
not to give detailed information about what went wrong. 

Optional Exercises

You may want to try the following optional exercises to make your program more sophisticated.. For 
these exercises, you will need to modify also the other classes (MailClient, Message, and Envelope). 

●     Verify sender address. Java's System-class contains information about the username and the 
InetAddress-class contains methods for finding the name of the local host. Use these to construct 
the sender address for the Envelope instead of using the user-supplied value in the From-header. 

●     Additional headers. The generated mails have only four header fields, From, To, Subject, and 
Date. Add other header fields from RFC 822, e.g., Message-ID, Keywords. Check the RFC for 
the definitions of the different fields. 

●     Multiple recipients. Currently the program only allows sending mail to a single recipient. 
Modify the user interface to include a Cc-field and modify the program to send mail to both 
recipients. For a more challenging exercise, modify the program to send mail to an arbitrary 
number of recipients. 

●     More error checking. The provided code assumes that all errors that occur during the SMTP 
connection are fatal. Add code to distinguish between fatal and non-fatal errors and add a 
mechanism for signaling them to the user. Check the RFC to see what the different reply codes 
mean. This exercise may require large modifications to the send(), sendCommand(), and 
parseReply() functions. 
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Querying the DNS

The Domain Name System (DNS) stores information in resource records. Normal name to IP-address 
mappings are stored in type A (Address) resource records. Type NS (NameServer) records hold 
information about nameservers and type MX (Mail eXchange) records tell which server is handling the 
mail delivery of the domain. 

The server you need to find is the server handling the mail for the domain to which you are sending 
mail, i.e., the MX-host of that domain. First, you must find the nameserver of the target domain and then 
query this nameserver for the MX-host. Assuming you were sending mail to the address 
user@someschool.edu you would do the following: 

1.  Find the address of a nameserver for the top-level domain .edu (NS query) 
2.  Query the nameserver for .edu about the nameserver for the domain someschool.edu to get 

the address of Someschool's nameserver. (NS query) 
3.  Query Someschool's nameserver for MX-records for the domain someschool.edu. (MX 

query) 

Ask your local system administrator how to perform DNS queries manually. 

Under Unix you can query DNS manually with the nslookup-command. The syntax of the 
nslookup-command is as follows. Note that the argument host can also be a domain. 

Normal query nslookup host

Normal query using a given 
server 

nslookup host server

NS-query nslookup -type=NS host

MX-query nslookup -type=MX host

For the first step, finding the nameserver of the top-level domain, you will need to send your query to 
one of the 13 DNS root nameservers. You can find more information about the DNS root servers in 
Section DNS - The Internet's Directory Service. The root servers are listed in the file root-servers.txt, 
available from Internic. 

The reply to the MX-query may contain multiple mail exchangers. Each of them is preceded by a 
number which is the preference value for this server. Lower preference values indicate preferred servers 
so you should use the server with the lowest preference value. 
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SMTPConnection.java

This is the code for the SMTPConncetion class that you will need to complete. The code for the other 
three classes is provided in .... 

import java.net.*;
import java.io.*;
import java.util.*;

/**
 * Open an SMTP connection to a remote machine and send one mail.
 *
 */
public class SMTPConnection {
    /* The socket to the server */
    private Socket connection;

    /* Streams for reading and writing the socket */
    private BufferedReader fromServer;
    private DataOutputStream toServer;

    private static final int SMTP_PORT = 25;
    private static final String CRLF = "\r\n";

    /* Are we connected? Used in close() to determine what to do. */
    private boolean isConnected = false;

    /* Create an SMTPConnection object. Create the socket and the 
       associated streams. Initialize SMTP connection. */
    public SMTPConnection(Envelope envelope) throws IOException {
        // connection = /* Fill in */;
        fromServer = /* Fill in */;
        toServer =   /* Fill in */;
        
        /* Fill in */
        /* Read a line from server and check that the reply code is 
220.
           If not, throw an IOException. */
        /* Fill in */

        /* SMTP handshake. We need the name of the local machine.
           Send the appropriate SMTP handshake command. */
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        String localhost = /* Fill in */;
        sendCommand( /* Fill in */ );

        isConnected = true;
    }

    /* Send the message. Write the correct SMTP-commands in the
       correct order. No checking for errors, just throw them to the
       caller. */
    public void send(Envelope envelope) throws IOException {
        /* Fill in */
        /* Send all the necessary commands to send a message. Call
           sendCommand() to do the dirty work. Do _not_ catch the
           exception thrown from sendCommand(). */
        /* Fill in */
    }

    /* Close the connection. First, terminate on SMTP level, then
       close the socket. */
    public void close() {
        isConnected = false;
        try {
            sendCommand( /* Fill in */ );
            // connection.close();
        } catch (IOException e) {
            System.out.println("Unable to close connection: " + e);
            isConnected = true;
        }
    }

    /* Send an SMTP command to the server. Check that the reply code 
is
       what is is supposed to be according to RFC 821. */
    private void sendCommand(String command, int rc) throws 
IOException {
        /* Fill in */
        /* Write command to server and read reply from server. */
        /* Fill in */

        /* Fill in */
        /* Check that the server's reply code is the same as the 
parameter
           rc. If not, throw an IOException. */
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        /* Fill in */
    }

    /* Parse the reply line from the server. Returns the reply code. 
*/
    private int parseReply(String reply) {
        /* Fill in */
    }

    /* Destructor. Closes the connection if something bad happens. */
    protected void finalize() throws Throwable {
        if(isConnected) {
            close();
        }
        super.finalize();
    }
}
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Lab: Implementing a reliable transport protocol

Overview

In this laboratory programming assignment, you will be writing the sending and receiving transport-level code for 
implementing a simple reliable data transfer protocol. There are two versions of this lab, the Alternating-Bit-Protocol 
version and the  Go-Back-N version. This lab should be FUN since your implementation will differ very little from 
what would be required in a real-world situation. 

Since you probably don't have standalone machines (with an OS that you can modify), your code will have to 
execute in a simulated hardware/software environment. However, the programming interface provided to your 
routines, i.e., the code that would call your entities from above and from below  is very close to what is done in an 
actual UNIX environment. (Indeed, the software interfaces described in this programming assignment are much more 
realistic that the infinite loop senders and receivers that many texts describe). Stopping/starting of timers are also 
simulated, and timer interrupts will cause your timer handling routine to be activated. 
  

The routines you will write

The procedures you will write are for the sending entity (A) and the receiving entity (B). Only unidirectional transfer 
of data (from A to B) is required. Of course, the B side will have to send packets to A to acknowledge (positively or 
negatively) receipt of data. Your routines are to be implemented in the form of the procedures described below. 
These procedures will be called by (and will call) procedures that I have written which emulate a network 
environment. The overall structure of the environment is shown in Figure Lab.3-1: 

 
Figure Lab.3-1: structure of the emulated environment
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The unit of data passed between the upper layers and your protocols is a message, which is declared as: 

struct msg {

  char data[20];

  };

This declaration, and all other data structure and emulator routines, as well as stub routines (i.e., those you are to 
complete) are in the file, prog2.c, described later. Your sending entity will thus receive data in 20-byte chunks from 
layer5; your receiving entity should deliver 20-byte chunks of correctly received data to layer5 at the receiving side. 

The unit of data passed between your routines and the network layer is the packet, which is declared as: 

struct pkt {

   int seqnum;

   int acknum;

   int checksum;

   char payload[20];

    };

Your routines will fill in the payload field from the message data passed down from layer5. The other packet fields 
will be used by your protocols to insure reliable delivery, as we've seen in class. 

The routines you will write are detailed below. As noted above, such procedures in real-life would be part of the 
operating system, and would be called by other procedures in the operating system. 

❍     A_output(message), where message is a structure of type msg, containing data to be sent to the B-side. 
This routine will be called whenever the upper layer at the sending side (A) has a message to send. It is the job 
of your protocol to insure that the data in such a message is delivered in-order, and correctly, to the receiving 
side upper layer.

❍     A_input(packet), where packet is a structure of type pkt. This routine will be called whenever a packet 
sent from the B-side (i.e., as a result of a tolayer3() being done by a B-side procedure) arrives at the A-
side. packet is the (possibly corrupted) packet sent from the B-side.

❍     A_timerinterrupt()  This routine will be called when A's timer expires (thus generating a timer interrupt). 
You'll probably want to use this routine to control the retransmission of packets. See starttimer() and 
stoptimer() below for how the timer is started and stopped.

❍     A_init() This routine will be called once, before any of your other A-side routines are called. It can be used to 
do any required initialization.
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❍     B_input(packet),where packet is a structure of type pkt. This routine will be called whenever a packet 
sent from the A-side (i.e., as a result of a tolayer3() being done by a A-side procedure) arrives at the B-
side. packet is the (possibly corrupted) packet sent from the A-side.

❍     B_init() This routine will be called once, before any of your other B-side routines are called. It can be used to 
do any required initialization.

Software Interfaces

The procedures described above are the ones that you will write. I have written the following routines which can be 
called by your routines: 

❍     starttimer(calling_entity,increment), where calling_entity is either 0 (for starting the A-side timer) 
or 1 (for starting the B side timer), and increment is a float value indicating the amount of time that will 
pass before the timer interrupts. A's timer should only be started (or stopped) by A-side routines, and similarly 
for the B-side timer. To give you an idea of the appropriate increment value to use: a packet sent into the 
network takes an average of 5 time units to arrive at the other side when there are no other messages in the 
medium.

❍     stoptimer(calling_entity), where calling_entity is either 0 (for stopping the A-side timer) or 1 (for 
stopping the B side timer).

❍     tolayer3(calling_entity,packet), where calling_entity is either 0 (for the A-side send) or 1 (for the B 
side send), and packet is a structure of type pkt. Calling this routine will cause the packet to be sent into 
the network, destined for the other entity.

❍     tolayer5(calling_entity,message), where calling_entity is either 0 (for A-side delivery to layer 5) or 1 
(for B-side delivery to layer 5), and message is a structure of type msg. With unidirectional data transfer, 
you would only be calling this with calling_entity equal to 1 (delivery to the B-side). Calling this 
routine will cause data to be passed up to layer 5.

The simulated network environment

A call to procedure tolayer3() sends packets into the medium (i.e., into the network layer). Your procedures 
A_input() and B_input() are called when a packet is to be delivered from the medium to your protocol layer. 

The medium is capable of corrupting and losing packets. It will not reorder packets. When you compile your 
procedures and my procedures together and run the resulting program, you will be asked to specify values regarding 
the simulated network environment: 

●     Number of messages to simulate. My emulator (and your routines) will stop as soon as this number of 
messages have been passed down from layer 5, regardless of whether or not all of the messages have been 
correctly delivered. Thus, you need not worry about undelivered or unACK'ed messages still in your sender 
when the emulator stops. Note that if you set this value to 1, your program will terminate immediately, before 
the message is delivered to the other side. Thus, this value should always be greater than 1.

●     Loss. You are asked to specify a packet loss probability. A value of 0.1 would mean that one in ten packets 
(on average) are lost.

●     Corruption. You are asked to specify a packet loss probability. A value of 0.2 would mean that one in five 
packets (on average) are corrupted. Note that the contents of payload, sequence, ack, or checksum fields can 
be corrupted. Your checksum should thus include the data, sequence, and ack fields.
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●     Tracing. Setting a tracing value of 1 or 2 will print out useful information about what is going on inside the 
emulation (e.g., what's happening to packets and timers). A tracing value of 0 will turn this off. A tracing 
value greater than 2 will display all sorts of odd messages that are for my own emulator-debugging purposes. 
A tracing value of 2 may be helpful to you in debugging your code. You should keep in mind that real 
implementors do not have underlying networks that provide such nice information about what is going to 
happen to their packets!

●     Average time between messages from sender's layer5. You can set this value to any non-zero, positive 
value. Note that the smaller the value you choose, the faster packets will be be arriving to your sender.

The Alternating-Bit-Protocol Version of this lab.

You are to write the procedures, A_output(),A_input(),A_timerinterrupt(),A_init(),B_input
(), and B_init() which together will implement a stop-and-wait (i.e., the alternating bit protocol, which we 
referred to as rdt3.0 in the text) unidirectional transfer of data from the A-side to the B-side. Your protocol should 
use both ACK and NACK messages. 

You should choose a very large value for the average time between messages from sender's layer5, so that your 
sender is never called while it still has an outstanding, unacknowledged message it is trying to send to the receiver. 
I'd suggest you choose a value of 1000. You should also perform a check in your sender to make sure that when 
A_output() is called, there is no message currently in transit. If there is, you can simply ignore (drop) the data 
being passed to the A_output() routine. 

You should put your procedures in a file called prog2.c. You will need the initial version of this file, containing the 
emulation routines we have writen for you, and the stubs for your procedures. You can obtain this program from 
http://gaia.cs.umass.edu/kurose/transport/prog2.c. 

This lab can be completed on any machine supporting C. It makes no use of UNIX features. (You can simply  
copy the prog2.c file to whatever machine and OS you choose). 

We recommend that you should hand in a code listing, a design document, and sample output. For your sample 
output, your procedures might print out a message whenever an event occurs at your sender or receiver (a message/
packet arrival, or a timer interrupt) as well as any action taken in response. You might want to hand in output for a 
run up to the point (approximately) when 10 messages have been ACK'ed correctly at the receiver, a loss probability 
of 0.1, and a corruption probability of 0.3, and a trace level of 2. You might want to annotate your printout with a 
colored pen showing how your protocol correctly recovered from packet loss and corruption. 

Make sure you read the ``helpful hints'' for this lab following the description of the Go_Back-N version of this lab. 
  
  

The Go-Back-N version of this lab.

You are to write the procedures, A_output(),A_input(),A_timerinterrupt(),A_init(),B_input
(), and B_init() which together will implement a Go-Back-N unidirectional transfer of data from the A-side to 
the B-side, with a window size of 8. Your protocol should use both ACK and NACK messages. Consult the 
alternating-bit-protocol version of this lab above for information about how to obtain the network emulator. 
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We would STRONGLY recommend that you first implement the easier lab (Alternating Bit) and then extend your 
code to implement the harder lab (Go-Back-N). Believe me - it will not be time wasted! However, some new 
considerations for your Go-Back-N code (which do not apply to the Alternating Bit protocol) are: 

❍     A_output(message), where message is a structure of type msg, containing data to be sent to the B-side.
Your A_output() routine will now sometimes be called when there are outstanding, unacknowledged 
messages in the medium - implying that you will have to buffer multiple messages in your sender. Also, you'll 
also need buffering in your sender because of the nature of Go-Back-N: sometimes your sender will be called 
but it won't be able to send the new message because the new message falls outside of the window.
Rather than have you worry about buffering an arbitrary number of messages, it will be OK for you to have 
some finite, maximum number of buffers available at your sender (say for 50 messages) and have your sender 
simply abort (give up and exit) should all 50 buffers be in use at one point (Note: using the values given 
below, this should never happen!) In the ``real-world,'' of course, one would have to come up with a more 
elegant solution to the finite buffer problem! 
 

❍     A_timerinterrupt() This routine will be called when A's timer expires (thus generating a timer interrupt). 
Remember that you've only got one timer, and may have many outstanding, unacknowledged packets in the 
medium, so you'll have to think a bit about how to use this single timer.

Consult the Alternating-bit-protocol version of this lab above for a general description of what you might want to 
hand in. You might want to hand in output for a run that was long enough so that at least 20 messages were 
successfully transfered from sender to receiver (i.e., the sender receives ACK for these messages) transfers, a loss 
probability of 0.2, and a corruption probability of 0.2, and a trace level of 2, and a mean time between arrivals of 10. 
You might want to annotate parts of your printout with a colored pen showing how your protocol correctly recovered 
from packet loss and corruption. 

For extra credit, you can implement bidirectional transfer of messages. In this case, entities A and B operate as both 
a sender and receiver. You may also piggyback acknowledgments on data packets (or you can choose not to do so). 
To get my emulator to deliver messages from layer 5 to your B_output() routine, you will need to change the 
declared value of BIDIRECTIONAL from 0 to 1. 
  

Helpful Hints and the like

●     Checksumming. You can use whatever approach for checksumming you want. Remember that the sequence 
number and ack field can also be corrupted. We would suggest a TCP-like checksum, which consists of the 
sum of the (integer) sequence and ack field values, added to a character-by-character sum of the payload field 
of the packet (i.e., treat each character as if it were an 8 bit integer and just add them together).

●     Note that any shared ``state'' among your routines needs to be in the form of global variables. Note also that 
any information that your procedures need to save from one invocation to the next must also be a global (or 
static) variable. For example, your routines will need to keep a copy of a packet for possible retransmission. It 
would probably be a good idea for such a data structure to be a global variable in your code. Note, however, 
that if one of your global variables is used by your sender side, that variable should NOT be accessed by the 
receiving side entity, since in real life, communicating entities connected only by a communication channel 
can not share global variables.

●     There is a float global variable called time that you can access from within your code to help you out with 
your diagnostics msgs.
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●     START SIMPLE. Set the probabilities of loss and corruption to zero and test out your routines. Better yet, 
design and implement your procedures for the case of no loss and no corruption, and get them working first. 
Then handle the case of one of these probabilities being non-zero, and then finally both being non-zero.

●     Debugging. We'd recommend that you set the tracing level to 2 and put LOTS of printf's in your code while 
your debugging your procedures.

●     Random Numbers. The emulator generates packet loss and errors using a random number generator. Our 
past experience is that random number generators can vary widely from one machine to another. You may 
need to modify the random number generation code in the emulator we have suplied you. Our emulation 
routines have a test to see if the random number generator on your machine will work with our code. If you 
get an error message:

It is likely that random number generation on your machine is different from what this emulator 
expects. Please take a look at the routine jimsrand() in the emulator code. Sorry.

then you'll know you'll need to look at how random numbers are generated in the routine jimsrand(); see the 
comments in that routine.

Q&A

When we've taught this lab in our introductory neworking course, students have posed versious questions.  If you are 
interested in looking at the questions we've received (and answers), check out http://gaia.cs.umass.edu/kurose/
transport/programming_assignment_QA.htm 
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CMPSCI 653/491G: On-line class audio/notes 

 

On-line class audio and notes

It is possible for you to use your WWW browser (with the Real Audio plugin) to listen to the recorded 
audio of in-class lectures, with synchronized display and highlighting of the class notes. 

In order to begin viewing/listening: 

●     Click here to register. You need only register once. You do not have to be a student to register. 
We only ask that you tell us who you are (once). 

●     Click here if you have already registered. Click here to begin viewing/listening. 

For more information: 

●     hardware and software requirements, including the Real Audio WWW plugin 
●     instructions for navigating through the on-line audio/notes 
●     credit where credit is due 

kurose@cs.umass.edu 
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Internet Lectures on Demand

Internet Protocols

Lectures on Demand

Lectures on demand consist of RealAudio audio clips coupled with 
graphical Web pages.

❍     Overview
■     The Internet
■     Circuit Switching vs. Packet Switching
■     Packet Switching vs Message Switching
■     Connectionless and Connection-Oriented Services
■     Virtual Circuits
■     Network Taxonomy
■     Protocol Stacks
■     Packet-Switched Networks Classified by Extent

❍     Link Layer: Ethernet and Transparent Bridges
■     Ethernet Basics
■     CSMA/CD
■     Ethernet Performance
■     Ethernet Technologies
■     LAN Design Problem
■     Transparent Bridges
■     Do You Have Backbone
■     Designing a Building Area Network
■     Switched Ethernet

❍     Transport Layer
■     Transport Layer Terminology
■     Summary TCP/IP Encapsulation
■     UDP - User Datagram Protocol
■     TCP (Transmission Control Protocol)
■     TCP Receive Window
■     Round-Trip Time Estimation
■     TCP Congestion Control

❍     Application Layer
■     Clients and Servers
■     Hypertext Transfer Protocol (HTTP)
■     FTP - File Transfer Protocol
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Internet Lectures on Demand

■     SMTP
■     NNTP
■     Telnet

❍     Internet Commerce
■     Introduction
■     Fundamentals of Cryptography
■     The Commerce Server
■     Visa and MasterCard's Solution: The SET Protocol
■     Digital Cash
■     Email Verification

Text: The Internet: Protocols, Technology, and Commerce
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Jim Kurose

Department of Computer Science 
University of Massachusetts 
Amherst MA 01003 USA 
kurose@cs.umass.edu 
ph: 413-545-2742, FAX: 413-545-1249 
  

 

Jim Kurose received a B.A. degree in physics from Wesleyan University in 1978 and his M.S. 
and Ph.D. degrees in computer science from Columbia University in 1980 and 1984, respectively. He is currently a Professor of Computer 
Science at the University of Massachusetts, where he is also co-director of the Networking Research Laboratory of the Multimedia 
Systems Laboratory. He is currently serving a term as Chairman of the Department of Computer Science. Professor Kurose was a Visiting 
Scientist at IBM Research during the 1990/91 academic year, and at INRIA and at EURECOM, both in Sophia Antipolis, France, during 
the 1997/98 academic year. 

His research interests include real-time and multimedia communication, network and operating system support for servers, and modeling 
and performance evaluation. Dr. Kurose is the past Editor-in-Chief of the IEEE Transactions on Communications and of the IEEE/ACM 
Transactions on Networking. He has been active in the program committees for IEEE Infocom, ACM SIGCOMM, and ACM 
SIGMETRICS conferences for a number of years. 

He is the six-time recipient of the Outstanding Teacher Award from the National Technological University (NTU), the recipient of the 
Outstanding Teacher Award from the College of Science and Natural Mathematics at the University of Massachusetts, and the recipient of 
the 1996 Outstanding Teaching Award of the Northeast Association of Graduate Schools. He has been the recipient of a GE Fellowship, 
IBM Faculty Development Award, and a Lilly Teaching Fellowship. He is a Fellow of the IEEE, and a member of ACM, Phi Beta Kappa, 
Eta Kappa Nu, and Sigma Xi. 

He is currently working on an on-line introductory networking textbook, "Computer Networking, a top down approach featuring the 
Internet," with Keith Ross.  The book is available on-line, and is to be published by Addison-Wesley Longman in 2000. 

[Research Group] [Publications] [Courses (including on-line courses)] 

kurose@gaia.cs.umass.edu

Sept. 1999 
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Keith Ross

 

Keith W. Ross
Professor 

Professor Keith ROSS 
Dept. of  Multimedia Communications 
Institute Eurécom 
06904 Sophia Antipolis 
FRANCE 

Telephone: +33 (0)4 93 00 26 97 (from US dial 011-33-4-93-00-26-97) 
Fax: +33 (0)4 93 00 26 27 
email: ross@eurecom.fr 

 

New! Wimba Voice Forums and Voice E-mail

Try out our new voice forum at http://www.wimba.com . It is Java-based, so there is nothing 
to install. You can also use Wimba to send streaming voice e-mails to anyone.

Brief Biography

Keith Ross received his Ph.D. from the University of Michigan in 1985 (Program in Computer, 
Information and Control Engineering). He was a professor at the University of Pennsylvania 
from 1985 through 1997. At the University of Pennsylvania, his primary appointment was in 
the Department of Systems Engineering and his secondary appointment was in the Wharton 
School. He joined the Multimedia Communications Dept. at Institut Eurecom in January 1998, 
and became department chairman in October 1998. In Fall 1999, while remaining a professor 
at Institut Eurecom, he co-founded and became CEO of Wimba.com. 

Keith Ross has published over 50 papers and written two books. He has served on editorial 
boards of five major journals, and has served on the program committees of major 
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Keith Ross

networking conferences, including Infocom and Sigcomm. He has supervised more than ten Ph.
D. theses. His research and teaching interests include multimedia networking, asynchronous 
learning, Web caching, streaming audio and video, and traffic modeling. 

Along with Jim Kurose, he recently completed the preliminary edition of "Computer 
Networking: A Top-Down Approach Featuring the Internet," a textbook published by Addison-
Wesley. The final edition and interactive Web edition will be available in August 2000. 

Multimedia Networking Group

Our research group studies Web caching, streaming of stored/audio over the Internet, 
multimedia asynchronous messaging, and QoS traffic modeling. 

Recent publications

Books

Computer Networking: A Top-Down Approach Featuring the Internet, James F. Kurose 
and Keith W. Ross. 

  
Multiservice Loss Networks for Broadband Telecommunication Networks Keith W. 
Ross.  

  

Fall 99 Courses at Eurecom
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Keith Ross

Multimedia Networking Part I (a.k.a. High-Speed Networking)
Multimedia Networking Part II

Online Presentations

 

Distribution of Stored Information in the Web: An indepth tutorial on Web caching. Includes synchronized 
RealAudio served from Eurécom.

Multimedia Networking:  Short course, including material on CBR/VBR video encoding, residential access 
technologies, near video on demand, statistical multiplexing and prefetching of prerecorded video, smoothing of 
prerecorded video, and modeling the disk subsystem in video servers.

Audio and Video in the Internet: Extended lecture covering multimedia streaming, Internet phone, Internet QoS, 
and RTP/RTCP.

Internet Protocols: Lectures on demand covering introductory material on Internet protocols. Includes 
synchronized audio served from UPenn.
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